2014届江苏高考数学考前指导卷(1)(含答案)

合集下载

江苏省苏大附中2014届高考数学1考前指导卷苏教版

江苏省苏大附中2014届高考数学1考前指导卷苏教版

苏州大学2014届高考考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A B={x |5<x <6},则实数a 的值为 . 2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()a y x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________. 7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,3,||||AC AB AC BC =+=,则BA →·BC→|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC -的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =ca +b +b c的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面PAB ⊥平面ABCD ,PA ⊥AB . (1)求证:BD ⊥平面PAC ;(2)已知点F 在棱PD 上,且PB ∥平面FAC ,求DF :FP .A B C D F P17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.18.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有 且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△PAB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x.(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S 成立,求数列{a n }的通项公式;(2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合. (ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.苏州大学2014届高考考前指导卷(1)参考答案一、填空题1.6 2.12 3.π2 4.x 220-y 25=1 5.126.07.108.(1, +∞) 9.12 10.533或- 3 11.1112.(-1,1) 13.214.2-12二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4.(2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎪⎫cos A -352+435.所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面PAB ⊥平面ABCD ,平面PAB 平面ABCD = AB , PA ⊥AB ,PA ⊂平面PAB ,∴ PA ⊥平面ABCD .∵BD ⊂平面ABCD ,∴PA ⊥BD .连结AC BD O =,∵AB = 1,BC = 2,CD = 4, ∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD ,∴Rt ABC ∆∽Rt BCD ∆. ∴BDC ACB ∠=∠.∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒. 则AC ⊥BD .∵AC PA A =,∴BD ⊥平面PAC .(2)∵PB //平面FAC ,PB ⊂平面PBD ,平面PBD 平面FAC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足:当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③P FDCBA Of (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b a=1,即a =2b 2,又e =ca=32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=.(2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-4x y . 所以直线l 方程为0014x xy y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -, △PAB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩ 解得圆过定点(3,0)±.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝ ⎛⎭⎪⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减,综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减.(2)由题意:e x<x -m x有解,即e x x <x -m 有解,因此只需m <x -e xx ,x ∈(0,+∞)有解即可,设h (x )=x -e xx ,h ′(x )=1-e xx -ex2x=1-e x⎝ ⎛⎭⎪⎫x +12x ,因为x +12x≥212=2>1,且x ∈(0,+∞)时e x>1, 所以1-e x ⎝⎛⎭⎪⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =2a 1+d 3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =.因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1.(2)(ⅰ)记A n ={1,2,…,S n },显然a 1=S 1=1.对于S 2=a 1+a 2=1+a 2,有A 2={1,2,…,S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3. (ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,所以S n =⎝⎛⎭⎪⎫S 1+12·13n --12=12·3n -12.当n ≥2时,a n =S n -S n -1=12·3n -12-⎝ ⎛⎭⎪⎫12·13n --12=13n -,而a 1=1也满足a n =13n -.所以,数列{a n }的通项公式是a n =13n -.。

2014年江苏高考数学试题含答案(WORD版)

2014年江苏高考数学试题含答案(WORD版)

绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:cl S =圆柱侧,其中c 是圆柱底面的周长,l 为母线长.圆柱的体积公式:Sh V =圆柱,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .2.已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .3.右图是一个算法流程图,则输出的n 的值是 ▲ .4.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5.已知函数x y cos =与)2sin(ϕ+=x y (0ϕπ≤<),它们的图象有一 个横坐标为3π的交点,则ϕ的值是 ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

(第3题)6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7.在各项均为正数的等比数列}{n a 中,若21a =, 4682a a a +=,则6a 的值是 ▲ .8.设甲、乙两个圆柱的底面分别为1S ,2S ,体积 分别为1V ,2V ,若它们的侧面积相等,且4921=S S , 则21V V 的值是 ▲ . 9.在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ . 10.已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .11.在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12.如图,在平行四边形ABCD 中,已知8=AB ,5=AD , 3=,2=⋅,则⋅的值是 ▲ .13.已知)(x f 是定义在R 上且周期为3的函数,当[0,3)x ∈时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间[3,4]-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14.若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.ABD CP (第12题)底部周长/cm(第6题)16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1)直线//PA 平面DEF ; (2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a b y a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若1F C AB ⊥,求椭圆离心率e 的值.18.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”; (2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.(第17题)P DC EF B A (第16题) (第18题)绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两......小题,并在....相应的...答题区域内作答........若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:D OCB ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵⎥⎦⎤⎢⎣⎡-=x A 121,⎥⎦⎤⎢⎣⎡-=1211B ,向量⎥⎦⎤⎢⎣⎡=y 2α,x ,y 为实数. 若ααB A =,求y x +的值.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

2014届高三数学考前指导

2014届高三数学考前指导

规范答题最重要
1、作图题先用2B铅笔绘出, 再用0.5毫米黑色签字笔描 清楚; 2、必须按各题号的答题区域 答题江苏省大丰高级中学 ; 陈彩余
不按规定的题号答题,答错区域
★ 专家点评:主观题阅卷是按题号进行切割并 送到阅卷老师终端进行评分的,如上15、16题 江苏省大丰高级中学 陈彩余 16题的 相互答错区域,阅 15题的老师看到的是 答案,容易被判失分,同时按考务相关规定有 可能扣分。
江苏省大丰高级中学 陈彩余
根据填空时所填写的内容形式,可以将填空 题分成两种类型: 一是定量型,要求学生填写数值、数集或数 量关系,如:方程的解、不等式的解集、函 数的定义域、值域、最大值或最小值、线段 长度、角度大小等等.由于填空题和选择题 相比,缺少选择支的信息,所以高考题中多 数是以定量型问题出现. 二是定性型,要求填写的是具有某种性质的 对象或者填写给定的数学对象的某种性质, 如:给定二次曲线的准线方程、焦点坐标、 江苏省大丰高级中学 陈彩余 离心率等等.
12、解应用性问题的思路:审题尤为重 要.审题需将那些与数学无关内容抛开,以 数学的眼光捕捉信息,构建模型,同时要注 意将图形、文字、表格等语言转变为数学语 言.具体做法是:①先全面理解题意和概念 背景②透过冗长叙述,抓重点词句,提出重 点数据③综合联系,提炼数量关系,依靠数 学方法,建立数学模型(模型一般很简 单).如此将应用问题化为纯数学问题.此外, 江苏省大丰高级中学 陈彩余 求解过程和结果不能离开实际背景.
答。
考生实际书写图像
扫描切割后的电子图像
★ 专家点评: 计算机对主观题的图像切割 是按黑色矩形框进行的,超出黑色矩形框 江苏省大丰高级中学 陈彩余 外的答案会被切掉,超出上下边界相同。
题卡破损及污损

2014年江苏高考数学试题及答案

2014年江苏高考数学试题及答案

2014年普通高等学校招生全国统一考试(江苏卷)数学(Ⅰ)一、填空题1.已知集合{}2,1,3,4A =--,{1,2,3B =-2.已知复数2(52)Z i =-(i 为虚数单位)3.右图是一个算法流程图,则输出的n4.从1,2,3,6这四个数中一次随机地取为 。

5.已知函数cos y x =与函数sin(2y x φ=+点,则ϕ的值是 。

6.某种树木的底部周长的取值范围是[直方图如图所示,则在抽测的60的底部周长小于100 cm..7.在各项均为正数的等比数列{}n a 中,若2a 8642a a a =+,则6a 的值是 。

8.设甲,乙两个圆柱的底面面积分别为12,S S ,体积为12,V V ,若它们的侧面积相等且1294S S =,则12VV 的值是 。

9.在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 。

10.已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 。

11. 在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += 。

底部周长 cm第6题图12.如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 。

13.已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 。

14.若ABC ∆的内角满足sin 2sin A B C =,则cos C 的最小值是 。

二、简答题 15.(14分)已知sin 25παπα⎛⎫∈=⎪⎝⎭,,。

2014年江苏省高考数学试卷(含答案)

2014年江苏省高考数学试卷(含答案)

2014年江苏省高考数学试卷解析参考版答案仅供参考一、填空题(每题5分,满分70分,将答案填在答题纸上).【答案】{1,3}- 【解析】由题意得{1,3}A B =-.【考点】集合的运算【答案】21【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 【考点】复数的概念.【答案】5【解析】本题实质上就是求不等式220n>的最小整数解.220n>整数解为5n ≥,因此输出的5n =【考点】程序框图.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==. 【考点】古典概型.【答案】6π 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【考点】三角函数图象的交点与已知三角函数值求角.6.【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=. 【考点】频率分布直方图.【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.【考点】等比数列的通项公式.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.【考点】圆柱的侧面积与体积.【答案】2555【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=.【考点】直线与圆相交的弦长问题.【答案】2(2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得202m -<<. 【考点】二次函数的性质.【答案】2- 【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,1,a b =-⎧⎨=-⎩所以b=—2,a+b=—3.【考点】导数与切线斜率.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-, 即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=. 【考点】向量的线性运算与数量积.【答案】1(0,)2【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈.【考点】函数的零点,周期函数的性质,函数图象的交点问题.62- 【解析】由已知sin 22sin A B C =及正弦定理可得22a b c +=,2222222(2cos 22a b a b a b cC abab++-+-==223222262262a b ab ab ab +---=≥=,当且仅当2232a b =即23a b =时等号成立,所以cos C 62- 【考点】正弦定理与余弦定理.二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)【答案】(1)1010-;(2)33410+-. 【解析】(1)由题意2525cos 1()55α=--=-, 所以2252510sin()sincos cossin ()444252510πππααα+=+=⨯-+⨯=-. (2)由(1)得4sin 22sin cos 5ααα==-,23cos 22cos 15αα=-=, 所以5553314334cos(2)cos cos 2sin sin 2()666252510πππααα+-=+=-⨯+⨯-=-. 【考点】同角三角函数的关系,二倍角公式,两角和与差的正弦、余弦公式.【答案】证明见解析.【解析】(1)由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA DEF ⊄平面,DE DEF ⊂平面,所以//PA DEF 平面.(2)由(1)//PA DE ,又PA AC ⊥,所以PE AC ⊥,又F 是AB 中点,所以132DE PA ==,142EF BC ==,又5DF =,所以222DE EF DF +=,所以DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,所以DE ABC ⊥平面,又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC . 【考点】线面平行与面面垂直.【答案】(1)2212x y +=;(2)12. 【解析】(1)由题意,2(,0)F c ,(0,)B b ,2222BF b c a =+==又41(,)33C ,∴22241()()3312b+=,解得1b =.∴椭圆方程为2212x y +=. (2)直线2BF 方程为1x yc b +=,与椭圆方程22221x y a b +=联立方程组,解得A 点坐标为2322222(,)a c b a c a c -++,则C 点坐标为2322222(,)a c b a c a c ++,133222232222F C b b a c k a c a c c c a c +==+++,又AB b k c =-,由1F C AB ⊥得323()12b b a c c c ⋅-=-+,即42242b a c c =+,∴222224()2a c a c c -=+,化简得12c e a ==. 【考点】(1)椭圆标准方程;(2)椭圆离心率.【答案】(1)150m ;(2)10m . 【解析】yx(1)如图,以,OC OA 为,x y 轴建立直角坐标系,则(170,0)C ,(0,60)A ,由题意43BC k =-,直线BC 方程为4(170)3y x =--.又134AB BC k k =-=,故直线AB 方程为3604y x =+,由4(170)33604y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩,解得80120x y =⎧⎨=⎩,即(80,120)B ,所以22(80170)120150BC =-+=()m ; (2)设OM t =,即(0,)M t (060)t ≤≤,由(1)直线BC 的一般方程为436800x y +-=,圆M 的半径为36805t r -=,由题意要求80,(60)80,r t r t -≥⎧⎨--≥⎩,由于060t ≤≤,因此36805t r -=6803313655t t -==-,∴313680,53136(60)80,5t t t t ⎧--≥⎪⎪⎨⎪---≥⎪⎩∴1035t ≤≤,所以当10t =时,r 取得最大值130m ,此时圆面积最大.【考点】解析几何的应用,直线方程,直线交点坐标,两点间的距离,点到直线的距离.【答案】(1)证明见解析;(2)13m ≤-;(3)当11()2e a e e+<<时,11a e e a --<,当a e =时,11a e e a --=,当a e >时,11a e e a -->.【解析】(1)证明:函数()f x 定义域为R ,∵()()xx f x e e f x --=+=,∴()f x 是偶函数.(2)由()1xmf x em -≤+-得(()1)1x m f x e --≤-,由于当0x >时,1x e >,因此()2x x f x e e -=+>,即()110f x ->>,所以11()11x x x x e e m f x e e -----≤=-+-211x x x e e e -=+-,令211x x xe y e e-=+-,设1xt e =-,则0t <,21(1)11t t t y t t -+==+-,∵0t <,∴12t t+≤-(1t =-时等号成立),即1213y ≤--=-,103y -≤<,所以13m ≤-.(3)由题意,不等式3()(3)f x a x x <-+在[1,)+∞上有解,由3()(3)f x a x x <-+得330x x ax ax e e --++<,记3()3x x h x ax ax e e -=-++,2'()3(1)x x h x a x e e -=-+-,显然'(1)0h =,当1x >时,'()0h x >(因为0a >),故函数()h x 在[1,)+∞上增函数,()(1)h x h =最小,于是()0h x <在[1,)+∞上有解,等价于1(1)30h a a e e =-++<,即11()12a e e>+>.考察函数()(1)ln (1),(1)g x e x x x =---≥,1'()1e g x x-=-,当1x e =-时,'()0g x =,当11x e <<-时,'()0g x >,当1x e >-时'()0g x <,即()g x 在[1,1]e -上是增函数,在(1,)e -+∞上是减函数,又(1)0g =,()0g e =,11()12e e +>,所以当11()2e x e e+<<时,()0g x >,即(1)ln 1e x x ->-,11e x x e -->,当x e>时,()0g x <,,即(1)ln 1e x x -<-,11e x xe --<,因此当11()2e a e e+<<时,11a e e a --<,当a e =时,11a e e a --=,当a e >时,11a e e a -->.【考点】(1)偶函数的判断;(2)不等式恒成立问题与函数的交汇;(3)导数与函数的单调性,比较大小.【答案】(1)证明见解析;(2)1d =-;(3)证明见解析.【解析】(1)首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,所以12,1,2,2,n n n a n -=⎧=⎨≥⎩,所以对任意的*n N ∈,2n n S =是数列{}n a 中的1n +项,因此数列{}n a 是“H 数列”.(2)由题意1(1)n a n d =+-,(1)2n n n S n d -=+,数列{}n a 是“H 数列”,则存在*k N ∈,使(1)1(1)2n n n d k d -+=+-,1(1)12n n n k d --=++,由于(1)*2n n N -∈,又*k N ∈,则1n Z d -∈对一切正整数n 都成立,所以1d =-.(3)首先,若n d bn =(b 是常数),则数列{}n d 前n 项和为(1)2n n n S b -=是数列{}n d 中的第(1)2n n -项,因此{}n d 是“H 数列”,对任意的等差数列{}n a ,1(1)n a a n d =+-(d 是公差),设1n b na =,1()(1)n c d a n =--,则n n n a b c =+,而数列{}n b ,{}n c 都是“H 数列”,证毕.【考点】(1)新定义与数列的项,(2)数列的项与整数的整除;(3)构造法.。

2014年苏州市高考数学考前指导卷

2014年苏州市高考数学考前指导卷
为 .

π 2 x sin (0≤x≤1)的最小值为 g(θ),则对一切 θ [0, ] ,g(θ)的最大值 x 2 2 cos
二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内 作答,解答时应写出必要的文字说明、 ........ 证明过程或演算步骤.
15.如图,三棱柱ABC—A 1 B 1 C 1 的侧面AA 1 B 1 B为正方形,侧面BB 1 C 1 C为菱形,∠CBB 1 = 60°,AB⊥B 1 C. (1)求证:平面AA 1 B 1 B⊥平面BB 1 C 1 C; C C1 (2)若AB=2,求三棱柱ABC A 1 B 1 C 1 的体积.
20.已知函数 f ( x) x3 3 x 2 ax (a R ) , g ( x) | f ( x) | .
(1)求以 P 2, f (2) 为切点的切线方程,并证明此切线恒过一个定点; (2)若 g ( x) ≤ kx 对一切 x[0,2]恒成立,求 k 的最小值 h(a) 的表达式; (3)设 a > 0,求 y g ( x) 的单调增区间.
要使竹篱笆用料最省,只需其长度 PQ 最短,所以 PQ 2 x 2 y 2 2 xy cos120 x y xy
2 2
(200 1.5 y )2 y 2 (200 1.5 y ) y 1.75 y 2 400 y 40000 ( 0 y
当y
400 ) 3
200 21 800 200 时, PQ 有最小值 ,此时 x . 7 7 7 答:(Ⅰ)当 AP AQ 100 米时,三角形地块 APQ 的面积最大为 2500 3 平方米; 200 800 (Ⅱ)当 AP 米 , AQ 米时,可使竹篱笆用料最省. 7 7

2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试〔江苏卷〕答案解析数 学Ⅰ一、填空题:本大题共14小题,每一小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1、集合}4,3,1,2{A --=,}3,2,1{B -=,如此B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】此题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。

属于根底题,难度系数较小。

2、复数2)25(i z -=(i 为虚数单位〕,如此z 的实部为▲ .【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。

【点评】此题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。

属于根底题,难度系数较小。

〔第33、右图是一个算法流程图,如此输出的n 的值是▲ . 【答案】5【解析】根据流程图的判断依据,此题202>n是否成立,假设不成立,如此n 从1开始每次判断完后循环时,n 赋值为1+n ;假设成立,如此输出n 的值。

此题经过4次循环,得到203222,55>===n n ,成立,如此输出的n 的值为5【点评】此题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。

属于根底题,难度系数较小。

4、从6,3,2,1这4个数中一次随机地取2个数,如此所取2个数的乘积为6的概率是▲ .【答案】31【解析】将随机选取2个数的所有情况“不重不漏〞的列举出来:〔1,2〕,〔1,3〕〔1,6〕,〔2,3〕,〔2,6〕,〔3,6〕,共6种情况,满足题目乘积为6的要求的是〔1,6〕和〔2,3〕,如此概率为31。

【点评】此题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。

数学_2014年江苏省泰州市高考数学考前指导试卷(含答案)

数学_2014年江苏省泰州市高考数学考前指导试卷(含答案)

2014年江苏省泰州市高考数学考前指导试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 已知集合A ={1, 2},集合B ={1, a, 3},且A ⊆B ,则实数a 的值为________.2. 已知复数(1+i)⋅(1−bi)为实数,则实数b 的值为________.3. 为了了解初中生的身体素质,某地区随机抽取了n 名学生进行跳绳测试,根据所得数据画样本的频率分布直方图如图所示,且从左到右第一小组的频数是10,则n 的值为________.4. 已知命题p:x =1且y =1,命题q:x +y =2,则命题p 是命题q 的________条件.5. 如图是一个算法的流程图,输出的结果是________.6. 在平面直角坐标系xOy 中,D 是到原点的距离不大于1的点构成的区域,E 是满足不等式组{x −y +1≥0x +y ≥0x ≤0的点(x, y)构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是________.7. 设E ,F ,G ,H 是三棱锥A −BCD 的棱AB ,BC ,CD ,DA 的中点,若AC =BD =1,则EG 2+FH 2的值为________.8. 已知质点P 在半径为10cm 的圆上按逆时针方向做匀速圆周运动,角速度是1rad/s ,设A(10, 0)为起始点,记点P 在y 轴上的射影为M ,则10π秒时点M 的速度是________cm/s .9. 用[x]表示不超过x 的最大整数.已知f(x)=x +[x]的定义域为[−1, 1),则函数f(x)的值域为________.10. 已知函数f(x)=sinωx +cosωx(ω>0)向右最少平移1个单位长度后为偶函数,则ω的最小值为________.11. 已知正项等比数列{a n }满足:a 6=a 5+2a 4,若存在两项a m ,a n 使得√a m a n =2a 1,则1m +4n 的最小值为________.12. 已知以T =4为周期的函数f(x)={m√1−x 2,x ∈(−1,1]1−|x −2|,x ∈(1,3],其中m >0.若方程3f(x)=x 恰有5个实数解,则m 的取值范围为________. 13. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =√32,A 、B 是椭圆的左、右顶点,P 是椭圆上不同于A 、B 的一点,直线PA 、PB 斜倾角分别为α、β,则cos(α−β)cos(α+β)=________.14.如图,直线l 1,l 2交于点A ,点B 、C 在直线l 1,l 2上,已知∠CAB =45∘,AB =2,设CD →=λAB →,点P 为直线l 2上的一个动点,当λ=________时,|2PB →+PD →|的最小值是3√2.二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15. 在△ABC 中,角A 、B 、C 的对边分别记为a 、b 、c ,已知sinC +cosC =1−sin C2,(1)求sinC 的值;(2)若△ABC 外接圆面积为(4+√7)π,试求AC →⋅BC →的取值范围.16.如图,在直四棱柱ABCD −A 1B 1C 1D 1中,已知底面ABCD 是边长为1的正方形,侧棱C 1C 垂直于底面ABCD ,且C 1C =2,点P 是侧棱C 1C 的中点. (1)求证:AC 1 // 平面PBD ; (2)求证:A 1P ⊥平面PBD ;(3)求三棱锥A 1−BDC 1的体积V .17. 在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形ABCD 的三边AB 、BC 、CD 由长6分米的材料弯折而成,BC 边的长为2t 分米(1≤t ≤32);曲线AOD 拟从以下两种曲线中选择一种:曲线C 1是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为y =cosx −1),此时记门的最高点O 到BC 边的距离为ℎ1(t);曲线C 2是一段抛物线,其焦点到准线的距离为98,此时记门的最高点O 到BC 边的距离为ℎ2(t).(1)试分别求出函数ℎ1(t)、ℎ2(t)的表达式;(2)要使得点O 到BC 边的距离最大,应选用哪一种曲线?此时,最大值是多少?18. 如图,过椭圆L 的左顶点A(−3, 0)和下顶点B 且斜率均为k 的两直线l 1,l 2分别交椭圆于C ,D ,又l 1交y 轴于M ,l 2交x 轴于N ,且CD 与MN 相交于点P ,当k =3时,△ABM 是直角三角形. (1)求椭圆L 的标准方程;(2)(I)证明:存在实数λ,使得AM →=λOP →;(II)求|OP|的取值范围.19. 设非零数列{a n }满足a n a n+2=a n+12+λ(−1)n+1(n ∈N +).(1)当λ=0时,求证:a n−m a n+m =a n 2,(n >m 且m ,n ∈R +). (2)当a 1=1,a 2=2,λ=3,求证:a n+2=a n +3a n+1.20. 已知函数f(x)=ke x ,g(x)=1k lnx ,其中k >0.若函数f(x),g(x)在它们的图象与坐标轴交点处的切线互相平行. (1)求k 的值;(2)是否存在直线l ,使得l 同时是函数f(x),g(x)的切线?说明理由.(3)若直线x =a(a >0)与f(x)、g(x)的图象分别交于A 、B 两点,直线y =b(b >0)与ℎ(x)的图象有两个不同的交点C 、D .记以A 、B 、C 、D 为顶点的凸四边形面积为S ,求证:S >2.选修4-1:几何证明选讲 三.[选做题]在以下四小题中只能选做2题,每小题0分,共计20分.解答应写出文字说明、证明过程或演算步骤.21. (选做题)如图,PA 与⊙O 相切于点A ,D 为PA 的中点,过点D 引割线交⊙O 于B ,C 两点,求证:∠DPB =∠DCP .四、选修4-2:矩阵与变换22. 如图矩形OABC 在变换T 的作用下变成了平行四边形OA′B′C′,求变换T 所对应的矩阵M .五、选修4-4:坐标系与参数方程23. 已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为{x =−√3ty =1+t (t,t ∈R).试在曲线C 上求一点M ,使它到直线l 的距离最大.六、选修4-5:不等式选讲24. 若不等式|a −1|≥x +2y +2z 对满足x 2+y 2+z 2=1的一切实数x 、y 、z 恒成立,求a 的取值范围.七.[必做题]第25题、第26题,每题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.25.如图,在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,顶点A 1在底面ABC 上的射影恰为点B ,且AB =AC =A 1B =2. (1)求棱AA 1与BC 所成的角的大小;(2)在棱B 1C 1上确定一点P ,使AP =√14,并求出二面角P −AB −A 1的平面角的余弦值. 26. 设函数f(x)=(1−x)e x −1.(1)证明:当x >0时,f(x)<0;(2)设a 1=1,a n e a n+1=e a n −1,证明对任意的正整数n ,总有a n+1<a n .2014年江苏省泰州市高考数学考前指导试卷答案1. 22. 13. 1004. 充分不必要5. 636. 14π7. 1 8. 109. [−2, −1)∪[0, 1) 10. 3π411. 73 12. (√153,√7) 13. 35 14. 1或−515. 解:(1)由sinC +cosC =1−sin C2得,2sin C2cos C2=2sin 2C2−sin C2...2分 ∵ sin C2>0,∴ sin C2−cos C2=12 (∗)…4分将(∗)式两边同时平方得,1−sinC =14⇒sinC =34...7分(2)由(∗)式知,sin C 2>cos C 2,从而C 2>π4,从而C 为钝角,∴ cosC =−√74.…9分 根据正弦定理,c =2RsinC ,从而c 2=4R 2sin 2C =94(4+√7)…11分根据余弦定理,又c 2=94(4+√7)=a 2+b 2−2ab ⋅(−√74)≥2ab(1+√74), ∴ 0<ab ≤92,因此,AC →⋅BC →=abcosC ∈[−9√78, 0),即AC →⋅BC →范围为∈[−9√78, 0).…14分.16. (1)证明:连接AC,AC∩BD=O,连接OC1,则O是AC的中点,∵ 点P是侧棱C1C的中点,∴ AC1 // OP,∵ AC1⊄平面PBD,OP⊂平面PBD,∴ AC1 // 平面PBD;(2)证明:CP=1,CB=1,在Rt△BCP中,PB=√2,同理可知,A1P=√3,A1B=√5所以A1P2+PB2=A1B2,则A1P⊥PB,同理可证,A1P⊥PD,由于PB∩PD=P,PB⊂平面PBD,PD⊂平面PBD,∴ A1P⊥平面PBD.(3)解:易知三棱锥A1−BDC1的体积等于四棱柱的体积减去四个体积相等的三棱锥的体积,即AB×AD×A1A−4×13×(12AB×AD)×A1A=13×1×1×2=23.17. 解:(1)对于曲线C1,因为曲线AOD的解析式为y=cosx−1,所以点D的坐标为(t, cost−1)…所以点O到AD的距离为1−cost,而AB=DC=3−t,则ℎ1(t)=(3−t)+(1−cost)=−t−cost+4(1≤t≤32)…对于曲线C2,因为抛物线的方程为x2=−94y,即y=−49x2,所以点D的坐标为(t,−49t2)…所以点O到AD的距离为49t2,而AB=DC=3−t,所以ℎ2(t)=49t2−t+3(1≤t≤32)…(2)因为ℎ1′(t)=−1+sint<0,所以ℎ1(t)在[1,32]上单调递减,所以当t=1时,ℎ1(t)取得最大值为3−cos1…又ℎ2(t)=49(t−98)2+3916,而1≤t≤32,所以当t=32时,ℎ2(t)取得最大值为52…因为cos1>cosπ3=12,所以3−cos1<3−12=52,故选用曲线C 2,当t =32时,点O 到BC 边的距离最大,最大值为52分米… 18. (1)解:由题意,∵ 当k =3时,△ABM 是直角三角形,左顶点A(−3, 0)和下顶点B ∴ 0+b−3=−13, ∴ b =1,∴ 椭圆L 的标准方程为x 29+y 2=1;(2)(I)证明:设两直线l 1,l 2的方程分别为y =k(x +3)和y =kx −1,其中k ≠0,则M(0, 3k),N(1k , 0).y =k(x +3)代入椭圆方程可得(1+9k 2)x 2+54k 2x +81k 2−9=0, 方程一根为−3,则由韦达定理可得另一根为3−27k 21+9k 2, ∴ C(3−27k 21+9k 2, 6k 1+9k 2). 同理D(18k 1+9k2, 9k 2−11+9k 2)∵ 两直线l 1,l 2平行,∴ 可设MP →=tMN →,CP →=tCD →,从而可得P(31+3k, 3k 1+3k)∴ OP →=(31+3k , 3k1+3k)∵ AM →=(3, 3k),∴ 存在实数λ=1+3k ,使得AM →=λOP →; (II)∵ OP →=(31+3k , 3k1+3k ),∴ 消去参数可得P 的轨迹方程为x +3y −3=0, ∴ |OP|的最小值为d =√10=3√1010∴ |OP|的取值范围为[3√1010, +∞). 19. 证明:(1)当λ=0时,a n a n+2=a n+12,所以{a n }是等比数列,设公比为q ,则a n−m a n+m =a 1q n−m+1⋅a 1q n +m−1=a n 2,得证.…4分(2)由条件知a 3=a 22+3a 1=7,…6分由a n a n+2=a n+12+λ(−1)n+1得a n+2−a n a n+1=a n+2a n −a n2a n+1a n =a n+12−a n+1a n−1a n+1a n=a n+1−a n−1a n,…14分所以数列{a n+2−a n a n+1}是常数列,则a n+2−a n a n+1=a 3−a 1a 2=3,整理即得a n+2=a n+3a n+1....16分.20. (1)解:f(x),g(x)与坐标轴的交点分别为(0, k),(1, 0),由f(x)=ke x,g(x)=1k lnx,得f′(x)=ke x,g′(x)=1kx,由题意知f′(0)=g′(1),即k=1k,又k>0,所以k=1....2分(2)解:假设存在直线l同时是函数f(x),g(x)的切线,设l与f(x),g(x)分别相切于点M(m, e m),N(n, lnn)(n>0),则l:y−e m=e m(x−m)或表示为y−lnn=1n(x−n),则e m=1n,且e m(1−m)=lnn−1,要说明l是否存在,只需说明上述方程组是否有解.…4分由e m=1n得n=e−m,代入e m(1−m)=lnn−1,得e m(1−m)=−m−1,即e m(1−m)+m+1=0,令ℎ(m)=e m(1−m)+m+1,因为ℎ(1)=2>0,ℎ(2)=−e2+3<0,所以方程e m(1−m)+m+1=0有解,则方程组有解,故存在直线l,使得l同时是函数f(x),g(x)的切线....8分(3)证明:设A(x0, e x0),B(x0, lnx0),则AB=|e x0−lnx0|,设F(x)=e x0−lnx0,∴ G(x)=F′(x)=e x0−1x0,∴ G′(x)=e x0+1x02>0,即G(x)在(0, +∞)上单调递增,又G(0.5)=√e−2<0,G(1)=e−1>0,故G(x)在(0, +∞)上有唯一零点,设为t∈(0.5, 1),则e t−1t=0,因此t=−lnt,当x∈(0, t)时,F′(x)=G(x)<G(t)=0,∴ F(x)在(0, t)上单调递减;当x∈(t, +∞)时,F′(x)=G(x)>G(t)=0,∴ F(x)在(t, +∞)上单调递增,因此F(x)≥F(t)=e t−lnt=1t+t,由于t∈(0.5, 1),∴ F(x)=1t+t>2,则AB=|e x0−lnx0|>2.…14分设C(x1, e x1),D(x2, lnx2),则e x1=lnx2,令e x1=lnx2=u,则x1=lnu,x2=e u,∴ CD=|x2−x1|=|e u−lnu|>2,故S=12AB⋅CD>12⋅2⋅2=2....16分.21. 证明:因为PA与圆相切于A,所以DA2=DB⋅DC,因为D为PA中点,所以DP=DA,所以DP2=DB⋅DC,即PDDC =DBPD.…因为∠BDP=∠PDC,所以△BDP∽△PDC,所以∠DPB=∠DCP.…22. 解:由矩形OABC 变换成平行四边形OA ′B ′C ′可以看成先将矩形OABC 绕着O 点旋转90∘, 得到矩形OA ′′B ′′C ′′,然后再将矩形OA ′′B ′′C ′′作切变变换得到平行四边形OA ′B ′C ′. 故旋转变换矩阵为:M =[cos90∘−sin90∘sin90∘cos90∘]=[0−110]切变变换:[x y ]→[x′y′]=[x −x +y ]=[10−11][xy ]∴ 切变变换矩阵为N =[10−11]∴ 矩阵MN =[10−11][0−110]=[0−111]23. 曲线C 的普通方程是x 23+y 2=1. 直线l 的普通方程是x +√3y −√3=0. 设点M 的坐标是(√3cosθ,sinθ),Ml 的距离是d =|√3cosθ+√3sinθ−√3|2=√3|√2sin(θ+π4)−1|2.−√2≤√2sin(θ+π4)≤√2,sin(θ+π4)=−1,θ+π4=2kπ−π2(k ∈Z),θ=2kπ−3π4(k ∈Z),d 取得最大值. √3cosθ=−√62,sinθ=−√22. ,M(−√62,−√22),.(10) 24. 解:由柯西不等式9=(12+22+22)⋅(x 2+y 2+z 2)≥(1⋅x +2⋅y +2⋅z)2 即x +2y +2z ≤3,当且仅当 x1=y2=z2且x 2+y 2+z 2=1取等号, 即 x =13,y =23,z =23时,x +2y +2z 取得最大值3.∵ 不等式|a −1|≥x +2y +2z ,对满足x 2+y 2+z 2=1的一切实数x ,y ,z 恒成立, 只需|a −1|≥3,解得a −1≥3或a −1≤−3, ∴ a ≥4或a ≤−2.即实数的取值范围是(−∞, −2]∪[4, +∞).25. 解:(1)如图,以A 为原点建立空间直角坐标系, 则C(2, 0, 0),B(0, 2, 0),A 1(0, 2, 2),B 1(0, 4, 2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,−2,0).cos⟨AA 1→,BC →>=|AA 1→|⋅|BC →|˙=−4√8⋅√8=−12, 故AA 1与棱BC 所成的角是π3.(2)设B 1P →=λB 1C 1→=(2λ,−2λ,0), 则P(2λ, 4−2λ, 2).于是AP =√4λ2+(4−2λ)2+4=√14⇒λ=12(λ=32舍去), 则P 为棱B 1C 1的中点,其坐标为P(1, 3, 2). 设平面P −AB −A 1的法向量为n 1→=(x, y, z),则{n 1→⋅AB →=0˙⇒{x +3y +2z =02y =0⇒{x =−2zy =0故n 1→=(−2, 0, 1).而平面ABA 1的法向量是n 2→=(1, 0, 0), 则cos <n 1→,n 2→>=|n 1→|⋅|n 2|→˙=√5,故二面角P −AB −A 1的平面角的余弦值是2√55. 26. 证明:(1)因为f(x)=(1−x)e x −1, 所以f′(x)=−e x +(1−x)e x =−xe x ,当x >0时,f′(x)<0,所以函数f(x)在(0, +∞)上单调递减, 因此f(x)<f(0)=0. …2分 (2)首先用数学归纳法证明a n >0.①当n =1时,a 1=1>0,∴ a n >0成立. ②假设n =k 时,a k >0. 那么当n =k +1时,a n ea n+1=ea n−1,则ea k+1=e a k −1a k,…4分当x >0时,由不等式e x −1>x 得e x −1x>1.所以e a k+1>1,a k+1>0.由①②可知对任意的正整数n ,总有a n >0.由(1)知(1−a n )e a n −1<0,所以e a n −1<a n e a n .由a n e a n+1=e a n −1知a n e a n+1<a n e a n ,所以a n+1<a n . …10分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014届江苏高考数学考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡...相应位置上...... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A B={x |5<x <6},则实数a 的值为 . 2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()ay x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________.7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,|||AC AB AC BC =+=,则BA →·BC→|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC-的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =c a +b +bc的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面P AB ⊥平面ABCD ,P A ⊥AB .(1)求证:BD ⊥平面P AC ;(2)已知点F 在棱PD 上,且PB ∥平面F AC ,求DF :FP .A B C D F P17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.18.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有 且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△P AB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x .(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S 成立,求数列{a n }的通项公式; (2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合.(ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.参考答案一、填空题1.6 2.-12 3.π2 4.x 220-y 25=1 5.126.0 7.108.(1, +∞) 9.12 10.533或- 31112.(-1,1) 13.2 14.2-12二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4.(2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎫cos A -352+435. 所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面P AB ⊥平面ABCD ,平面P AB 平面ABCD = AB , P A ⊥AB ,P A ⊂平面P AB ,∴ P A ⊥平面ABCD .∵BD ⊂平面ABCD ,∴P A ⊥BD .连结AC BD O =,∵AB = 1,BC = 2,CD = 4, ∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD , ∴Rt ABC ∆∽Rt BCD ∆. ∴BDC ACB ∠=∠.∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒.则AC ⊥BD .∵AC PA A =,∴BD ⊥平面P AC .(2)∵PB //平面F AC ,PB ⊂平面PBD ,平面PBD 平面F AC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足:当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③f (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.P FDCBA O18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b a=1,即a =2b 2,又e =c a =32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=. (2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-004x y . 所以直线l 方程为0014x x y y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -,△P AB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩解得圆过定点(.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝⎛⎭⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减. (2)由题意:e x <x -mx有解,即e x x <x -m 有解,因此只需m <x -e x x ,x ∈(0,+∞)有解即可,设h (x )=x -e x x ,h ′(x )=1-e x x -e x 2x=1-e x ⎝⎛⎭⎫x +12x , 因为x +12x≥212=2>1,且x ∈(0,+∞)时e x >1,所以1-e x ⎝⎛⎭⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =(2a 1+d )3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =.因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1.(2)(ⅰ)记A n ={1,2,…,S n },显然a 1=S 1=1.对于S 2=a 1+a 2=1+a 2,有A 2={1,2,…,S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3.(ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝⎛⎭⎫S n +12,所以S n =⎝⎛⎭⎫S 1+12·13n --12=12·3n -12. 当n ≥2时,a n =S n -S n -1=12·3n -12-⎝⎛⎭⎫12·13n --12=13n -,而a 1=1也满足a n =13n -. 所以,数列{a n }的通项公式是a n =13n -.。

相关文档
最新文档