超高速加工技术
超精密加工与超高速加工技术

术工技加工与超高速加超精密一、技术概述超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速。
技术和加工质量的现代加工度和进给速度来提高材料切除率、加工精度超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。
目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。
各种切削工艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻以上等等。
削250m/s削200~1100m/min,磨超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具等。
术在线自动检测与控制技制造技术,超高速加工-c超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra 小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm 的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术研究。
条件和误差补偿技术研究,超精密加工工作环境展趋势外发二、现状及国内高速加工.超1工业发达国家对超高速加工的研究起步早,水平高。
在此项技术中,意大利等。
国、主要有德国、日本、美处于领先地位的国家在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。
目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。
切削速度亦随着刀具材料创新而从以前的12m/min 提高到1200m/min 以上。
(三)先进制造工艺3-超高速加工技术

(2)汽车工业领域
高速加工在汽车生产领域的应用主要体现在模具和零件 两个方面。 加工两个方面。应用高速切削加工技术可加工零件的范围相 当广,其典型零件包括:伺服阀、各种泵和电机的壳体、 当广,其典型零件包括:伺服阀、各种泵和电机的壳体、电机 转子、汽缸体和模具等。汽车零件铸模以及内饰件注塑模的制 转子、汽缸体和模具等。 造正逐渐采用高速加工。 造正逐渐采用高速加工。
China University of Mining & Technology
China University of Mining & Technology
2、超高速加工技术的应用
(1)航空航天工业领域
高速加工在航空航天领域应用广泛,如大型整体结构件、 高速加工在航空航天领域应用广泛,如大型整体结构件、 薄壁类零件、微孔槽类零件和叶轮叶片等。 薄壁类零件、微孔槽类零件和叶轮叶片等。国外许多飞机及发 动机制造厂已采用高速切削加工来制造飞机大梁、肋板、 动机制造厂已采用高速切削加工来制造飞机大梁、肋板、舵机 壳体、雷达组件、热敏感组件、钛和钛合金零件、 壳体、雷达组件、热敏感组件、钛和钛合金零件、铝或镁合金 压铸件等航空零部件产品。现代飞机构件都采用整体加工技术, 压铸件等航空零部件产品。现代飞机构件都采用整体加工技术, 即直接在实体毛坯上进行高速切削,加工出高精度、 即直接在实体毛坯上进行高速切削,加工出高精度、高质量的 铝合金或钛合金等有色轻金属及合金的构件, 铝合金或钛合金等有色轻金属及合金的构件,而不再采用铆接 等工艺,从而可以提高生产效率,降低飞机重量。 等工艺,从而可以提高生产效率,降低飞机重量。
China University of Mining & Technology
超高速加工技术

应用案例二:汽车发动机缸体加工
总结词
提高缸体质量和加工效率
详细描述
在汽车发动机缸体加工中,超高速加工技术能够提高缸体的加工效率和精度,同时降低废品率。通过高速旋转的 刀具和高效的切削液系统,可以快速去除材料,减少切削力和热量的产生,提高缸体的表面质量和耐久性。
应用案例三:模具钢材料加工
总结词
提高模具寿命和加工效率
发展趋势
随着新材料、新工艺的不 断涌现,超高速加工技术 正朝着智能化、绿色化、 复合化等方向发展。
主题重要性
促进制造业转型升级
满足市场需求
超高速加工技术的应用有助于提高生 产效率、降低成本,推动制造业向智 能化、柔性化、绿色化方向转型升级。
随着市场对产品品质和性能要求的不 断提高,超高速加工技术的应用能够 满足消费者对高品质产品的需求。
超高速加工技术能够大幅提高航空航天材料的加工效率,缩 短生产周期,降低制造成本,同时保证零部件的加工精度和 质量。
汽车制造
汽车制造领域需要大量高精度零部件 ,超高速加工技术能够快速、准确地 加工出汽车发动机缸体、缸盖、变速 器壳体等复杂零部件。
超高速加工技术能够提高汽车零部件 的加工效率,降低生产成本,同时提 高零部件的耐磨性、耐腐蚀性和疲劳 强度等性能。
数字化
超高速加工技术将向数字化方向发展, 实现数字化的加工模型和加工过程的 仿真与优化。
05
超高速加工技术的实际案例
应用案例一:航空叶片加工
总结词
提高加工效率,降低生产成本
详细描述
超高速加工技术应用于航空叶片加工,能够显著提高加工效率,缩短生产周期, 降低生产成本。通过高转速的刀具和精确的数控系统,可以快速、准确地完成 叶片的切削和磨削,提高表面质量和精度。
_超高速加工技术

2、超高速主轴系统动态特性及热态特性研究:动刚度、固有 频率等参数的影响。 3、超高速主轴系统的润滑和冷却技术研究:润滑充分问题、 冷却效果问题。 4、超高速主轴系统多目标优化设计、虚拟设计技术研究。
第四节 超高速加工进给单元制造技术
超高速加工进给单元是超高速加工机床的重要组成部分。 一、超高速加工进给单元的基本要求: 1、要求具有大的加、减速度:在瞬时达到高速,瞬时准停。 2、要求具有搞的定位精度:能精确控制零件的尺寸精度。 二、超高速加工进给单元的关键技术: 1、高速位置环芯片研制;
4、超高速加工中工件状态的测试技术; 5、超高速加工中自适应控制技术; 6、超高速加工中智能控制技术。
第五节 超高Βιβλιοθήκη 加工测试技术从某种意义上讲,超高速加工测试技术是超高速加工得到应 用的技术关键。 一、超高速加工测试技术的概念: 主要是指在超高速加工过程中,通过传感、分析、信号处理 等,对超高速机床及系统的状态进行实时在线监测和控制的监测 技术。 监测主要基于对切削力、声发射、切削功率和温度等信息参 数检测,来监测加工状态。 二、超高速加工测试的关键技术: 1、基于监控参数的在线检测技术; 2、超高速加工的多传感器融合检测技术; 3、超高速加工机床中各单元系统功能部件的测试技术;
3、超高速进给单元制造技术; 4、超高速加工用刀具和磨具材料; 5、超高速机床支承; 6、超高速加工测试技术。
二、超高速切削机理: 1、萨洛蒙超高速切削理论: 三个切削速度区: ⑴ 常规的切削速度区:现行的切削加工速度范围; ⑵ 不能切削区:此区切削速度下,切削温度过高,刀具不能 承受; ⑶ 高速切削区:当切削速度达到某一数值后,切削温度不再 升高,反而随切削速度继续增加,切削温度呈下降趋势,切削 温度降到刀具能承受的切削速度时,即为高速切削的最低速度。 试验表明,萨洛蒙超高速切削理论并不适用于所有的加工 材料,有些材料在超高速切削时不存在不能切削区。 2、超高速磨削最大切屑厚度hmax理论: 在保持其它参数不变,仅增大磨削速度情况下, hmax会减 小,每个磨削刃上的作用切削力也会减小。
超高速超精密加工技术主要内容

加工方法及机理研究 刀具、 刀具、磨具的研究 加工装备技术研究 测量技术研究
超精密加工技术的应用 超精密加工技术的发展趋势
作 业
(1)超高速、超精密加工技术二者选择其一。 超高速、超精密加工技术二者选择其一。 (2)按照上述提纲要求查阅文献,然后归纳总结写出 按照上述提纲要求查阅文献, 文献综述” “文献综述”。 (3)要求条理清晰,内容精练,3000~5000字。 要求条理清晰,内容精练,3000~5000字 (4)必需手写,不能打印。 必需手写,不能打印。 (5)该作业作为本课程平时成绩的一部分,占15%。 该作业作为本课程平时成绩的一部分, 15%。
超高速超精密加工技术主要内容
一 超高速加工技术
超高速加工技术的内涵 超高速加工技术的关键技术(重点) 超高速加工技术的关键技术(重点)
加工机理研究 主轴单元制造技术研究 进给单元制造技术研究 刀具、 刀具、磨具研究
Байду номын сангаас
超高速加工技术的应用 超高速加工技术的发展趋势
二 超精密加工技术
超精密加工技术的内涵 超精密加工技术的关键技术(重点) 超精密加工技术的关键技术(重点)
第三章先进制造工艺技术(超高速加工)

➢ 将粗加工、半精加工、精加工合为一体,在一台机床上完 成,减少了机床台数,避免由于多次装夹使精度产生误差。
➢ 可加工高硬度、难加工材料(62左右),可以钻ø1以下的小 孔。
➢ 加工时间短,经济性能好。
内装式同轴电动机驱动优点
➢主轴是电机的转子,定子装入主轴套筒内, 取消了传统的电机经齿轮和皮带传动主轴的 结构,减少了振动,增加了可靠性,
➢可获得高转速和高的加(减)角速度,转速达到 0~42000,甚至更高。
➢结构简化,造价下降,精度和可靠性提高。 ➢噪声、振动源消除,主轴自身热源消除。 ➢回转精度高,摩擦振动小, ➢主轴箱成为紧凑、独立、方便移动的部件,
➢ 硬的、难切削的材料,如耐热不锈钢等。
五、超高速加工技术发展趋势
超高速切削的发展趋势: 高效高速化; 实用廉价化; 复合化等
超高速磨削技术的发展趋势: 高柔性自动化系统+超硬磨料磨具+各种高速高
效磨削技术。
超高速加工技术关键技术
关键技术: 超高速切削、磨削机理; 超高速主轴单元制造技术; 超高速加工进给单元制造技术; 超高速加工用刀具、磨具; 超高速加工机床支承及辅助单元制造技术; 超高速加工测试技术。
1、超高速切削、磨削机理
随着切削线速度的增加,温度及刀具磨损会剧烈增加,当 切削线速度达到超过某临界值时,切削温度及切削力会减 小,然后又随着切削速度的增加而急剧增加
2、 超高速主轴单元制造技术
主轴的驱动方式 电动机通过带传动:变频电机,电机经精密动
平衡,置于单独地基,柔软丝质传动带。 (优点:可隔离电机振动;缺点:布置不方 便) 电动机通过柔性联轴器驱动:电机、主轴在同 一轴线上,变频电机,电机经精密动平衡, 柔性联轴器联结。(优点:结构紧凑,回转 精度高;缺点:轴向尺寸增加,机床尺寸增 加) 内装式同轴电动机驱动:电机轴即机床主轴,
超高速加工技术

(2)汽车制造。
1
2
3
4
钻孔 表面倒棱 内侧倒棱 铰孔
高速钻孔 表面和内侧倒棱
专用机床 5轴×4工序 = 20轴(3万件/月)
刚性(零件、孔数、孔径、孔型固 定不变)
高速加工中心 1台1轴1工序(3万件/月)
柔性(零件、孔数、孔径、 孔型可变)
图12 汽车轮毂螺栓孔高速加工实例(日产公司)
(3)模具制造。
b)高速模具加工的过程
图14 两种模具加工过程比较
生产剃须刀的石墨电极
生产球形柄用的铜电极
图15 高速切削加工电火花加工用工具电极
(4)难加工材料领域。硬金属材料(HRC55~62),可 代替磨削,精度可达IT5~IT6级,粗糙度可达0.2~1um。
(5)超精密微细切削加工领域。
粗铣整体铝板; •精铣去口; •钻680个直径为3mm的小孔。 时间为32min。
在机床的主轴上,定子安装在主轴单元的壳体中,采用水冷 或油冷。精度高、振动小、噪声低、结构紧凑。
高速加工技术的发展与应用
图5 HSM600U型数控五轴高速加工中心
生产厂家:瑞士Mikron 主轴转速:最高42000 rpm
主轴功率:13 KW 进给速度:最高40 m / min
定位精度:0.008 mm
重复定位精度:0.005mm
图6 HSM 系列高速五轴联动小型立式加工中心
图7 HSM800 图9 HSM400
• Bremen大学在高效深磨的研究方面取得了世界公 认的高水平成果,并积极在铝合金、钛合金、铬镍 合金等难加工材料方面进行高效深磨的研究。
近年来,我国在高速、超高速加工的各关键领域 (如大功率高速主轴单元、高加减速直线进给电机、 陶瓷滚动轴承等方面)也进行了较多的研究并有相应 的研究成果。
超高速加工技术ppt课件

概述 • 超高速加工技术的历史背景
超高速加工技术的应用
高速切削的应用领域
• 航空航天工业轻合金的加工:飞机上的零件通常 采用“整体制造法”,其金属切除量相当大〔一 般在70%以上),采用高速切削可以大大缩短切 削时间。
超高速加工技术的应用
• 美国波音公司的F15战斗机两个方向舵之间的气动减速板 以前需要500多个零件装配而成,制造一个需要交货期为3 个月;而现在应用高速切削技术直接在实体铝合金毛坯上 铣削加工出来交货期只需要几天时间。
超高速加工技术的应用
高速切削的应用领域
✓难加工材料的加工〔如:Ni基高温合金和Ti合金) ✓ 纤维增强复合材料加工 ✓ 精密零件加工 ✓ 薄壁易变形零件的加工
3.2 超高速加工技术
• 概述 • 超高速加工技术的机理及特征 • 超高速加工技术的应用 • 超高速加工技术的相关技术
超高速加工技术的相关技术
概述
• 超高速加工技术的内涵和范围 • 超高速加工技术是指采用超硬材料刀具磨具和能
可靠地实现高速运动的高精度、高自动化、高柔 性的制造设备,以极大地提高切削速度来达到提 高切除率、加工精度和加工质量的现代制造加工 技术。
概述
内涵
高速切削是一个相对概念,是相对常规切削而言,用较高
的切削速度对工件进行切削。一般认为应是常规切削速度的
超高速加工技术的发展现状和趋势
• 超高速加工技术的发展趋势 • 超高速加工技术的发展趋势应符合加工中心或
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年9月10日
Page 31
超高速加工技术的应用
高速切削的应用领域
模具制造业:型腔加工同样有很大的金属切除量,过去一 直为电加工所垄断,其加工效率低。以前为电加工后再进行 抛光加工。
图
2019年9月10日
Page 32
超高速加工技术的应用
高速切削的应用领域
汽车工业:对技术变化较快的汽车零件,采用高速加工。 (过去多用组合机加工,柔性差) 其加工的典型零件:伺服阀、各种泵、电机的壳体、电机转 子、气缸体等
前刀面 刀具 后刀面 工件
Page 25
超高速加工技术的特征
高激励频率,避免自激振荡 减少后续工序 ,降低加工成本 因为超高速加工的表面质量几乎可以和磨削 相比,可以直接作为最后一道精加工工序
2019年9月10日
Page 26
超高速加工技术的特征
单位时间切除量 表面质量
2019年9月10日
切削速度
切削力 刀具寿命
Page 27
3.2 超高速加工技术
• 概述 • 超高速加工技术的机理及特征 • 超高速加工技术的应用 • 超高速加工技术的相关技术
2019年9月10日
Page 28
超高速加工技术的应用
高速切削的应用领域
航空航天工业轻合金的加工: 模具制造业: 汽车工业: 难加工材料的加工(如:Ni基高温合金和Ti合金) 纤维增强复合材料加工 精密零件加工 薄壁易变形零件的加工
2019年9月10日
Page 24
超高速加工技术的特征
高速切削的特征
减少传递给工件的热量
切屑和接触面之 间的接触区域产生 的高温会导致温度 效应并降低工件材 料变形的阻力
剪切角增大
切削热大部分由 切屑快速带走
避免积屑瘤的产 生
2019年9月10日
接触区 高速切削的剪切角 常规切削的剪切角
2019年9月10日
Page 35
超高速加工技术的相关技术
1.高速切削机床结构
高速主轴必须装在结构能适应高速切削的机床 上,才能充分发挥高速切削的众多优点。这就要求 高速切削机床具有很高的进给速度,并在很高速下 仍有高的定位精度。此外高速进给要靠很大的加速 度来实现,所以高速切削机床不仅要有很高的静刚 度,还必须有很高的动刚度。
2019年9月10日
Page 36
超高速加工技术的相关技术
• 根据上述几点要求,高速切削机床在90年代基本 上从两个方向上发展: 一是在普通机床的基础上对关键零部件进行改进。 二是研制完全不同于普通机床的新型结构机床。
2019年9月10日
Page 37
超高速加工技术的相关技术
面向高速切削的切削机床
我国在这一领域与国外差距巨大,工业上应用的磨削速度 还未达到100m/s,实验室中才为250m/s。
2019年9月10日
Page 13
超高速加工技术的发展现状和趋势
• 超高速加工技术的发展趋势
超高速加工技术的发展趋势应符合加工中心或柔性制造技 术的发展方向,即高效高速化、实用廉价化、多功能复合 化,最主要的是高效高速化方向。
(常规铣削)
2019年9月10日
(高速铣削)
来源: Page 20
超高速加工技术的机理
高加工表面质量,提高加工精度 切削力和切削热影响小,使刀具和工件的变 形小,保持了尺寸的精确性。
2019年9月10日
Page 21
超高速加工技术的特征
高速切削的特征
提高加工表面质量
行距
加工 余量 要求轮廓
行距
高单位时间切除率,降低加工成本 进给速度随切削速度的提高也可相应的提高 5-10倍,这样,单位时间材料的去除率可 提高3-6倍,因而加工时间可缩减到1/3.
2019年9月10日
Page 19
超高速加工技术的特征
高速切削的特征
提高单位时间的切除量,降低产品的制造时间
后续工作 精加工 半精加工 粗加工 加工准备 设计
例如:在切削灰铸铁时,1000 m/min 以上才是高速车削, 而 400 m/min 就定义为高速钻削。
2019年9月10日
Page 9
概述
• 目前定位的超高速切削的指标:
保证加工精度和加工质量的前提下,将通常切削速度加工 的加工时间减少90%,同时将加工费用减少50%
2019年9月10日
Page 10
2019年9月10日
Page 12
超高速加工技术的发展现状和趋势
• 超高速加工技术的发展现状-磨削
超高速磨削的研究开始是在50、60年代,在80年代兴起。 在超高速磨削技术方面,德国领先,日本后来巨上,美国 则在奋起直追。
目前发达国家,工业上应用磨削速度已达到150-250m/s, 实验室中达到400/s。
切削速度 vc
2000 m/min
800 600 400 200
100 80 60 40 20
聚 晶金 刚 石PC D Si3N4
立 方聚 晶 氮化 錋CB N
氧化陶瓷 金属陶瓷 硬质合金
涂层硬质合金
铸造 硬质合金
高速钢
2019年9月10日
10 8
1875
1900
工具钢
1925
1950
1975
年
2000
超高速加工技术的发展现状和趋势
• 超高速加工技术的发展现状-切削
1976年美国首次推出有级超高速铣床,最高转速达 20000r/min,功率15kw。此后,法国、德国也开始了超高 速加工技术的研究。
20世纪80年代中后期以来,商品化的超高速切削机床不断 出现。
目前,日本在超高速机床的研究和开发领域已跃居世界领 先地位,法国、瑞士、英国、意大利、澳大利亚等国也做 了大量的工作。
近几年出现了直线电机驱动系统。由于它无间隙 、惯性小、刚度较大而无磨损,通过控制电路可实现 高 速 度 和 高 精 度 驱 动 , 在 1997 年 进 给 速 度 已 达 120m/min
2019年9月10日
Page 41
超高速加工技术的相关技术
直线电动机的基本构造与普通旋转电机相似,如图所示
图 直线电动机进给驱动系统 1-导轨系统 2-笼型绕组 3-三相绕组 4-直线行程测量系统
2019年9月10日
Page 11
超高速加工技术的发展现状和趋势
• 超高速加工技术的发展现状-切削
我国在超高速加工的关键领域也做了一定的研究,但与国 外相比,有较大的差距。
主轴转速在20000r以下,快速进给速度在30m以下;而国 外,采用滚珠丝杠的进给系统,快速进给速度达到40- 60m,采用直线电机的进给系统中 ,快速进给可达160m。
2019年9月10日
Page 39
超高速加工技术的相关技术 图 超高速主轴的结构
2019年9月10日
Page 40
超高速加工技术的相关技术
⑵ 进给驱动系统高速化
高速切削机床的滑台驱动系统在90年代初多采用 大导程滚珠丝杠传动和增加伺服进给电机的转速来实 现的,一般进给速度可达60m/min左右。
2019年9月10日
Page 33
超高速加工技术的应用
高速切削的应用领域
难加工材料的加工(如:Ni基高温合金和Ti合金) 纤维增强复合材料加工 精密零件加工 薄壁易变形零件的加工
2019年9月10日
Page 34
3.2 超高速加工技术
• 概述 • 超高速加工技术的机理及特征 • 超高速加工技术的应用 • 超高速加工技术的相关技术
2019年9月10日
Page 7
概述
范围
工件材料
纤维增强塑料 铝合金 青铜,黄铜 铸铁 钢 钛合金 镍基合金
10
高速范围与加工材料密切相关普通 切削 过渡区 高速切削1001000
切削速度 vc(铣削)
m/min 10000
2来01源9年:9月P1T0日W
Page 8
范围
概述
高速范围与加工方法密切相关 车削:700~7000 m/min; 铣削:300~6000 m/min; 钻削:200~1100 m/min; 磨削:150m/s以上。
2019年9月10日
Page 6
概述
内涵
高速切削是一个相对概念,是相对常规切削而言,用较高
的切削速度对工件进行切削。一般认为应是常规切削速度的
5~10倍。 高速切削的速度范围与加工方法和工件材料密切相
关。 HSC = HSM =
High-Speed-Cutting High-Speed-Machining
2019年9月10日
Page 29
超高速加工技术的应用
高速切削的应用领域
• 航空航天工业轻合金的加工:飞机上的零件通常 采用“整体制造法”,其金属切除量相当大(一 般在70%以上),采用高速切削可以大大缩短切 削时间。
2019年9月10日
Page 30
超高速加工技术的应用
• 美国波音公司的F15战斗机两个方向舵之间的气动减速板 以前需要500多个零件装配而成,制造一个需要交货期为3 个月;而现在应用高速切削技术直接在实体铝合金毛坯上 铣削加工出来交货期只需要几天时间。
2019年9月10日
Page 3
概述 • 超高速加工技术的历史背景
图 不同年代切削加工的制造时间及费用的变化图
2019年9月10日
Page 4
概述
• 超高速加工技术的历史背景
1995年,米兰国际机床博览会以来,高速化是每次国际性 机床博览会一个突出的主题。超高速加工已经成为20世纪 末国际机械制造业最热门的话题。
在切削速度达到一个临界值时,切削温度达到最大值,在这个临界值之后 的一个范围内,切削速度增加,则切削温度下降。