有限元复习精彩试题库

合集下载

有限元复习题及答案

有限元复习题及答案

1.弹性力学和材料力学在研究对象上的区别?材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件;弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,研究对象要广泛得多。

2.理想弹性体的五点假设?连续性假设,完全弹性假设,均匀性假设,各向同性假定,小位移和小变形的假定。

3.什么叫轴对称问题,采用什么坐标系分析?为什么?工程实际中,对于一些几何形状、载荷以及约束条件都对称于某一轴线的轴对称体,其体内所有的位移、应变和应力也都对称于此轴线,这类问题称为轴对称问题。

通常采用圆柱坐标系r、θ、z分析。

这是因为,当弹性体的对称轴为z轴时,所有的应力分量、应变分量和位移分量都将只是r和z的函数,而与无θ关。

4.梁单元和杆单元的区别?杆单元只能承受拉压荷载,梁单元那么可以承受拉压弯扭荷载。

具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承当的,通常用于网架、桁架的分析;而梁单元那么根本上适用于各种情况〔除了楼板之类〕,且经过适当的处理〔如释放自由度、耦合等〕,梁单元也可以当作杆单元使用。

5.薄板弯曲问题与平面应力问题的区别?平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是垂直于板面的力的作用,板将变成有弯有扭的曲面。

平面应力问题有三个独立的应力分量和三个独立的应变分量,薄板弯曲问题每个结点有三个自由度,但是只有一个是独立的其余两个可以被它表示。

6.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。

7.有限单元法的收敛性准那么?完备性要求,协调性要求。

完备性要求:如果出现在泛函中场函数的最高阶导数是m阶,那么有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式,或者说试探函数中必须包括本身和直至m阶导数为常数的项,单元的插值函数满足上述要求时,我们称单元是完备的。

有限元考试试题及答案——第一组

有限元考试试题及答案——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解.2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3。

轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个.4。

有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程.(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

有限元考试精彩试题及问题详解——第一组

有限元考试精彩试题及问题详解——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

西工大-有限元精彩试题(附问题详解)

西工大-有限元精彩试题(附问题详解)

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。

2.如下图所示,求下列情况的带宽:a)4结点四边形元;b)2结点线性杆元。

3.对上题图诸结点制定一种结点编号的方法,使所得带宽更小。

图左下角的四边形在两种不同编号方式下,单元的带宽分别是多大?4.下图所示,若单元是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。

系统的带宽是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。

5. 设杆件1-2受轴向力作用,截面积为A ,长度为L ,弹性模量为E ,试写出杆端力F 1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k6.设阶梯形杆件由两个等截面杆件○1与○2所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F 3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。

7. 在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P ,求各结点的轴向位移和各杆的轴力。

8. 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x ,y 为总体坐标系,x 轴与x 轴的夹角为θ。

(1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T];(3) 求在总体坐标系中的单元刚度矩阵 )(][e k9.如图所示一个直角三角形桁架,已知27/103cm N E ⨯=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K]。

10.设上题中的桁架的支承情况和载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的力。

11.进行结点编号时,如果把所有固定端处的结点编在最后,那么在引入边界条件时是否会更简便些?12.针对下图所示的3结点三角形单元,同一网格的两种不同的编号方式,单元的带宽分别是多大?13. 下图所示一个矩形单元,边长分别为2a 与2b ,坐标原点取在单元中心。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1. 有限元方法是一种用于求解工程和物理问题的数值技术,其核心思想是将连续域划分为有限数量的离散子域。

以下哪项不是有限元方法的特点?A. 网格划分B. 边界条件处理C. 局部近似D. 整体求解答案:D2. 在有限元分析中,以下哪项不是网格划分的常见类型?A. 三角形网格B. 四边形网格C. 六边形网格D. 圆形网格答案:D3. 对于线性弹性问题,以下哪种元素类型不适用于有限元分析?A. 线性三角形元素B. 二次三角形元素C. 线性四边形元素D. 三次四边形元素答案:D二、填空题1. 在有限元分析中,单元刚度矩阵的计算通常涉及到单元的_________。

答案:形状函数2. 有限元方法中,边界条件可以分为_________和_________。

答案:Dirichlet边界条件;Neumann边界条件3. 有限元软件通常采用_________方法来求解大型稀疏方程组。

答案:迭代三、简答题1. 简述有限元方法的基本步骤。

答案:有限元方法的基本步骤包括:- 定义问题的几何域和边界条件。

- 将几何域划分为有限数量的小单元。

- 为每个单元定义形状函数。

- 计算单元刚度矩阵和载荷向量。

- 组装全局刚度矩阵和载荷向量。

- 施加边界条件。

- 求解线性方程组,得到节点位移。

- 计算单元应力和应变。

2. 为什么在有限元分析中需要进行网格划分?答案:网格划分是有限元分析中的一个重要步骤,因为它允许将连续的几何域离散化,使得问题可以被数值方法求解。

通过网格划分,可以: - 简化复杂几何形状的分析。

- 适应不同的材料属性和边界条件。

- 提供足够的细节以捕捉应力和位移的局部变化。

- 减少计算复杂度,提高求解效率。

四、计算题1. 假设有一个平面应力问题,已知材料的弹性模量E=210GPa,泊松比ν=0.3。

请计算一个边长为10mm的正方形单元在单轴拉伸下的单元刚度矩阵。

答案:单元刚度矩阵\[ K \]可以通过以下公式计算:\[K = \frac{E}{(1-\nu^2)} \int_{\Omega} \left[ B^T B \right] d\Omega\]其中,\( B \)是应变-位移矩阵,\( \Omega \)是单元的面积。

有限元复习题及答案

有限元复习题及答案

1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。

平面问题分为平面应力问题和平面应变问题。

平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。

由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。

平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。

平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。

2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。

其中包括6个应力分量,6个应变分量,3个位移分量。

平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。

根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。

对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。

对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。

设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。

外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。

有限元法复习题

有限元法复习题

《有限元法》复习题一.单选题1.平面刚架单元坐标转换矩阵的阶数为()A.2⨯2 B.2⨯4 C.4⨯4 D.6⨯62.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为()A.8⨯8阶矩阵B.10⨯10阶矩阵C.12⨯12阶矩阵D.16⨯16阶矩阵3.坐标转换矩阵可归类为()A.正交矩阵B.奇异矩阵C.正定矩阵D.对称矩阵4.图示弹簧系统的总体刚度矩阵为()A111123222444340000k kk k k k kk k k kk k k-⎡⎤⎢⎥-++-⎢⎥⎢⎥-+⎢⎥-+⎣⎦B.11112222444340000k kk k k kk k k kk k k-⎡⎤⎢⎥-+-⎢⎥⎢⎥-+-⎢⎥-+⎣⎦C.111123232244343400k kk k k k k kk k k kk k k k-⎡⎤⎢⎥-++--⎢⎥⎢⎥-+-⎢⎥--+⎣⎦D.11112232244343400k kk k k k kk k k kk k k k-⎡⎤⎢⎥-+--⎢⎥⎢⎥-+⎢⎥--+⎣⎦5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k24应放在总体刚度矩阵的( )。

A.1行2列B.3行12列C.6行12列D.3行6列6.对一根只受轴向载荷的杆单元,k12为负号的物理意义可理解为()A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的()A.第3行和第3列上的所有元素换为大数AB.第6行第6列上的对角线元素乘以大数AC.第3行和第3列上的所有元素换为零D.第6行和第6列上的所有元素换为零8.在任何一个单元内()A.只有节点符合位移模式B.只有边界点符合位移模式C.只有边界点和节点符合位移模式D.单元内任意点均符合位移模式9.平面应力问题中(Z轴与该平面垂直),所有非零应力分量均位于()A.XY平面内B.XZ平面内C.YZ平面内D.XYZ空间内12.刚架杆单元与平面三角形单元()A.单元刚度矩阵阶数不同B.局部坐标系的维数不同C.无任何不同D.节点截荷和位移分量数不同13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K*]的元素总数分别是()A.400和200B.400和160C.484和200D.484和16014.在有限元分析中,划分单元时,在应力变化大的区域应该()A.单元数量应多一些,单元尺寸小一些B.单元数量应少一些,单元尺寸大一些C.单元数量应多一些,单元尺寸大一些D.单元尺寸和数量随便确定15.在平面应力问题中,沿板厚方向()A.应变为零,但应力不为零B.应力为零,但应变不为零C.应变、应力都为零D.应变、应力都不为零16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将()A. E换成E/(1-μ2),μ换成μ/(1-μ2)B. E换成E/(1-μ2),μ换成μ/(1-μ)C. E换成E/(1-μ),μ换成μ/(1-μ2)D. E换成E/(1-μ),μ换成μ/(1-μ)17.图示三角形单元非节点载荷的节点等效载荷为()A.F yi=-100KN F yj=-50KN F yk=0B. F yi=-80KN F yj=-70KN F yk=0C. F yi=-70KN F yj=-80KN F yk=0D. F yi=-50KN F yj=-100KN F yk=018.半斜带宽矩阵r行s列的元素对应于竖带矩阵元素( )。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元复习一、选择题(每题1分,共10分)二、判断题(每空1分,共10分)三、填空题(每空1分,共10分)三、简答题(共44分)共6题四、综述题(共26分)两题一.基本概念1. 平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线性与非线性问题平面应力问题(1) 均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yx σσττ=、、 (000z zx xz zy yz σττττ=====,,)。

一般0z σ=,z ε并不一定等于零,但可由x σ及y σ求得,在分析问题时不必考虑。

于是只需要考虑x y xy εεγ、、三个应变分量即可。

平面应变问题(1) 纵向很长,且横截面沿纵向不变。

(2)载荷平行于横截面且沿纵向均匀分布z yz zx εγγ===只剩下三个应变分量x y xy εεγ、、。

也只需要考虑x y xy σστ、、三个应力分量即可轴对称问题物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。

轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。

在轴对称问题中,周向应变分量θε是与r 有关。

板壳问题一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。

如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。

杆梁问题杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。

在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。

平面(应力应变)问题与板壳问题的区别与联系平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。

而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化。

板壳问题的弹性体受垂直于板面的力的作用,板将变成有弯有扭的曲面。

线性问题/非线性问题线性问题:基于小变形假设,应力与应变方程、应力与位移关系方程、平衡方程都是线性的。

非线性问题:材料非线性(非线性弹性、非线性弹塑性),几何非线性(大变形大应变如金属橡胶,小应变大位移如薄壁结构)2.不同类型单元的节点自由度的理解:3.有限元法的基本思想与有限元分析的基本步骤(5步)有限元法的基本思想:离散、分片插值;其中离散的思想吸收了差分法的启示。

有限元分析的基本步骤:数学建模(问题分析),结构离散(第一次近似),单元分析(位移函数,单刚方程)(第二次近似),整体分析与求解(总刚度方程,引入约束,解方程组求节点位移,根据节点位移求应力),结果分析及后处理。

4.里兹法的基本思想及与有限元法区别里兹法的基本思想:先根据描述问题的微分方程和相应定解条件构造等价的泛函变分形式,然后在整个求解区域上假设一个试探函数(或近似函数),通过求解泛函极值来获得原问题的近似解。

与有限元法的区别:里兹法是整体场函数用近似函数代替,有限元法是离散求解域,分片连续函数来近似整体未知场函数。

5.有限元法的基本定义(节点、单元、节点力、节点载荷)•单元:即原始结构离散后,满足一定几何特性和物理特性的最小结构域•节点:单元与单元间的连接点。

•节点力:单元与单元间通过节点的相互作用力•节点载荷:作用于节点上的外载(等效)。

6.位移函数的构造方法及满足的基本条件构造方法:(1)广义坐标法,按照帕斯卡三角形选择多项式,项数多少由单元的自由度数决定。

(2)插值函数法,表示为形函数和节点位移的乘积表示。

基本条件:(1)位移函数在单元节点的值应等于节点位移(即单元部是连续的);(2)所选位移函数必须保证有限元的解收敛于真实解。

7.位移函数的收敛性条件(协调元、非协调元)及单元协调性的判断位移函数的收敛性条件(1)位移函数应包含刚体位移(2)位移函数应包含常量应变(反映单元的常应变状态)(3)位移函数在单元连续,在单元之间的边界上要协调满足1和2称为完备单元,满足1,2,3称为协调单元。

单元协调性的判断以3节点三角形单元为例,位移分量在每个单元中都是坐标的线性函数的话,在公共边界上也会是线性变化的,那么相邻单元在公共边界上的任意一点都具有相同的位移,也就是协调单元。

有限元法中,假设一种位移函数近似表达单元部的真实位移分布,该位移函数可表示为位移函数和节点位移的线性插值。

8.有限元解的性质有限元解具有下限性质,即有限元的解小于实际的精确解。

这是因为实际结构本来是具有无限自由度的,当用有限元求解时,结构被离散为有限个单元的集合后,便只有有限个自由度了。

由无限自由度变为有限自由度可以认为是对真实位移函数增加了约束,限制了结构的变形能力,从而导致结构的刚度增大、计算的位移减小。

9.虚功原理、最小势能原理及变分法(里兹法)虚功原理:在力的作用下处于平衡状态的体系,当发生与约束条件相符合的任意微小的虚刚体位移时,体系上所有的主动力在虚位移上所作的总功(各力所作的功的代数和)恒等于零。

最小势能原理:表明在满足位移边界条件的所有可能位移中,实际发生的位移使弹性体的势能最小。

10.形函数特性1)形函数Ni 为x、y 坐标的函数,与位移函数有相同的阶次。

2)形函数Ni 在i 节点处的值等于1,而在其他节点上的值为0。

3)单元任一点的形函数之和恒等于1。

4)形函数的值在0-1 间变化。

11.单元刚度矩阵的性质及元素的物理意义单元刚度矩阵的性质特点:(1)对称性(2)奇异性,|K|=0(3)主对角线元素恒为正值(4)奇偶行元素之和分别为零(各行或各列元素之和为零)物理意义:单元刚阵[K]的物理意义是单元受节点力作用后抗变形的能力。

其中分块矩阵[K ij]的物理意义为:当在j节点处产生单位位移而其他节点位移为零时,在i节点上需要作用力的大小。

其中元素K ij表示在第j号自由度上产生单位位移时,其他自由度位移为零时,在i号自由度上所需要施加的力的大小。

单元刚度矩阵的元素表示该单元的各节点沿坐标方向发生单位位移时引起的节点力,它决定于该单元的形状、大小、方位和弹性常数,而与单元的位置无关,即不随单元或坐标轴的平行移动而改变。

12.边界条件处理(载荷等效移置集中力/均布力/线性分布力边界位移约束处理固定/指定位移等)载荷等效移置连续弹性体离散为单元组合体时,为简化受力情况,需把弹性体承受的任意分布的载荷都向节点移置(分解),而成为节点载荷。

载荷移置的原则:能量等效(或静力等效原则),即单元的实际载荷与移置后的节点载荷在相应的虚位移上所做的虚功相等。

集中力,移置到两端节点,使得F1 L1 =F2 L 2,F1 +F2=F均布力,移置到两端节点,F1 =F2=0.5qL线性分布力,F1=1/3 0.5qL ,F2=2/3 0.5qL边界位移约束一.绝对位移约束刚性支座(活动铰支,固定铰支,固接支座)——固定位移弹性支座(线弹性制作,非线性支座)——可变位移强迫约束——指定位移用载荷等效,装配应力+整体应力二.相对位移约束(如两接触面)1.约束等式2.耦合约束(连接重合节点,模拟滑动边界连接,施加周期对称边界条件)常见的位移约束问题处理约束不足的处理(1)利用对称性引进约束(取1/n后,在对称面上施加位移约束)(2)转换载荷为位移约束(受平衡载荷作用,将一部分载荷用位移约束代替)(3)人为增加约束(约束点应尽量远离重要部位,约束点变形要相对小)其他,杆离散为多个杆单元时,须在连接节点增加约束,只允许产生轴向位移。

轴对称结构,施加轴向约束。

过约束的处理有时需要施加过约束,有时需要释放过约束。

引入位移边界条件是为了消除有限元整体刚度矩阵K的奇异性。

13.总体刚度矩阵组装原则及总刚阵特点总体刚度矩阵组装原则:1.在整体离散结构变形后,应保证各单元在节点处仍然协调地相互连接,即在该节点处所有单元在该节点上有相同位移。

2.整体离散结构各节点应满足平衡条件。

即环绕每个节点的所有单元作用其上的节点力之和应等于作用于该节点上的节点载荷R i。

总刚度矩阵特点:除了具有单元刚阵的特点外,还有1.稀疏性,是指总刚矩阵的绝大多数元素都是零,非零子块只占一小部分。

2.带状性,是指总刚矩阵中非零子块集中在主对角线两侧,呈带状分布。

(附,半带宽B=(相关节点号最大差值+1)*节点自由度数)二建模与结果分析1.影响有限元分析精度和成本的因素影响有限元解的误差:1)离散误差2)位移函数误差分析精度:A、单元阶次B、单元数量C、划分形状规则的单元D、建立与实际相符的边界条件E、减小模型规模F、避免出现“病态”方程组,当总刚矩阵元素中各行或各列的值相差较大时,则总刚近似奇异。

2.有限元模型的基本构成(节点数据、单元数据、边界条件等)节点数据:节点编号、坐标值、坐标参考系代码、位移参考系代码、节点数量、单元编号单元数据:单元节点、编号单元、材料特性码、单元物理特性值码、单元截面特性、相关几何数据边界条件数据:位移约束数据、载荷条件数据、热边界条件数据、其他边界条件数据归纳起来,网格划分生成节点和单元的过程主要包括定义单元属性、定义网格生成控制和生成网格三个步骤。

3.有限元建模的常用方法理解及应用(如细节处理、分步计算、局部计算、子结构法、对称性简化等)细节处理也称为小特征处理,即删除或抑制对结构力学性能影响不大的细小结构。

分步计算,如果结构的局部存在相对尺寸非常小的细节,且又不能进行细节处理,可采用分步计算来控制有限元模型的规模。

局部处理就是从所建立的力学模型中抽取一部分出来进行分析,该部分通常是研究者最关心的的危险区域。

子结构法是先将大型结构分解为若干个结构区域,每个区域作为一个子结构。

子结构被进一步细分为单元,并人为地将子结构上的节点划分为边界节点和部节点两类.对称性简化,对称性分为反射对称和周期对称(1)反射对称,受对称载荷作用则对称面上的位移条件为①垂直于对称面的移动位移分量为零。

②绕平行于对称面的两相互垂直的轴的转动位移分量均为零。

(2)反射对称,受反对称载荷作用则对称面上的位移条件为①平行于对称面的移动位移分量为零;②绕方向矢量垂直于对称面的轴的转动位移分量为零。

(3)对称结构受任意载荷作用(迭加原理)(4)周期对称的位移条件,周期对称边界上的对应点有相同的位移状态4.边界约束条件的处理(见前)。

5.单元类型选择的一般原则选择原则:同一问题所选单元应使计算精度高、收敛速度快、计算量小。

1、杆系结构:a、铰接连接时,选杆单元;b、刚性连接时,选刚架单元。

2、平面结构:a、外载平行于平面,选平面单元b、外载不在平面,选弯曲板壳单元3、空间结构:a、结构和受力具有轴对称性,选轴对称单元;b、一般实体,选三维实体单元。

相关文档
最新文档