几种简单形状、匀质刚体的转动惯量
实验3刚体转动惯量的测定综述

实验三刚体转动惯量的测定转动惯量是物体转动惯性的量度。
物体对某轴的转动惯量的大小,除了与物体的质量有关外,还与转轴的位置和质量的分布有关。
正确测量物体的转动惯量,在工程技术中有着十分重要的意义。
如正确测定炮弹的转动惯量,对炮弹命中率有着不可忽视的作用。
机械装置中飞轮的转动惯量大小,直接对机械的工作有较大影响。
有规则物体的转动惯量可以通过计算求得,但对几何形状复杂的刚体,计算则相当复杂,而用实验方法测定,就简便得多,三线扭摆就是通过扭转运动测量刚体转动惯量的常用装置之一。
实验目的1、理解并掌握根据转动定律测转动惯量的方法;2、学习用三线摆法测定物体的转动惯量。
3、测定二个质量相同而质量分布不同的物体的转动惯量,进行比较。
4、验证转动惯量的平行轴定理。
实验仪器介绍本实验采用新型转动惯量测定仪测定转动惯量。
该仪器采用激光光电传感器与计数计时仪相结合,测定悬盘的扭转摆动周期。
通过实验使学生掌握物体转动惯量的物理概念及实验测量方法,了解物体转动惯量与哪些因素有关。
本实验仪的计数计时仪具有记忆功能,从悬盘扭转摆动开始直到设定的次数为止,均可查阅相应次数所用的时间,特别适合实验者深入研究和分析悬盘振动中等周期振动及周期变化情况。
仪器直观性强,测量准确度高。
本仪器是传统实验采用现代化技术的典型实例,不仅保留了经典实验的内容和技能,又增加了现代测量技术和方法,可以激发学生学习兴趣,提高教学效果。
图1 新型转动惯量实验装置新型转动惯量测定仪平台、米尺、游标卡尺、计数计时仪、水平仪,样品为圆盘、圆环及圆柱体3种。
上海复旦天欣科教仪器有限公司图1 新型转动惯量测定仪结构图1.启动盘锁紧螺母2.摆线调节锁紧螺栓3.摆线调节旋钮4.启动盘5.摆线(其中一根线挡光计时)6.悬盘7.光电接收器8.接收器支架9. 悬臂 10. 悬臂锁紧螺栓11. 支杆 12. 半导体激光器 13.调节脚14. 导轨 15. 连接线 16. 计数计时仪 17. 小圆柱样品 18. 圆盘样品19. 圆环样品20.挡光标记实验原理三线摆是将一个匀质圆盘,以等长的三条细线对称地悬挂在一个水平的小圆盘下面构成的。
刚体的转动惯量

平动动能 1 m 2
2
力的功 A
F dr
ab
动能定理
A
1 2
m 2
1 2
m02
转动动能 1 I 2
2
力矩的功 A
Md
0
动能定理
A
1 2
I 2
1 2
I02
刚体动力学规律旳应用举例
例1:如图,质量m,长为L旳匀质细杆,可绕水 平旳光滑轴在竖直平面内转动,转轴O在杆旳A端。 若使杆于水平位置从静止开始向下摆动,求杆摆 到铅直位置时旳角速度。
一、刚体旳运动
不论在多大外界作用下,物体旳形状和大小均 不发生变化,这么旳物体称为刚体。
各质点间旳相对位置永不发生变化旳质点系。
1、平动 刚体在运动中,其上任意两点旳连线一直保持平行。
A
A
B
A
B
B 平动中刚体上旳各点都有相同旳轨迹、位移、 速度及加速度。用质心运动讨论。
2、定轴转动 刚体上各点均绕同一固定直线旋转旳运动,
M d(I)
dt
措施四:应用机械能守恒定律(见下一种例题 )
例2:质量m,长为L旳均匀细棒,可绕过其一端旳水平
轴O转动。现将棒拉到水平位置(OA’)放手,棒下
摆到铅直位置(OA)时,与水平面A处旳质量为M旳
物块作完全弹性碰撞,物体在水平面上向右滑行了一
段距离s后停止。设物体与水平面间旳摩擦系数到处
r2dm
转动定律 M I
动量 m,冲量
t Fdt
动量定理
F
t0 dP
dt
角动量 L I,冲量矩
t
Mdt
t0
角动量定理 M dL dt
五、质点与刚体力学规律对照表(续)
常见刚体的转动惯量

习题答案
第一章
F (h − 3r ), M y = 3 F (r + h ), M z = − Fr . 1-3 4 4 2 2 bc ab ca a ab M ξ = −513.36 N ⋅ m . 1-4 M x = M − F ,My = M + F ,Mz = M, k1 k1 k1 2k 2 2k 2 abc 2 2 2 2 2 2 F. 其中: k1 = (ab ) + (bc ) + (ca ) , k2 = a + b / 4 + c . 1-5 M τ = rAB b 2 + c 2
ρz =
3 r 10 3 (4r 2 + l 2 ) 80
ρx = ρy
=
圆环
3 J z = m( R 2 + r 2 ) 4
ρ z = R2 + r2
3 4
Jz =
椭圆形 薄 板
m 2 (a + b2 ) 4 m J y = a2 4 m J y = b2 4
1 2 a + b2 2 a ρx = 2 b ρy = 2
附录常见几种均质物体的转动惯量和回转半径物体的转动惯量简图回转半径形状m为物体的质量m2ljlzzcc1223细直杆m2ljzlz33薄壁2jmrr圆筒zz12rjmrzz22jj圆柱xyxym221223rl3rl1212空心m22122jzrrzrr圆柱22薄壁222jzmrzr空心球33222实心球jzmrzr55171323jzmrzr1010jj圆锥体xyxy322322m4rl4rl8080232232圆环jzmrrzrr44m22122jzabzab42椭圆形m2ajyax薄板42m2bjyby42m22122jzabzab1212m22122长方体jyacxac1212m22122jy12bcy12bcm22jz12ab122zab矩形m212ja薄板y120289axm20289bjbyy12172参考书目1朱照宣周起钊殷金生编
转动惯量公式表

常见几何体]转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
对于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径对于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。
对于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。
对于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径对于立方体当回转轴为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。
下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外力矩,β为角加速度。
可以看出这个式子与牛顿第二定律是对应的。
角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。
由这一公式,可以从能量的角度分析刚体动力学的问题。
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
质量惯矩(即转动惯量)的计算

桥梁结构动力分析中质量惯性矩的定义及计算赵凯 李永乐(西南交通大学桥梁工程系,四川成都,610031,lele@ )1. 概 念1.1 定义质量惯性矩(或称质量惯矩,转动惯量)是刚体动力学里的一个重要概念,与质量具有同等重要的地位。
质量惯性矩为空间中质量关于距离的二次矩。
对于离散质点系,它对空间任意一条直线z 的质量惯矩表示为:21nz i i i J m r ==∑式中,m i 是第i 个质量块质量,r i 表示第i 个质量块到直线z 的距离。
对于连续体,则需用积分表示:2z J r dm =∫1.2 几何意义由定义表达式可见,质量惯矩的大小不仅与质量大小有关,而且与质量的分布情况有关。
在国际单位制中单位为kg·m 2。
质量惯矩越大,则表示质量分布离z 轴越远。
若设想刚体的质量集中于离z 轴距离为ρz 处,令2z z Jm ρ=,则z ρ=称之为对z 轴的回转半径。
显然,它代表质量分布到z 轴距离的一种“平均”。
物体的质量惯矩等于该物体的质量与回转半径平方的乘积。
1.3 物理意义理论力学中有关于刚体运动的两个重要定理,分别是动量定理: 22d ym F dt =∑动量矩定理:22()z z d J M Fdtϕ=∑这两个定理分别描述刚体曲线运动和绕定轴的转动运动规律。
动量定理表示质量为物体运动惯性的一种度量。
类似地,由动量矩定理可见,力矩大,转动角加速度大;如力矩相同,刚体质量惯矩大,则角加速度小,反之,角加速度大。
可见,质量惯性矩的大小表现了物体转动状态改变的难易程度,即:质量惯矩是转动惯性的度量。
若将转动与位移类比,力矩与力类比,则转动惯矩对应于质量。
1.4 质量惯性矩 VS 截面极惯性矩截面极惯性矩表示平面上面积区域关于距离的二次矩,表示为:2p i X Y I r dA I I ==+∫材料力学推导了悬臂梁的扭转公式,pTlGI ϕ=因此,极惯性矩是截面抗扭能力的一种度量,代表转动刚度,而质量惯性矩代表了转动惯性。
转动惯量公式表

常见几何体]转动惯量公式表关于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
关于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。
关于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径关于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径关于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2别离为其内外半径。
关于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。
关于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径关于立方体当回为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。
只明白转动惯量的计算方式而不能利用是没成心义的。
下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外,β为。
能够看出那个式子与牛顿第二定律是对应的。
角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不行分析转动刚体的问题,是因为其中不包括刚体的任何转动信息,里面的速度v只代表刚体的质心运动情形。
由这一公式,能够从能量的角度分析刚体动力学的问题。
惯量(Moment of Inertia)是绕轴转动时惯性(回转物体维持其或静止的特性)的,用字母I或J表示。
转动惯量

转动惯量引自百度百科本词条由“科普中国”科学百科词条编写与应用工作项目审核。
转动惯量(MomentofInertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
[1]在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I或J表示,SI单位为kg·m²。
对于一个质点,I=mr²,其中m是其质量,r是质点和转轴的垂直距离。
转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。
中文名转动惯量外文名MomentofInertia表达式I=mr²应用学科物理学适用领域范围刚体动力学适用领域范围土木工程基本含义质量转动惯量其量值取决于物体的形状、质量分布及转轴的位置。
刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。
电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。
在发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,精确地测定转动惯量,都是十分必要的。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。
形状规则的匀质刚体,其转动惯量可直接用公式计算得到。
而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。
转动惯量应用于刚体各种运动的动力学计算中。
转动惯量的表达式为若刚体的质量是连续分布的,则转动惯量的计算公式可写成(式中表示刚体的某个质元的质量,r表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。
)[2]转动惯量的量纲为,在SI单位制中,它的单位是。
此外,计算刚体的转动惯量时常会用到平行轴定理、垂直轴定理(亦称正交轴定理)及伸展定则。
三种计算圆盘类刚体转动惯量的方法探析-力学论文-物理论文

三种计算圆盘类刚体转动惯量的方法探析-力学论文-物理论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——动力学论文第四篇:三种计算圆盘类刚体转动惯量的方法探析摘要:刚体的转动惯量是大学物理刚体力学中的重点。
研究采用了三种方法计算圆盘形状物体绕中心转动对称轴的转动惯量,即微元定义求解法、量纲分析法和等边n角形极限法。
提出了后面两种巧妙的计算方法,引导学生在解决问题的时候开阔思维,激发其学习的积极性及对科研的探索精神。
关键词:圆盘; 转动惯量; 计算方法;Three methods of calculating the moment of inertia of a diskLAN Shan-quanSchool of Physical Science and Technology,Lingnan Normal UniversityAbstract:The moment of inertia of rigid body is the focus of rigid body mechanics in university physics. In this paper,three methods are used to calculate the moment of inertia of a disk-shaped object about a central rotational axis of symmetry,namely,the method of solving the definition of micro element,the method of dimensional analysis and the method of limit of n-angle with equal sides. The last two ingenious calculation methods are put forward to guide students to broaden their thinking when solving problems,stimulate their enthusiasm for learning and explore the spirit of scientific research.1 引言转动惯量度量是刚体在力矩的作用下改变转动角速度的容易程度。