三角函数知识点

合集下载

三角函数的基本性质知识点总结

三角函数的基本性质知识点总结

三角函数的基本性质知识点总结一、正弦函数的性质1. 基本定义:在直角三角形中,正弦函数是指对于一个锐角A,其对边与斜边之比,即sin A = 对边/斜边。

2. 定义域和值域:正弦函数的定义域是实数集,值域是[-1, 1]。

3. 奇偶性:正弦函数是奇函数,即sin(-A) = -sinA,对称轴为原点。

4. 周期性:正弦函数的周期是360°或2π,即sin(A + 360°) = sinA。

5. 正弦函数的图像:根据正弦函数的性质,可以绘制出正弦函数的图像,在0°到360°的范围内,图像呈现周期性的波动。

二、余弦函数的性质1. 基本定义:在直角三角形中,余弦函数是指对于一个锐角A,其临边与斜边之比,即cos A = 临边/斜边。

2. 定义域和值域:余弦函数的定义域是实数集,值域是[-1, 1]。

3. 奇偶性:余弦函数是偶函数,即cos(-A) = cosA,对称轴为y轴。

4. 周期性:余弦函数的周期是360°或2π,即cos(A + 360°) = cosA。

5. 余弦函数的图像:根据余弦函数的性质,可以绘制出余弦函数的图像,在0°到360°的范围内,图像呈现周期性的波动,与正弦函数的图像相似但形状相对位移。

三、正切函数的性质1. 基本定义:在直角三角形中,正切函数是指对于一个锐角A,其对边与临边之比,即tan A = 对边/临边。

2. 定义域和值域:正切函数的定义域是除去所有使得临边等于零的实数,值域是全体实数集。

3. 奇偶性:正切函数是奇函数,即tan(-A) = -tanA,对称轴为原点。

4. 周期性:正切函数的周期是180°或π,即tan(A + 180°) = tanA。

5. 正切函数的图像:根据正切函数的性质,可以绘制出正切函数的图像,在0°到180°的范围内,图像呈现周期性的波动。

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。

2)终边与角α相同的角可写成α+k·360°(k∈Z)。

3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。

弧度与角度可以互相转换。

2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。

3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。

注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。

和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。

二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。

2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。

三角函数所有知识点

三角函数所有知识点

三角函数所有知识点
三角函数是一种数学函数,它们描述的是在直角三角形中,三角形的角度和边长之间的关系。

在这里,将介绍一些三角函数的重要知识点,包括定义、性质、图像、公式和应用。

一、常见三角函数
在三角函数中,最常见的三个函数包括正弦函数、余弦函数和正切函数。

它们的定义如下:
正弦函数:sin(x) = 对边/斜边
余弦函数:cos(x) = 邻边/斜边
正切函数:tan(x) = 对边/邻边
其中,x代表角度,对边代表直角三角形中与角度x 相对应的直角边,邻边代表另一条直角边,斜边代表斜边。

二、三角函数的周期性
三角函数具有周期性,这意味着它们在一定范围内以特定的周期不断重复。

正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。

三、三角函数的图像
三角函数的图像都是连续的曲线,它们的形状和周期是不同的。

正弦函数的图像类似于波浪线,余弦函数的图像则类似于正弦函数图像向右平移π/2,正切函数的图像是一个连续的周期性分数函数。

四、三角函数的公式
三角函数有很多重要的公式,包括欧拉公式、和差化积公式、倍角公式、半角公式和逆三角函数公式。

这些公式可以帮助我们在计算中更方便地使用三角函数。

五、三角函数的应用
三角函数广泛应用于科学和工程领域,包括声学、天文学、物理学、计算机图形学等。

例如,在声学中,三角函数可以用于描述声波和光波的振动模式,而在计算机图形学中,它们可以用于图像处理和动画设计。

以上就是三角函数的一些重要知识点,希望能帮助你更好地理解三角函数。

高中数学-三角函数知识点总结

高中数学-三角函数知识点总结

三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。

高中数学三角函数知识点

高中数学三角函数知识点

高中数学三角函数知识点一、基础概念1. 三角函数三角函数是数学中的一种函数,用来描述一个直角三角形中各边和角度之间的关系。

三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。

2. 角度制和弧度制角度制是指用度数来描述角度大小的一种测量方法,以“度”作为单位。

1圆周角等于360度,1度等于60分,1分等于60秒。

弧度制是指用弧长来描述角度大小的一种测量方法,以“弧度”作为单位。

1圆周角等于2π弧度,1弧度等于圆的半径所对应的弧长的长度。

3. 函数的周期与函数值域函数的周期是指函数在一段区间内重复出现的最小长度。

正弦函数和余弦函数的周期都是2π,正切函数和余切函数的周期都是π,正割函数和余割函数的周期都是π。

函数的值域是指函数所有可能的输出值所组成的集合。

正弦函数和余弦函数的值域都是[-1,1],正切函数的值域是(-∞,∞),余切函数的值域也是(-∞,∞),正割函数的值域是[1,∞),余割函数的值域也是[-∞,-1]∪[1,∞)。

4. 常用三角函数的图形正弦函数的图形是一条周期为2π、在x=π/2处取得最大值1,在x=3π/2处取得最小值-1的正弦曲线。

余弦函数的图形是一条周期为2π、在x=0处取得最大值1,在x=π处取得最小值-1的余弦曲线。

正切函数的图形是一条周期为π、在x=π/2+kπ(k∈Z)处有一个无穷大的跳跃,且在x=kπ(k∈Z)处取值为0的正切曲线。

5. 三角函数的基本关系式正弦函数和余弦函数之间满足关系式sin(x)=cos(x-π/2),cos(x)=sin(x+π/2)。

正切函数和余切函数之间满足关系式tan(x)=1/cot(x),cot(x)=1/tan(x)。

二、三角函数的运算1. 三角函数的加减法公式sin(x±y)=sinxcosy±cosxsinycos(x±y)=cosxcosy∓sinxsinytan(x±y)=(tanx±tany)/(1∓tanxtany)cot(x±y)=(cotxcoty∓1)/(cotx±coty)2. 三角函数的积化和差公式sinx+siny=2sin((x+y)/2)cos((x-y)/2)sinx-siny=2cos((x+y)/2)sin((x-y)/2)cosx+cosy=2cos((x+y)/2)cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)3. 三角函数的倍角公式和半角公式sin2x=2sinxcosxcos2x=cos^2x-sin^2xtan2x=(2tanx)/(1-tan^2x)sin(x/2)=±√[(1-cosx)/2]cos(x/2)=±√[(1+cosx)/2]tan(x/2)=±√[(1-cosx)/(1+cosx)]4. 三角函数的反函数sin(-1)x:[-1,1]→[-π/2,π/2]cos(-1)x:[-1,1]→[0,π]tan(-1)x:(-∞,∞)→(-π/2,π/2)cot(-1)x:(-∞,∞)→(0,π)三、三角函数的应用1. 三角函数在几何中的应用在直角三角形中,正弦函数和余弦函数可以用来计算任意两边和一个角的关系。

三角函数知识点梳理

三角函数知识点梳理

三角函数知识点梳理关键信息项:1、三角函数的定义正弦函数余弦函数正切函数余切函数正割函数余割函数2、三角函数的基本关系式平方关系商数关系倒数关系3、三角函数的诱导公式正弦诱导公式余弦诱导公式4、三角函数的图像和性质正弦函数图像和性质余弦函数图像和性质正切函数图像和性质5、三角函数的周期性周期的定义常见三角函数的周期6、三角函数的最值和值域正弦函数的最值和值域余弦函数的最值和值域正切函数的最值和值域7、三角函数的和差公式正弦和差公式余弦和差公式正切和差公式8、三角函数的倍角公式余弦倍角公式正切倍角公式9、三角函数的半角公式正弦半角公式余弦半角公式正切半角公式11 三角函数的定义111 正弦函数:在直角三角形中,锐角的正弦等于其对边与斜边的比值。

即 sinA = a/c,其中 A 为锐角,a 为 A 的对边,c 为斜边。

112 余弦函数:锐角的余弦等于其邻边与斜边的比值。

即 cosA =b/c,其中 b 为 A 的邻边。

113 正切函数:锐角的正切等于其对边与邻边的比值。

即 tanA =a/b。

114 余切函数:锐角的余切等于其邻边与对边的比值。

即 cotA =b/a。

115 正割函数:斜边与邻边的比值。

即 secA = c/b。

116 余割函数:斜边与对边的比值。

即 cscA = c/a。

12 三角函数的基本关系式121 平方关系:sin²A + cos²A = 1,1 + tan²A = sec²A,1 + cot²A = csc²A。

122 商数关系:tanA = sinA / cosA,cotA = cosA / sinA。

123 倒数关系:sinA × cscA = 1,cosA × secA = 1,tanA × cotA =1。

13 三角函数的诱导公式131 正弦诱导公式:sin(2kπ + A) = sinA,sin(π + A) = sinA,sin(A) = sinA 等。

三角函数知识点

三角函数知识点

三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。

若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。

角的大小是任意的。

定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。

定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,定理1 同角三角函数的基本关系式, 倒数关系:tan α=αcot 1,商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α; (Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α;(Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α; ( Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α(奇变偶不变,符号看象限)。

定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。

三角函数相关知识点

三角函数相关知识点

三角函数相关知识点三角函数知识点学习资料一、基本概念1. 角的概念推广正角、负角和零角:按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角,不作任何旋转形成的角为零角。

象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是第几象限角。

终边在坐标轴上的角不属于任何象限。

终边相同的角:所有与角α终边相同的角(连同α在内),可构成一个集合S ={β|β=α + k·360^∘,k∈ Z}。

2. 弧度制定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。

弧度与角度的换算:180^∘=π rad,所以1^∘=(π)/(180) rad,1 rad = ((180)/(π))^∘。

弧长公式:l =|α|r(其中l为弧长,α为圆心角弧度数,r为半径)。

扇形面积公式:S=(1)/(2)lr=(1)/(2)|α|r^2。

二、三角函数定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα = x,tanα=(y)/(x)(x≠0)。

对于角α终边上任意一点P(x,y)(r=√(x^2)+y^{2}),则sinα=(y)/(r),cosα=(x)/(r),tanα=(y)/(x)(x≠0)。

2. 三角函数值在各象限的符号正弦函数y = sin x:一、二象限为正,三、四象限为负。

余弦函数y=cos x:一、四象限为正,二、三象限为负。

正切函数y = tan x:一、三象限为正,二、四象限为负。

三、同角三角函数的基本关系1. 平方关系sin^2α+cos^2α = 1。

2. 商数关系tanα=(sinα)/(cosα)(cosα≠0)。

四、诱导公式1. α + 2kπ(k∈ Z)与α的三角函数关系sin(α + 2kπ)=sinα,cos(α+2kπ)=cosα,tan(α + 2kπ)=tanα。

sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 1 页
三角函数知识点
⎧⎪
⎨⎪⎩
正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角
2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.
第一象限角的集合为{}
36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z
第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z
3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z
4、已知α是第几象限角,确定
()*
n n
α
∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n
α终边所落在的区域.
5、长度等于半径长的弧所对的圆心角叫做1弧度.
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r
α=. 7、弧度制与角度制的换算公式:2360π=,1180π
=
,180157.3π⎛⎫=≈ ⎪⎝⎭
. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,
则l r α=,2C r l =+,211
22
S lr r α=
=. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是
()
220r r x y =+>,则sin y r α=
,cos x r α=,()tan 0y
x x
α=≠. 10、三角函数在各象限的符号:第一象限全为正,
第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α
=MP ,cos α=OM ,tan α=AT .
第 1 页 共 1 页
12、同角三角函数的基本关系:
()221sin cos 1αα+= ()2222sin 1cos ,cos 1sin αααα=-=-;
()
sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛
⎫== ⎪⎝⎭

13、三角函数的诱导公式:
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.
口诀:函数名称不变,符号看象限.
()5sin cos 2π
αα⎛⎫-=
⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭
.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫
+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.
14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()
sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω
倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.
函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω
倍(纵坐标不变),得到函数
sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω
个单位长度,
得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2π
ω
T =
;③频率:12f ω
π
=
=T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122
x x x x T =-<.
第 1 页 共 1 页
15、正弦函数、余弦函数和正切函数的图象与性质:
sin y x =
cos y x = tan y x =
图象
定义域 R R
,2x x k k ππ⎧⎫
≠+∈Z ⎨⎬⎩⎭
值域
[]1,1-
[]1,1-
R
最值
当22
x k π
π=+
()k ∈Z 时,
max 1y =;当22
x k π
π=-
()k ∈Z 时,min 1y =-.
当()2x k k π=∈Z 时,
max 1y =;当2x k ππ=+ ()k ∈Z 时,min 1y =-.
既无最大值也无最小值
周期性
2π 2π π 奇偶性
奇函数
偶函数
奇函数
单调性
在2,222k k ππππ⎡
⎤-+⎢⎥⎣

()k ∈Z 上是增函数;在
32,222k k ππππ⎡
⎤++⎢⎥⎣
⎦ ()k ∈Z 上是减函数.
在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+
()k ∈Z 上是减函数.
在,22k k ππππ⎛
⎫-+ ⎪⎝

()k ∈Z 上是增函数.
对称性
对称中心()(),0k k π∈Z
对称轴()2x k k ππ=+∈Z
对称中心(),02k k ππ⎛
⎫+∈Z ⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫
∈Z ⎪⎝⎭ 无对称轴


性 质。

相关文档
最新文档