浙江省中考数学 考点达标训练30 数据的分析
杭州数学中考总复习课件第31课时:数据的分析

考点聚焦
杭考探究
当堂检测
第31课时┃ 数据的分析 【知识树】
考点聚焦
杭考探究
当堂检测
第31课时┃ 数据的分析
杭考探究
探究一 数据的集中趋势 例 1 [2014·宁波] 作为 宁波市政府民生实事之一的 公共自行车建设工程已基本 完成,某部门对今年 4 月份中 的 7 天进行了公共自行车日租 车量的统计,结果如下:
考点聚焦
杭考探究
当堂检测
第31课时┃ 数据的分析
1 乙 的 平 均 数 是 6 × (99 + 100 + 102 + 99 + 100 + 100) = 100(毫米). 方差 S 乙 2=16[(99-100)2+(100-100)2+(102-100)2+ (99-100)2+(100-100)2+(100-100)2]=1. (2)∵S 甲 2>S 乙 2,∴甲机床的波动较大,乙机床的波动比较 小,所以乙机床加工的零件更符合要求.
甲机床 99 100 98 100 100 103 乙机床 99 100 102 99 100 100 (1)分别计算上述两组数据的平均数及方差; (2)如果你是质量检查员,在收集到上述数据后,你能判断 哪一台机床加工的零件更符合要求吗?
考点聚焦
杭考探究
当堂检测
第31课时┃ 数据的分析
1 解:(1)甲的平均数是6×(99+100+98+100+100+103) =100(毫米), 方差 S 甲 2=16×[(99-100)2+(100-100)2+(98-100)2+ (100-100)2+(100-100)2+(103-100)2]=73;
(B )
星期 一 二 三 四 五 六 日
最高气 温(℃)
22
【大题精编】2023届浙江省中考数学复习 专题9 几何综合问题 解答题30题专项提分计划解析版

【大题精编】2023届浙江省中考数学复习专题9 几何综合问题解答题30题专项提分计划(浙江省通用)1.(2022·浙江衢州·模拟预测)(1)如图1,在矩形ABCD 中,ADC Ð的平分线交BC 于点.E 交AB 的延长线于点F ,求证:BE BF =;(2)如图2,若G 是EF 的中点,连接AG 、CG 、AC ,请判断AGC V 的形状,并说明理由.(3)如图3,作BED Ð的角平分线EH 交AB 于点H ,已知9AB =,2BH AH =,求BC 的长.(2)解:AGC V 为等腰直角三角形,理由如下:如图,连接BG,由(1)可知BEF △为等腰直角三角形,∴AF AD BC ==,∵G 为EF 中点,∴BG FG =,45EBG Ð=°,在△AGF 和△CGB 中,GF GB F CBG AF BC =ìïÐ=Ðíï=î,∴()SAS AGF CGB ≌△△,∴AG CG =,AGF BGC Ð=Ð,∴BGF AGB AGB AGC Ð+Ð=Ð+Ð,∴90AGC BGF Ð=Ð=°,∴AGC V 为等腰直角三角形;(3)解:如图,在BH 上截取BN BE =,连接NE ,∵92AB BH AH ==,,∴36AH BH ==,,∵45BEF Ð=°,∴135BED Ð=°,∵EH 平分BED Ð,∴67.5BEH Ð=°,2.(2022·浙江宁波·校考模拟预测)如图1,在ABC V 中,90C Ð=°,30B Ð=°,作CAB Ð平分线AF 交BC 于点F ,以AF 为边作等腰直角AFE △,且90AFE Ð=°,如图2将AFE △绕点F 每秒3°的速度顺时针旋转得到三角形DFE (当点D 落在射线FB 上时停止旋转),则旋转时间为t 秒.(1)当t = 秒,DE AB ∥;(2)在旋转过程中,DF 与AB 的交点记为M ,如图3,若AMF V 为等腰三角形,求t 的值;(3)当边DE 与边AB 、BC 分别交于点P 、Q 时,如图4,连接AE ,设BAE x Ð=°,AED y Ð=°,DFB z Ð=°,试探究x ,y ,z 之间的关系.【答案】(1)5(2)10或25或40(3)105x y z ++=【分析】(1)根据平行线的性质可得,45DEF BPE Ð=Ð=°,再利用三角形外角的性质得BFE Ð的度数,从而得出旋转的角度,可得答案;(2)分AFM FAM Ð=Ð或AFM AMF Ð=Ð或MAF AMF Ð=Ð,分别求出旋转的角度,从而解决问题;(3)利用三角形外角的性质知BPE BAE AED x y =Ð+Ð=°+°Ð,45BQP DFB D z Ð=Ð+Ð=°+°,再根据三角形内角和定理可得答案.【详解】(1)解:当DE AB ∥时,45DEF BPE Ð=Ð=°,∴453015BFE BPE B Ð=Ð-Ð=°-°=°,∵起始状态30BFE Ð=°,∴()301535t =-¸=,故答案为:5;(2)解:当30AFM FAM Ð=Ð=°,30310t =°¸°=,当75AFM AMF Ð=Ð=°时,75325t =°¸°=,当30MAF AMF Ð=Ð=°时,120AFM Ð=°,120340t =°¸°=,综上:t =10或25或40;(3)解:∵BPE Ð是APE V 的外角,∴BPE BAE AED x y =Ð+Ð=°+°Ð,∵BQP Ð是DFQ V 的外角,∴45BQP DFB D z Ð=Ð+Ð=°+°,在BQP V 中,3045180B BQP BPQ z x y Ð+Ð+Ð=°+°+°+°+°=°,∴105x y z ++=.【点睛】本题是三角形综合题,主要考查了旋转的性质,平行线的性质,三角形内角和定理,三角形外角的性质,等腰三角形的性质等知识,运用分类思想是解决问题(2)的关键.运用三角形外角的性质是解决问题(3)的关键.3.(2022·浙江杭州·翠苑中学校考二模)在图1,图2,图3中,AF BE ,是ABC V 的中线,AF BE ⊥,垂足为P .设BC a AC b AB c =,=,=.(1)①如图1,当=45ABE а,c ==a ,b = .②如图2,当30ABE Ð=°,8c =时,=a ,b = .(2)观察(1)中的计算结果,猜想222a b c ,,三者之间的关系,用等式表示出来,并利用图3证明.),连接EF ,则EF 是ABC V AE EF ^,,是等腰直角三角形,也是等腰直角三角形,21EP FP ==,,,②如图2,连接EF ,则EF 是ABC V 的中位线.30ABE AE BF AB Ð=°^,,Q 434AP BP AP \===,,12,32PF EF PE \====27,213AE BF \==,如图3,连接EF ,则EF 是∴1,2EF AB EF AB =∥,∴ABP FEP V V ∽,∴2AP BP FP EP ==,4.(2022·浙江丽水·一模)在菱形ABCD 中,6AB =,=60A а,点E 在AD 边上,4AE =,点P 是边AB 上一个动点,连结EP ,将AEP △沿EP 翻折得到FEP V .(1)当EF AB ∥时,求AEP Ð的度数;(2)若点F 落在对角线BD 上,求证:DEF BFP V :V ;(3)若点P 在射线BA 上运动,设直线PF 与直线BD 交于点H ,问当AP 为何值时,BHP V 为直角三角形.∵菱形ABCD 中,=60A а,∴AD =AB ,ADB V 是等边三角形,∴60ADB ABD Ð=Ð=°∵FEP V 是由AEP △翻折得到,∴60EFP A Ð=Ð=°,由翻折的性质可得:AP =FP ,EF 设AP =x ,则FP =x ,∵∠PHB =90°,∴150APF Ð=°,30BPH Ð=°30K Ð=°由折叠的性质可得:APE FPE Ð=Ð∵EQ ⊥AB ,60A Ð=°∴30AEQ Ð=°,PEQ EPQ Ð=Ð=∴122AQ AE ==,2242EQ =-∵EM ⊥AB ,60EAM Ð=°,∴60AEM Ð=°,12AM AE =由折叠的性质可得:APE Ð∵EM ⊥AB ,45APE Ð=°∴2EM PM a ==+,在Rt AEM V 中,EM AE =由翻折的性质可得:AP =FP ,EF =∵∠PHB =90°,∠PBH =60°,∴30BPH Ð=°,∵60EAB Ð=°∴120PAE PFE Ð=Ð=°5.(2022·浙江绍兴·一模)如图①,在正方形ABCD 中,点E 与点F 分别在线段,AC BC 上,且四边形DEFG 是正方形.(1)试探究线段AE与CG的关系,并说明理由.AB,(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,=3 BC.=4AE CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认①线段,为正确的关系,并说明理由.△为等腰三角形时,求CG的长.②当CDE6.(2022·浙江嘉兴·一模)如图1,已知正方形ABCD 和正方形CEFG ,点B 、C 、E 在同一直线上,(1)BC m m =>,1CE =.连接AF BG 、.(1)求图1中AF 、BG 的长(用含m 的代数式表示).(2)如图2,正方形ABCD 固定不动,将图1中的正方形CEFG 绕点C 逆时针旋转a 度(090a °<£°),试探究AF 、BG 之间的数量关系,并说明理由.(3)如图3,在(2)条件下,当点A ,F ,E 在同一直线上时,连接CF 并延长交AD 于点H ,若FH =,求m 的值.∵正方形ABCD 和正方形CEFG ∴∠ABC =∠BCD =∠CGD =∠CGH 在Rt △BCG 中,由勾股定理,得∵正方形ABCD和正方形∴∠ACB=∠FCG=45°,∴∠ACB+∠ACG=∠FCG+∠∴∠BCG=∠ACF,∵正方形ABCD和正方形∴∠CAD=∠CFE=45°,CD∵∠CFE=∠CAF+∠ACF,∴∠FAH=∠ACF,∵∠AHF=∠CHA,7.(2022·浙江宁波·校考三模)【基础巩固】(1)如图①,在四边形ABCD 中,AD BC ∥,ACD B Ð=Ð,求证∶ABC DCA V V ∽;(2)【尝试应用】如图②,在平行四边形ABCD 中,点E 在BC 上,AED Ð与C Ð互补,24BE EC ==,,求AE 的长;(3)【拓展提高】如图③,在菱形ABCD 中,E 为其内部一点,AED Ð与C Ð互补,点F 在CD 上,EF AD ∥,且2AD EF =,31AE CF ==,,求DE 的长.∵四边形ABCD 是菱形,∴AB CD ∥,AB CD =∵EF AD ∥,∴四边形AGFD 是平行四边形,8.(2022·浙江温州·统考模拟预测)已知:如图,MAN Ð为锐角,AD 平分MAN Ð,点B ,点C 分别在射线AM 和AN 上,AB AC =.(1)若点E 在线段CA 上,线段EC 的垂直平分线交直线AD 于点F ,直线BE 交直线AD 于点G ,求证:EBF CAG Ð=Ð;(2)若(1)中的点E 运动到线段CA 的延长线上,(1)中的其它条件不变,猜想EBF Ð与CAG Ð的数量关系并证明你的结论.【答案】(1)见解析;(2)见解析.【分析】(1)如图1,连接EF 、CF ,由中垂线的性质就可以得出EF CF =,就有FEC FCE Ð=Ð,由AFB AFC V V ≌就可以得出ABF ACF Ð=Ð,由180FEC FEA Ð+Ð=°就可以得出180FEC FEA Ð+Ð=°,得出A 、B 、F 、E 四点共圆,再得出EBF CAG Ð=Ð;(2)如图2,连接EF 、CF ,由中垂线的性质就可以得出EF CF =,就有FEC FCE Ð=Ð,由AFB AFC V V ≌就可以得出ABF ACF Ð=Ð,就有AEF ABF Ð=Ð,近而得出A 、B 、F 、E 四点共圆,就有EBF FAC Ð=Ð,从而得出180EBF CAG Ð+Ð=°.【详解】(1)解:如图1,连接EF 、CF ,EC Q 的垂直平分线交直线AD ,EF CF \=,FEC FCE \Ð=Ð,AD Q 平分MAN Ð,BAF CAF\Ð=Ð.在AFB △和AFC △中AB AC BAF CAF AF AF =ìïÐ=Ðíï=îAFB AFC \V V ≌,ABF ACF \Ð=Ð,ABF ACF \Ð=Ð,ABF FCE \Ð=Ð.180FEC FEA Ð+Ð=°Q ,180ABF AEF \Ð+Ð=°,则A 、B 、F 、E 四点共圆,EBF CAG \Ð=Ð;(2)解:180EBF CAG Ð+Ð=°理由:如图2,连接EF 、CF ,EC Q 的垂直平分线交直线AD ,EF CF \=,FEC FCE \Ð=Ð,AD Q 平分MAN Ð,BAF CAF \Ð=Ð.在AFB △和AFC △中AB AC BAF CAFAF AF =ìïÐ=Ðíï=îAFB AFC \V V ≌,ABF ACF \Ð=Ð,ABF FCE \Ð=Ð.则A 、B 、F 、E 四点共圆,EBF FAC \Ð=Ð.180FAC CGA Ð+Ð=°Q ,180EBF CAG Ð+Ð=°Q .【点睛】本题考查角平分线的性质的运用,中垂线的性质的运用,全等三角形的判定及性质的运用,四点共圆的判定及性质的运用,解答时证明三角形全等是关键.9.(2022·浙江杭州·校考二模)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在AD ,DC 上(不与A ,D ,C 重合),连接BE ,AF ,BE 与AF 交于点G ,与AC 交于点H .已知AF BE =,AF 平分DAC Ð.(1)求证:AF BE ⊥.(2)若BHO △的面积为1S ,BDE △的面积为2S ,求12S S 的值.10.(2022·浙江丽水·统考一模)如图,在矩形ABCD 中,302DBC AB Ð=°=,,连接对角线BD ,点E 以1个单位每秒的速度从点D 出发,向点B 运动,运动时间为t ,过点E 作EM AE ^,交BC 于点M .(1)如图1,当2t =时,求ME 的长.(2)在点E 在运动过程中,AME Ð的大小是否发生变化?如果变化,请说明理由;如果不变,请求出AME Ð的大小.)90,,ABM AON AO OC \Ð=Ð=°=Q ∴NO 垂直平分AC ,CN AN \=,,AN MN =Q CN MN \=.【点睛】本题综合考查了等边三角形、全等三角形、相似三角形和三角函数等知识,灵活运用条件证明等边三角形求证所需条件,掌握各种全等三角形、相似三角形的判定方法是解题的关键.11.(2022·浙江金华·校联考模拟预测)如图1,在平行四边形ABCD 中,AD ∥BC ,E 是CD 的中点,AE ⊥AB ,AE ,BC 的延长线交于点F ,在线段BF 上取点M ,N (点M在B ,N 之间),使得BM =FN =18MN .当点P 从点M 匀速运动到点N 处时,点Q 恰好从点F 匀速运动到点A 处.连接AP .设MP =x ,AQ =y ,已知y =-x +8.(1)求BF ,AF 的长.(2)当PQ ⊥BC 时(如图2),求FPQ △的周长.(3)①当V APQ 是以AP 为腰的等腰三角形时,求x 的值.②将PQ 绕点Q 顺时针旋转90°得线段P ¢Q ,若点P ¢落在四边形ABCD 的内部,请直接写出x 的取值范围.12.(2022·浙江丽水·统考一模)如图,矩形ABCD ,点P 是对角线AC 上的动点(不与A 、C 重合),连接PB ,作PE PB ^交射线DC 于点E .已知6AD =,8AB =.设AP 的长为x .(1)如图1,PM AB ^于点M ,交CD 于点N .求证:BMP PNE △△∽;(2)试探究:PE PB是否是定值?若是,请求出这个值;若不是,请说明理由;(3)当PCE V 是等腰三角形时,请求出所有x 的值.图甲【点睛】本题主要考查了矩形的性质、相似三角形的判定和性质、勾股定理以及等腰三13.(2022·浙江宁波·统考二模)【证明体验】(1)如图1,△ABC 中,D 为BC 边上任意一点,作DE AC ^于E ,若12CDE A Ð=Ð,求证:△ABC 为等腰三角形;【尝试应用】(2)如图2,四边形ABCD 中,90D Ð=°,AD CD =,AE 平分BAD Ð,180BCD EAD Ð+Ð=°,若2DE =,6AB =,求AE 的长;【拓展延伸】(3)如图3,△ABC 中,点D 在AB 边上满足CD BD =,1902ACB B Ð=°+Ð,若AC =,20BC =,求AD 的长.14.(2022·浙江杭州·统考二模)如图1,在矩形ABCD 中,AC 与BD 交于点O ,E 为AD 上一点,CE 与BD 交于点F .(1)若AE CE =,BD CE ^,①求tan DEC Ð.②如图2,连接AF ,当3BC =时,求AF 的值.(2)设()01DE k k AD =<<,记CBF V 的面积为1S ,四边形ABFE 的面积为2S ,求21S S 的最大值.15.(2022·浙江金华·校联考三模)在四边形ABCD 中,5AB AD ==,10BC CD ==,90B Ð=°.(1)如图1,①求证:90D Ð=°;②求C Ð的正切值;(2)如图2,动点M 从点D 出发,以1个单位每秒速度,沿折线DA AB -运动,同时,动点N 从点B 出发,以2个单位每秒速度,沿射线BC 运动,当点M 到达点B 时,点M ,N 同时停止运动,设运动时间为t 秒,以MN 为斜边作Rt MNP △,使点P 落在线段AB 或AD 上,在整个运动过程中,当不再连接其他线段,且图中存在与MNP △相似的三角形时,求t 的值.DE CF =,设DE CF x ==,则10CE x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,即可得出结果;(2)按照点M 、N 、P 的位置,MNP NPB D D ∽或MNP PNB D D ∽,以及当三角形全等也是特殊的相似,进行分类讨论,求出t 的值即可.【详解】(1)证明:①连接AC ,如图所示:∵在△ABC 和△ADC 中,AB AD BC CD AC AC =ìï=íï=î,∴()SSS ABC ADC D D ≌,∴90D B Ð=Ð=°;②过点A 作AE BC ∥,交CD 于点E ,过点E 作EF ⊥BC 于点F ,如图所示:90EFC B Ð=Ð=°Q ,∴AB EF ∥,∴四边形ABFE 为平行四边形,∵∠EFC =90°,∴四边形ABFE 为矩形,∴5EF AB ==,∠AEF =90°,∴EF AD =,90DAE AED Ð+Ð=°Q ,90DEA CEF Ð+Ð=°,∴DAE CEF Ð=Ð,90D EFC Ð=Ð=°Q ,∴()ASA ADE EFC D D ≌,∴DE CF =,设DE CF x ==,则10CE x =-,∵222CE CF EF =+,()222105x x \-=+,(2)①当点M 在AD 上,BA ,交EM 于点G ,如图所示:∵MNP NPB D D ∽,∴NMP BNP Ð=Ð,PNM Ð∵90PMN PNM Ð+Ð=°,7②当点M 在AD 上,MNP PNB D D ∽时,过点交EM 于点G ,过点P 作PH ⊥MN 于点∵ME BC ∥,∴18090GEF EFB Ð=°-Ð=°,∴90GEF EFB B Ð=Ð=Ð=°,∴四边形GEFB 为矩形,③当M 与A 点重合,N 与C 点重合时,相似比为1,符合要求,此时1052t ==④当点M 在AB 上,N 在BC 的延长线上时,∵MN =MN ,∴此时MNP MNB D D ≌,∴NP =NB =2t ,PM =MB =10-t ,【点睛】本题主要考查了三角形全等的判定和性质,三角形相似的判定和性质,解直角三角形,矩形的判定和性质,平行四边形的判定和性质,熟练掌握相关的三角形判定的性质和判定,作出辅助线,进行分类讨论是解题的关键.16.(2022·浙江金华·校联考二模)如图,菱形ABCD 中,5AB =,8AC =,点E 是射线AC 上的一个动点,将线段BE 绕点E 顺时针旋转90°到EF ,连接DE 、DF .(1)求证:ED EF =;(2)如图2,连接BD ,CF ,当BED V 与EFC V 相似时,求CE 的长;(3)当点D 关于直线EF 的对称点落在菱形的边上时,求AE 的长.(3)①当点F 与点D 重合时,点E 在AO 上时,点目要求,如图所示:根据解析(1)可知,BE =DE ,∵EO ⊥BD ,∴90BED Ð=°,∵BO =DO ,∴132EO BD ==,∵AO =4,∴1AE AO EO =-=;。
浙江省中考数学复习 第一部分 考点研究 第八单元 统计与概率 第32课时 数据的分析与应用(含近9年

第一部分考点研究第八单元统计与概率第32课时数据的分析与应用浙江近9年中考真题精选(2009~2017)命题点1平均数、众数、中位数及方差的计算(杭州必考,台州4考,温州必考,绍兴2012.20)1. (2016湖州5题3分)数据1,2,3,4,4,5的众数是( )A. 5B. 3C. 3.5D. 42. (2017温州5题4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是( )A. 5个B. 6个C. 7个D. 8个3. (2015台州5题4分)若一组数据3,x,4,5,6的众数为6,则这组数据的中位数为( )A. 3B. 4C. 5D. 64. (2016宁波7题4分)某班10名学生的校服尺寸与对应人数如下表所示:尺寸(cm) 160 165 170 175 180学生人数(人) 1 3 2 2 2 则这10名学生校服尺寸的众数和中位数分别为( )A. 165 cm,165 cmB. 165 cm,170 cmC. 170 cm,165 cmD. 170 cm,170 cm5. (2016杭州4题3分)如图是某市2016年四月份每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是( )第5题图A. 14 ℃,14 ℃B. 15 ℃,15 ℃C. 14 ℃,15 ℃D. 15 ℃,14 ℃6. (2015衢州5题3分)某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是( )A. 7B. 6C. 5D. 47. (2014湖州5题3分)数据-2,-1,0,1,2的方差是( )A. 0B. 2C. 2D. 48. (2013衢州7题3分)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80 那么被遮盖的两个数据依次是( )A. 80,2B. 80, 2C. 78,2D. 78, 29. (2017嘉兴3题3分)已知一组数据a、b、c的平均数为5,方差为4,那么数据a -2、b-2、c-2的平均数和方差分别是( )A. 3、2B. 3、4C. 5、2D. 5、410. (2016温州12题5分)某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是________分.11. (2015杭州11题4分)数据1,2,3,5,5的众数是________,平均数是________.12. (2014丽水14题4分)有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是________.13. (2017金华13题4分)2017年5月28日全国部分宜居城市最高气温的数据如下:宜居城市大连青岛威海金华昆明三亚最高气温(℃) 25 28 35 30 26 32 则以上最高气温的中位数为________℃.14. (2014杭州14题4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是__________℃.第14题图15. (2017温州12题5分)数据1,3,5,12,a,其中整数a是这组数据中的中位数,则该组数据的平均数是________.16. (2013杭州14题4分)杭州市某4所高中近两年的最低录取分数线如下表(单位:分):杭州市某4所高中最低录取分数线统计表学校2011年2012年杭州A中438 442杭州B中435 442杭州C中435 439杭州D中435 439设4所高中2011年和2012年的平均最低录取分数线分别为x1,x2,则x2-x1=________分.17. (2015温州19题8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲83 79 90乙85 80 75丙80 90 73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.18. (2012绍兴20题8分)一分钟投篮测试规定,得6分及以上合格,得9分及以上为优秀,甲、乙两组同学的一次测试成绩统计如图:成绩(分) 4 5 6 7 8 9甲组(人) 1 2 5 2 1 4乙组(人) 1 1 4 5 2 2(1)请你根据上述统计数据,把下面的图和表补充完;第18题图一分钟投篮测试成绩统计分析表统计量平均分方差中位数合格率优秀率甲组 2.56 6 80.0% 26.7%乙组 6.8 1.76 86.7% 13.3%(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.19. (2013台州21题10分)有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中C组所在扇形的圆心角为36°.被抽取的体育测试成绩频数分布表组别成绩(分) 频数A 20<x≤24 2B 24<x≤28 3C 28<x≤32 5D 32<x≤36 bE 36<x≤4020合计 a第19题图根据图表提供的信息,回答下列问题:(1)计算频数分布表中a与b的值;(2)根据C组28<x≤32的组中值30,估计C组中所有数据的和为________;(3)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数).命题点2平均数、众数、中位数及方差的应用(台州3考,绍兴3考)20. (2017台州4题4分)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A. 方差B. 中位数 C .众数 D. 平均数21. (2017绍兴5题4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A. 甲B. 乙C. 丙D. 丁22. (2016嘉兴5题3分)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A. 平均数B. 中位数C. 众数D. 方差23. (2015宁波4题4分)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中,最值得关注的是( )A. 方差B. 平均数C. 中位数D. 众数答案1. D2. C3. C 【解析】先根据众数定义知,数据6出现次数最多,所以x=6,再把这5个数由小到大排列3,4,5,6,6,根据中位数定义知,位于最中间的那个数据为5,所以中位数为5.4. B 【解析】由于165 cm出现了3次为最多,所以这组数据的众数为165 cm,而这组数据共有10个数,从小到大排列后的第5、6个数的平均数为中位数,从表中可知第5、6个数都为170 cm,故这组数据的中位数为170 cm,所以本题选B.5. A 【解析】从统计图分析,12 ℃的天数为5,13 ℃的天数为2,14 ℃的天数为12,15 ℃的天数为3,16 ℃的天数为4,17 ℃的天数为2,18 ℃的天数为2,将30天的温度值按从小到大的顺序排列,第15、16天的温度均为14 ℃,所以中位数为14 ℃,14 ℃的天数为12,天数最多,所以众数为14 ℃,故选A.6. C 【解析】因为x=5×7-4-4-5-6-6-7=3,所以,这组数据按从小到大的顺序可排列为3、4、4、5、6、6、7,中位数是5.7. C 【解析】∵数据-2,-1,0,1,2的平均数是(-2-1+0+1+2)÷5=0,∴数据-2,-1,0,1,2的方差是15×[(-2)2+(-1)2+02+12+22]=2.8. C 【解析】根据题意得:80×5-(81+79+82+80)=78,方差s 2=15[(81-80)2+(79-80)2+(78-80)2+(80-80)2+(82-80)2]=2.9. B 【解析】∵a ,b ,c 的平均数为5,方差为4,∴a +b +c =5×3=15,4=(a -5)2+(b -5)2+(c -5)23,即(a -5)2+(b -5)2+(c -5)2=12,则数据a -2,b-2,c -2的平均数为:a -2+b -2+c -23=a +b +c -63=15-63=3,方差为:s 2=(a -2-3)2+(b -2-3)2+(c -2-3)23=123=4,故选B.10. 37 【解析】把数据按从小到大的顺序排列为32,35,36,38,38,40,则这组数据的中位数是(36+38)÷2=37.11. 5,3.2 【解析】5出现两次,出现次数最多,故众数为5;平均数为1+2+3+5+55=3.2.12. 2 【解析】根据题意得3+a +4+6+7=25,解得a =5,∴这组数据的方差s 2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2. 13. 29 【解析】将这组数据按从小到大的顺序排列为25,26,28,30,32,35.数据共6个,是偶数,则中位数是第3和第4个数据的平均数,即中位数为(28+30)÷2=29.14. 15.6 【解析】把这些数从小到大排列为4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6 ℃.15. 4.8或5或5.2 【解析】这组数据共5个,因为a 是中位数,所以3≤a ≤5,因为a 是整数,所以a 的值可以是3,4,5.当a 为3时,这组数据的平均数是15(1+3+3+5+12)=4.8;当a 为4时,这组数据的平均数是15(1+3+4+5+12)=5;当a 为5时,这组数据的平均数是15(1+3+5+5+12)=5.2.16. 4.75 【解析】x 1=438+3×4354=435.75(分),x 2=2×442+2×4394=440.5(分),x 2-x 1=4.75(分).17. 解:(1)x 甲=83+79+903=84(分),x 乙=85+80+753=80(分), x 丙=80+90+733=81(分), ∵x 甲>x 丙>x 乙,∴排名顺序为甲、丙、乙;(4分) (2)由题意可知,甲不符合规定.∵乙的得分:85×60%+80×30%+75×10%=82.5(分),丙的得分:80×60%+90×30%+73×10%=82.3(分),∴乙的得分>丙的得分, ∴乙会被录用.(8分)18. 解:(1)补全统计图如解图;第18题解图补全统计分析表:甲组平均分为6.8,乙组的中位数为7;(4分)(2)答案不唯一,如:甲乙两组的平均分一样,乙组的方差低于甲组,说明乙组成绩比甲组稳定;乙组的合格率比甲组高,所以乙组的成绩好于甲组.(8分)19.解:(1)a=5÷36°360°=50,b=50-(2+3+5+20)=20;(4分) (2)150;(6分)【解法提示】由题意,得C组中所有数据的和为30×5=150.(3)150×(22×2+26×3+30×5+34×20+38×20)=34.24≈34(分)(9分) 可用样本的平均分来估计总体的平均分,因此该校九年级学生这次体育测试成绩的平均分约为34分.(10分)20. A21. D 【解析】方差越小,成绩越稳定.甲的方差是6.6,乙的方差是6.8,丙的方差是6.7,丁的方差是6.6,甲与丁的方差最小,而甲的平均数是9.14,丁的平均数是9.15,甲的平均数比丁的平均数小,故选丁.22. B 【解析】共有9名学生参加百米跑,取前4名,所以要想知道自己是否入选需要知道自己的成绩是否进入前4名.我们把所有同学的成绩按从大到小的顺序排列,第5名学生的成绩是这组数据的中位数,所以大家知道这组数据的中位数,就能知道自己是否入选,故选B.23. D 【解析】全校师生最爱吃的粽子肯定是在全校做调查时被选中的次数最多的一家专卖店,根据方差、平均数、中位数、众数各自的特点可知,只有众数能反映“次数最多”,故应关注众数.11。
中考数学专题复习题数据的分析(含解析)(2021年整理)

2017-2018年中考数学专题复习题数据的分析(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018年中考数学专题复习题数据的分析(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018年中考数学专题复习题数据的分析(含解析)的全部内容。
2017—2018年中考数学专题复习题:数据的分析一、选择题1.下表是某校合唱团成员的年龄分布年龄岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是A。
平均数、中位数 B. 众数、中位数C。
平均数、方差 D. 中位数、方差2.为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高单位:为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是A。
13,11 B。
14,11 C. 12,11 D。
13,163.某科普小组有5名成员,身高分别为单位::160,165,170,163,增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是A。
平均数不变,方差不变B。
平均数不变,方差变大C。
平均数不变,方差变小 D. 平均数变小,方差不变4.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示丙、丁两人的成绩如图所示欲选一名运动员参赛,从平均数与方差两个因素分析,应选甲乙平均数98方差11A. 甲B。
乙 C. 丙D。
丁5.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号12345方差平均成绩得分3834374037那么被遮盖的两个数据依次是A。
《教与学》中考全程复习导练第30课数据的分析

谢谢大家! 2.对统计结果作合理判断和预测: 预测就是根据所收集或提供的数据信息进行分要析点点,拨通 过描述数据(如平均数、方差、频数分布等)做出合理的 判断或尝试性的判断.
择的选手是
()
A. 甲
B. 乙
C. 丙
D. 丁
【点评】 本题主要考查方差的应用,知道方差的大小与 数据稳定性的关系是解题的关键.
【解析】 根据平均成绩可得乙和丙要比甲和丁好,根据 方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成 绩高且发挥稳定的选手参赛,应选择乙,故选 B.
【答案】 B
考点三 统计知识
【点评】 本题主要考查平均数与方差的定义,掌握平均
数和方差的计算公式是解题的关键.
【解析】 ∵这组数据的平均数是 37,
∴编号 3 的得分是 37×5-(38+34+37+40)=36,
∴方差是15×[(38-37)2+(34-37)2+(36-37)2+(37-37)2
+(40-37)2]=4.
故选 B. 【答案】 B
【例 1】 (2016·四川巴中)两组数据 m,6,n 与 1,m, 2n,7 的平均数都是 6.若将这两组数据合并成一组数 据,则这组新数据的中位数是____.
提 示 根据平均数的计算公式先求出 m,n 的值,再根
据中位数的定义即可得出答案. 【解析】 ∵两组数据 m,6,n 与 1,m,2n,7 的平均 数都是 6, ∴m1++m6++n2n=+187,=24,解得mn==48., 若将这两组数据合并为一组数据,按从小到大的顺序排列 为 1,4,6,7,8,8,8, 故这组新数据的中位数是 7. 【答案】 7
2019年浙江省中考《第31讲:数据的分析及其应用》总复习讲解

第31讲数据的分析及其应用1.数据的代表考试内容考试要求平均数算术平均数一组数据x1,x2,…,x n,它的平均数x=_________________.bc 加权平均数若n个数x1,x2,…,x n的权分别是f1,f2,…,f n,则其加权平均数x=____________________.中位数将一组数据按照由小到大(或由大到小)的顺序排列,若数据的个数为奇数,则处于的数就是这组数据的中位数;若数据的个数为偶数,则中间两个数据的就是这组数据的中位数.确定中位数时,一定要注意先把整组数据按照大小顺序排列,再确定.众数在一组数据中,出现的数据就是这组数据的众数.(1)一组数据中众数不一定只有一个;(2)当一组数据中出现异常值时,其平均数往往不能正确反映这组数据的集中趋势,就应考虑用中位数或众数来考察.2.数据的波动考试内容考试要求表示数据定义意义b波动的量c方差设有n个数据x1,x2,x3,…,x n,各数据与它们____________________的差的平方分别是(x1-x)2,(x2-x)2,…,(x n-x)2,我们用它们的平均数,即用____________________来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作S2.方差越大,数据的波动越,反之也成立.标准差我们也用方差的算术平方根来描述一组数据的离散程度,并把它叫做这组数据的标准差标准差越大,数据的波动越,反之也成立.考试内容考试要求基本思想统计的基本思想:利用样本特征去估计总体的特征是统计的基本思想.注意样本的选取要有足够的代表性.c基本方法利用数据进行决策:利用数据进行决策时,要全面、多角度地去分析已有数据,比较它们的代表性和波动大小,发现它们的变化规律和发展趋势,从而作出正确决策.1.(2019·湖州)数据-2,-1,0,1,2,4的中位数是()A.0 B.0.5 C.1 D.22.(2019·温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个3.(2019·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择() A.甲B.乙C.丙D.丁4.(2019·台州)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【问题】某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩9 4 7 4 6乙成绩7 5 7 a 7(1)a=________,x乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中;(4)通过(1)、(2)、(3)解答体验,数据的分析应运用哪些统计量,这些统计量特点是什么?【归纳】通过开放式问题,归纳、疏理统计量:平均数、中位数、众数、极差、方差、标准差,以及它们的特征;对统计量进行合理地选择和恰当地运用,全面、多角度地去分析已有数据,利用数据进行决策.类型一 平均数、众数和中位数的计算与应用例1 (2019·嘉兴模拟)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2019年4月份用电量的调查结果:居民(户) 1 3 2 4 月用电量(度/户)40505560那么关于这10户居民月用电量(单位:度),下列说法错误的是( )A .中位数是55B .众数是60C .方差是29D .平均数是54 【解后感悟】此题主要运用了平均数、众数、中位数及方差的知识,解题时分别计算出众数、中位数、平均数及方差后找到正确的选项即可.求中位数这类问题一般要把数据从小到大排列,设数据的总数为n ,若n 为奇数,则中位数为第n +12个数;若n 为偶数,则中位数为第n 2个数与n2+1个数的平均数.例2 (2019·衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的( )A .众数B .方差C .平均数D .中位数 【解后感悟】此题反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用;解决这类问题的关键是弄清概念,平均数的大小与一组数据里的每一个数据均有关系,其中任何一个数据的变动都会引起平均数的变动;众数着眼于各数据出现的频率,其大小只与这组数据中的部分数据有关,可以是一个或多个;中位数则与数据的排列位置有关,某些数据的变动对中位数没有影响,计算时要分清数据是奇数个,还是偶数个.1.(1)(2019·宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数(2)(2019·台湾)图1、图2分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b;中位数分别为c、d,则下列关于a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d2.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9.乙:5,9,7,10,9.(1)填写下表:平均数众数中位数方差甲8 ____________________ 8 0.4 乙____________________ 9 ____________________ 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差____________________.(填“变大”、“变小”或“不变”).类型二 方差、标准差的计算与应用例3 (2019·吉林)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差S 2甲,S 2乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选______参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.【解后感悟】方差是用来衡量一组数据波动大小的量,一般地设n 个数据,x 1,x 2,…,x n 的平均数为x ,则方差S 2=1n [(x 1-x)2+(x 2-x)2+…+(x n -x)2],方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.(2019·舟山)已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a -2,b -2,c -2的平均数和方差分别是( )A .3,2B .3,4C .5,2D .5,4 4.(2019·郑州模拟)九(3)班为了参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,根据成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数x甲组=7,方差S2甲组=1.5.请通过计算说明,哪一组成绩优秀的人数较稳定?类型三利用统计量解决实际问题例4(2019·青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【解后感悟】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用;熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.5.八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).【实际探究题】小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:第一步:小亮在测点D处用测角仪测得仰角∠ACE=β.第二步:小红量得测点D处到树底部B的水平距离BD=a.第三步:量出测角仪的高度CD=b.之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图.请你根据两个统计图提供的信息解答下列问题.(1)把统计图中的相关数据填入相应的表格中:a b β第一次第二次第三次平均值(2)根据表中得到的样本平均值计算出风筝的高度AB.(参考数据:3≈1.732,2≈1.414,结果保留3个有效数字).【方法与对策】本题是实践性应用题,通过社会实践活动来收集数据、整理和分析数据,得出结论;同时该题利用统计图来结合直角三角形,在解直角三角形时,如果有直角三角形直接利用边角关系直接求出,如果没有直角三角形可以构造直角三角形再利用边角关系去解.这类题型解直角三角形与统计结合是中考命题趋向.【忽视选用合适的公式计算平均数】某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表,则这20户家庭这个月的平均用水量是吨.用水量(吨) 4 5 6 8户数 3 8 4 5参考答案第31讲 数据的分析及其应用【考点概要】 1.x 1+x 2+…+x n n x 1f 1+x 2f 2+…+x n f n f 1+f 2+…+f n中间位置 平均数 次数最多 2.平均数1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] 大 大【考题体验】 1.B 2.C 3.D 4.A 【知识引擎】【解析】(1)求乙射的总环数→计算表中已知总环数→求a ,x乙.故答案4,6. (2)观察乙表中成绩数→在折线图上描点连线.如图. (3)方差的概念→计算乙的方差→比较甲、乙方差大小→结论.①乙,乙的方差=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于甲的方差是3.6,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.(4)平均数、中位数、众数、极差、方差、标准差.反映数据集中程度的统计量有平均数、中位数、众数;反映数据的离散程度的统计量有极差、方差、标准差.【例题精析】 例1 C例2 因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D .例3 (1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环); (2)根据图象可知:甲的波动大于乙的波动,则S 2甲>S 2乙; (3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.例4 (1)甲的平均成绩a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b =7+82=7.5(环),其方差c =110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2; (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【变式拓展】 1.(1)D (2)A2. (1)8 8 9 (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛. (3)变小3. B4.(1)∵第一次成绩优秀的人数是11人,优秀率为55%,∴选取的学生总人数为1155%=20(人).∴第三次成绩的优秀率是1320×100%=65%.∴乙组第四次成绩优秀的人数为20×85%-8=9(人),补图略. (2)乙组成绩优秀人数的平均数为x 乙组=6+8+5+94=7,方差S 2乙组=14[(6-7)2+(8-7)2+(5-7)2+(9-7)2]=2.5.∵两组成绩优秀人数的平均数相同,甲组成绩优秀人数的方差小于乙组成绩优秀人数的方差,∴甲组成绩优秀的人数较稳定.5.(1)x =(19+17+15+17)×5+(2+2+1)×(-2)4=82.5(分). (2)①设E 同学答对x 题,答错y 题,由题意得⎩⎪⎨⎪⎧5x -2y =58,x +y =13,解得⎩⎪⎨⎪⎧x =12,y =1,∴E 同学答对12题,答错1题. ②C 同学,他实际答对14题,答错3题,未答3题.【热点题型】【分析与解】(1)要根据题中所给的条形统计图和折线统计图完成下列表格.(2)BDCE 为矩形,∴EC =BD =15.81m ,BE =CD =1.32m ,∠AEC =90°,在Rt △AEC 中,∠AEC =90°,∠β=30°,∵tan β=AE EC .∴AE =EC·tan 30°=15.81×33≈15.81×0.577≈9.122m .∴AB =AE +BE =9.122+1.32≈10.4(m ).∴风筝的高度AB 约为10.4m .【错误警示】平均用水量为x =4×3+5×8+6×4+8×520=5.8(吨),故填5.8.。
【大题精编】2023届浙江省中考数学复习 专题8 圆综合问题 解答题30题专项提分计划解析版

【大题精编】2023届浙江省中考数学复习专题8 圆综合问题解答题30题专项提分计划(浙江省通用)1.(2022·浙江舟山·校考一模)如图,四边形ABCD 是O e 的内接四边形.DB 平分ADC Ð,连接,OC OC BD ^.(1)求证:AB CD =;(2)若66A Ð=°,求ADB Ð的度数.【答案】(1)见解析(2)33°【分析】(1)根据DB 平分ADC Ð,可得 AB BC=,再根据OC BD ^,可得 BC CD =,从而得到 AB CD =,即可.(2)根据圆的内切四边形,对角互补,求出BCD Ð,再利用垂径定理,可得BC DC =,可得到BDC Ð,即可求解.【详解】(1)证明:∵DB 平分ADC Ð,∴ADB CDB Ð=Ð,∴ AB BC=,∵OC BD ^,∴ BCCD =,∴ AB CD =,∴AB CD =;(2)解:66A Ð=°Q ,18066114BCD \Ð=°-°=°,OC BD ^Q ,2.(2022·浙江温州·校联考二模)已知,如图,直线MN 交O e 于A ,B 两点,AC 是直径,AD 平分CAM Ð交O e 于D ,过D 作DE MN ^于E .(1)求证:DE 是O e 的切线;(2)若6cm DE =,3cm AE =,求O e 的半径.【答案】(1)见解析(2)7.5cm 【分析】(1)连接OD ,根据平行线的判定与性质可得90ODE DEM Ð=Ð=°,且D 在Oe 上,故DE 是O e 的切线.(2)由直角三角形的特殊性质,可得AD 的长,又有ACD ADE △∽△,根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【详解】(1)连接OD .OA OD =Q ,OAD ODA Ð=Ð∴.OAD DAE Ð=ÐQ ,3.(2022·浙江衢州·模拟预测)如图,已知O e 的直径6AB =,E 、F 为AB 的三等分点,M 、N 为 AB 上两点,且60MEB NFB Ð=Ð=°,求EM FN +的值.∵E 、F 为AB 的三等分点,MEB Ð∴FN EG =,过点O 作OH MG ^于H ,连接MO ∵O e 的直径6AB =,∴1166323OE OA AE =-=´-´=-∵60MEB Ð=°,4.(2023·浙江温州·校考一模)如图,在Rt ACD V 中,90D Ð=°,点O 在AC 上,以OC 为半径作半圆O ,与AD 相切于点E ,与AC ,CD 分别交于点B ,F .(1)求证:CE 平分ACD Ð.(2)若4AE =,2AB =,求FC 的长.Q半圆O与AD相切于点E,\^,OE ADQ,CD AD^\∥,OE DCQ222AO OE AE=+,\222+=+,(r r2)4\=,3r5.(2022·浙江杭州·校考二模)如图,锐角ABC V 内接于O e ,射线BE 经过圆心O 并交O e 于点D ,连结AD ,CD ,BC 与AD 的延长线交于点F ,DF 平分CDE Ð.(1)求证:AB AC =.(2)若BC CF =,求F Ð的余弦值.(3)若1tan 2ABD Ð=,O e DF 的长.6.(2022·浙江舟山·校联考三模)如图,以ABC V 的一边AB 为直径作O e ,交BC 于点D ,交AC 于点E ,点D 为 BE的中点.(1)试判断ABC V 的形状,并说明理由;(2)若直线l 切O e 于点D ,与AC 及AB 的延长线分别交于点F 、点G .45BAC Ð=°,求DF DG的值.∵AB 为O e 的直径,∴90ADB ADC Ð=Ð=°.∵点D 为 BE的中点,∴ BDDE =,∴BAD DAC Ð=Ð,∴ABD ACD Ð=Ð,∴AB AC =,∴ABC V 为等腰三角形;(2)解:连接OD ,如图所示.∵直线l 是O e 的切线,点D 是切点,∴OD GF ^.∵OA OD =,∴ODA BAD DAC =Ð=ÐÐ,7.(2022·浙江杭州·校考二模)如图所示,已知BC 是⊙O 的直径,A 、D 是⊙O 上的两点,连接AD 、AC 、CD ,线段AD 与直径BC 相交于点E .(1)若60ACB а=,求sin ADC Ð的值.(2)当 12CD AC =时,①若CE =2BC CE AB ×=,求COD Ð的度数.②若1CD =,4CB =,求线段CE 的长.形相似的基本模型.8.(2022·浙江宁波·校考模拟预测)锐角三角形ABC V 的外心为O ,外接圆直径为d ,延长,,AO BO CO ,分别与对边BC,CA,AB 交于,,D E F .(1)求OD OE OF AD BE CF++的值;(2)求证:1114AD BE CF d ++=.∵122OD R DM AD R DM R -==--同理有:1OE R BE BE =-,代入1OD OE OF AD BE CF++=,9.(2022·浙江金华·一模)如图,已知AB 是O e 的直径,ABD △为O e 的内接三角形,C 为BA 延长线上一点,连接CD ,OF AD ^于点E ,交CD 于点F ,ADC AOF Ð=Ð.(1)求证:CD 是O e 的切线.(2)若1sin ,2C BD ==,求 AD 的长.10.(2022·浙江温州·二模)如图,AB是⊙O的直径,BC=CD,AC与BD相交于点E.连接BC,∠BCF=∠BAC,CF与AB的延长线相交于点F.(1)求证:CF是⊙O的切线;(2)求证:∠ACD=∠F;(3)若AB=10,BC=6,求AD的长.11.(2022·浙江丽水·校联考三模)如图,BC 为ABC V 的外接圆O e 的直径,点E 在AB 上,在线段BO 上取点F 作BC 的垂线交AB 于点E ,点G 在FE 的延长线上,且GA GE =.(1)求证:AG 与O e 相切.(2)已知直径20BC =,12AC =,若BE OB =,试求OE 的长.【答案】(1)见解析12.(2022·浙江丽水·统考一模)如图,AB 是O e 的直径,C ,D 是O e 上两点,C 是BD 的中点,过点C 作AD 的垂线,分别交AB 与AD 的延长线于点E 和点F .(1)求证:EF 是O e 的切线;(2)若9,AE CE == AC 的长.13.(2022·浙江杭州·杭州市十三中教育集团(总校)校联考模拟预测)如图,锐角ABC V 内接于O e ,D 是劣弧AC 上一点,BD 与AC 交于点E ,且BD AC =.V(1)求证:EBCe的半径长和劣弧 CD的长.(2)若4AB=,tan C=O14.(2022·浙江宁波·统考二模)如图1,△ABC 中,AB AC =,其外接圆为O e ,O e 半径为5,8BC =,点M 为优弧BMC 的中点,点D 为BM 上一动点,连结AD ,BD ,CD ,AD 与BC 交于点H .(1)求证:ACH ADC ∽△△;(2)若:2:3AH DH =,求CD 的长;(3)如图2,在(1)的条件下,E 为DB 为延长线上一点,设:AH DH x =,2tan ABE y Ð=.①求y 关于x 的函数关系式;②如图3,连结AM 分别交BC ,CD 于N 、P ,作FN AD ^于D ,交AB 于F ,若△BFN面积为△ACP 面积的35,求x 的值.【答案】(1)证明见解析;(3)①如图1,连结AO 交BC 于N ,∵180EBA ABD Ð+Ð=°,180ABD ACD Ð+Ð=°,∴EBA ACD AHC Ð=Ð=Ð,设AH ax =,DH a =,同(2)得:2AC AH AD =×,∴()2120a x x +=,∴22222201644411x x NH AH AN a x x x -=-=-=-=++,15.(2022·浙江宁波·校考三模)如图,ABC V 内接于,O AB AC =e ,点D 为劣弧AC 上动点,延长,AD BC 交于点E ,作DF AB ∥交O e 于F ,连结CF .(1)如图①,当点D 为 AC 的中点时,求证∶DF BC =;(2)如图②,若,CF CA ABC Ða ==,请用含有a 的代数式表示E Ð;(3)在(2)的条件下,若BC CE =,①求证∶AC AD DE +=;②求tan E Ð的值.(2)如图①,由(1)可得 AD ∵CF CA =,则 AC CF=,∴ 2BCD AC CF AC =+=,连结BG CD ,,则12G BAE Ð=Ð又CDE ABC a Ð=Ð=,∴G CDE Ð=Ð,∴CD BG ∥,∵BC CE =,即点C 为BE 中点,16.(2022·浙江杭州·杭州绿城育华学校校考二模)如图,已知ABC V 是O e 的内接三角形,AB 为直径,AC BC =,D ,E 是O e 上的两点,连结DE 交AB 于G ,交BC 于H .(1)如图1,连结AD ,AE ,DB ,若10CAD Ð=°,求AED Ð的度数.(2)如图2,若DE AB ^,求证:22DG HG CH HB -=×.(3)若»»2BE AE =且10AB =,作DP AE ^交AE 于P ,交CE 于N ,过D 点作MD DP ^交EC 的延长线于M ,当PD 过圆心时,求出MDN S S V V 的值.PNE DNM Ð=ÐQ ,90MDN NPE Ð=°=Ð,MDN \V V ∽\1MN DN EN PN ==-,\1MDN NDE S MN S EN==-V V .【点睛】本题考查圆周角定理,垂径定理,等腰直角三角形的性质,相似三角形判定与性质,勾股定理及应用等,解题的关键是熟练掌握圆的相关性质17.(2022·浙江杭州·校考一模)如图,AB 是O e 的直径,CD AB ^于点E ,G 是弧AC 上任意一点,延长AG ,与DC 的延长线交于点F ,连接AD ,GD ,CG .(1)求证:AGD FGC Ð=Ð;(2)求证:CAG FAC V V ∽;(3)若48AG AF ×=,CD =,求O e 的半径.圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.18.(2021·浙江宁波·校考三模)如图1,已知Rt ACB D ,3AC =,4BC =,90ACB Ð=°,点D 、E 为边AC ,BC 上的任意点(不与点A ,点B 重合),以DE 为直径的O e 交边AB 于点F ,点G ,半径为r ,连结CF 交DE 于点H ,连结OF ,EF ,设CEF a Ð=.(1)请用含有a 的代数式表示出OFC ∠;(2)若60a =°,:2:1CH HF =,求CE 的长(用含有r 的代数式表示);(3)若DE AB ∥,①若O e 与边AB 相交,求r 的取值范围;②如图2,连结GE ,若GE 平分DEB Ð,求CE .19.(2019·浙江杭州·模拟预测)已知P 是O e 上一点,过点P 不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B (不与P 、Q 重合),连接AP 、BP ,若APQ BPQ Ð=Ð.(1)如图1,当45°APQ Ð=,1AP =,BP =O e 的半径;(2)如图2,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若290°NOP OPN ÐÐ+=,探究直线AB 与ON 的位置关系,并证明.(2)解:直线AB 与ON 证明:连接OA 、OQ 、∵ QEQE =,∴=2EOQ OPN ÐÐ,【点睛】本题考查了勾股定理、圆周角定理、等弧所对的圆心角相等、相等的圆周角所对的弧相等、三线合一、平行线的判定定理,是一道综合题,正确作出辅助线并灵活运用相关知识是解题的关键.20.(2022·浙江温州·温州市第二实验中学校考二模)如图1,ABC V 中,90ACB Ð=°,8AC =,6BC =,延长BC 至D ,使CD CB =,E 为AC 边上一点,连结DE 并延长交AB 于点F .作BEF △的外接圆O e ,EH 为O e 的直径,射线AC 交O e 于点G ,连结GH .(1)求证:AEF CEB Ð=Ð.(2)①如图2,当DF AB ^时,求GH 的长及tan EHG Ð的值.②如图3,随着E 点在CA 边上从下向上移动,tan EHG Ð的值是否发生变化,若不变,请你求出tan EHG Ð的值,若变化,求出tan EHG Ð的范围.(3)若要使圆心O 落在ABC V 的内部(不包括边上),求CE 的长度范围.(3)如图,当O 在BC 上时,由(2)可得:3tan ,4EGH Ð= ∵90,ECO EGH Ð=Ð=°∴,BC GH ∥,EOC EHG \Ð=Ð3tan ,4EC EOC CO \Ð==4cos ,5OC EOC OE\Ð== 设,CO x = 则6,OB OE x ==-FB Q 为O e 的直径,90,FEB DEB \Ð=°=Ð6,CD CB CE \===∴要使圆心O 落在ABC V 的内部(不包括边上),CE 的长度范围为:2 6.CE <<【点睛】本题考查的是等腰三角形的性质,圆周角定理的应用,锐角三角函数的应用,是动态几何体,准确的画出图形是解本题的关键.21.(2022·浙江·三模)如图,点O 是矩形ABCD 中AB 边上的一点,以O 为圆心,OB 为半径作圆,O e 交CD 边于点E ,且恰好过点D ,连接BD ,过点E 作EF ∥BD ,(1)若120BOD Ð=°,①求CEF Ð的度数;②求证:EF 是O e 的切线.(2)若2CF =,3FB =,求OD 的长.DE=由垂径定理可得DH=12∵∠CBO=∠C=∠CHO=90°,∴四边形CHOB是矩形,22.(2022·浙江丽水·统考二模)如图,已知以AB 为直径的半圆,圆心为O ,弦AC 平分BAD Ð,点D 在半圆上,过点C 作CE AD ^,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 与半圆O 相切于点C .(2)若3,2AO BF ==,求tan ACE Ð的值.23.(2023·浙江宁波·校考一模)如图1.,AB CD 均为O e 的直径,AB CD ^.E 是AB 延长线上一点,F 是 AC 的中点,G 是半径OD 上一点,连接FE 交O e 于点H .连接FG并延长交O e 于点P , DPBH =.(1)求PFH Ð的度数.(2)如图2,连接OF ,求证:OGF OFE V V ∽.(3)若1BE =.34=GD .①求O e 的半径;②求sin BDE Ð的值.24.(2022·浙江温州·温州市第三中学校考模拟预测)如图,AB 是O e 的直径,弦CD AB ^于点E ,G 是 AD 上一动点(不与点A ,点D 重合),以AG ,CG 为边构造平行四边形AFCG ,交O e 于点H ,交AB 于点M ,若CD =1BE =.(1)求证:F ACD Ð=Ð.(2)当CF 与O e 相切时,求AG 的长.(3)①当AMG V 中有一个角与HCF Ð相等时,求AG 的长.②若点H 关于AC 的对称点H ¢落在ACG V 的内部(不包括ACG V 的边界),求CH 的取值范围(直接写出答案).∵AB 是O e 的直径,CD AB ^,∴12CE DE CD ==,∴AC AD =,e相切,若CF与Oe半径,∵OC为O^,∴OC CF∵1222CE CD ==,1BE =,设O e 半径为x ,则OB OC x ==,OE =∴在Rt OCE V 中,由勾股定理可得2CE OE +此时,GM AM =,∴AGM GAM Ð=Ð,又∵CHF AGM F Ð=Ð=Ð,180AMG AGM GAM Ð=°-Ð-Ð=∵点H 与点H ¢关于AC 的对称,∴HN H N ¢=,HH AC ¢^,∵四边形AFCG 为平行四边形,。
2022年浙江省中考数学复习课件:第30课 数据的收集、整理与分析

通话时间x/min
0<x≤5 5<x≤10 10<x≤15 15<x≤20 20<x≤25
频数(通话次数)
24 16 8 10 16
【解析】(1)74; (2)通话时间不超过 15 min 的频数=24+16+8=48(次), 约占所打电话的 48÷74≈64.9%,即通话时间不超过 15 min 的频数为 48,频率约为 0.649.
2.中位数:将一组数据按照从小到大(或从大到小)的顺序排列后,若有奇数 个数时,则取___中__间____的一个数为中位数;若有偶数个数时,则取中间两个 数的___平__均__数____为中位数. 3.众数:一组数据中出现___次__数__最__多____的数据,称为该组数据的众数.
五、数据的波动
数据的波动:方差、标准差 例 2.(2021·柳州)某校九年级进行了 3 次数学模拟考试,甲、乙、丙三名同学的平
均分及方差 s2 如表所示,那么这三名同学数学成绩最稳定的是( A)
甲乙丙
x 91 91 91 s2 6 24 54
A.甲
B.乙
C.丙
D.无法确定
跟踪训练
1.(2021·台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均
跟踪训练 1.(2021·广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的 方法,从该年级全体 600 名学生中抽取 20 名,其竞赛成绩如图: (1)求这 20 名学生成绩的众数,中位数和平均数; (2)若规定成绩大于或等于 90 分为优秀等级,试估计该年级获优秀等级的学生人 数.
【解析】(1)22÷11%=200(人).
∴参与问卷调查的学生总人数为 200 人;
(2)200×24%=48(人).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点达标训练30 数据的分析
平均数、众数和中位数(数据的代表)
1. (2014·江苏盐城)数据-1,0,1,2,3的平均数是( )
A.-1
B. 0
C. 1
D. 5
2. (2015·浙江丽水)某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( )
A. 30,27
B. 30,29
C. 29,30
D. 30,28
3. (2015·湖南益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示:
劳动时间(h)3 3.54 4.5
人数112 1
关于“劳动时间”的这组数据,下列说法正确的是( )
A. 中位数是4,平均数是3.75
B. 众数是4,平均数是3.75
C.中位数是4,平均数是3.8
D. 众数是2,平均数是3.8
4. (2015·浙江衢州)某班七个兴趣小组的人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是( )
A. 7
B. 6
C. 5
D. 4
5. (2015·浙江温州)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙的各项得分如下表所示:
笔试面试体能
甲837990
乙858075
丙809073
(1)根据三项得分的平均分从高到低,确定三名应聘者的排名顺序.
(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
极差、方差和标准差(数据的波动)
6. (2015·湖南常德)某村引进甲、乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550 kg/亩,方差分别为S 甲2
=141.4,S 乙2
=433.3,则产量稳定,适合推广的品种为( )
A. 甲、乙均可
B. 甲
C. 乙
D. 无法确定
7. (2015·浙江湖州)已知一组数据的方差是3,则这组数据的标准差是( ) A. 9 B. 3 C. 3
2
D. 3
8. (2015·湖北孝感)某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误..
的是( ) A. 平均数是15 B. 众数是10 C. 中位数是17 D. 方差是
44
3
9. (2015·吉林)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图所示为两人最近10次射击训练成绩的折线统计图.
,(第9题))
(1)已求得甲的平均成绩为8环,求乙的平均成绩.
(2)观察图形,直接写出甲、乙这10次射击成绩的方差S甲2,S乙2哪个大.
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.
统计知识的实际应用
10. 为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,绘制了频数直方图如图所示.
,(第10题))
(1)根据频数直方图提供的信息,这组数据的中位数落在________范围内.
(2)估计数据落在1.00~1.15 kg中的频率是________.
(3)将上面捕捞的200条鱼分别作一记号后再放回水库,几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,根据这一情况,估算该水库中鱼的总条数为________.
11. (2015·浙江嘉兴)某市2010~2014年社会消费品零售总额及增速统计图如下:
,(第11题))
请根据图中信息,解答下列问题:
(1)求该市2010~2014年社会消费品零售总额增速这组数据的中位数.
(2)求该市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.
(3)用适当的方法预测该市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).
12. (2015·山东泰安)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )
(第12题)
A. 94分,96分
B. 96分,96分
C. 94分,96.4分
D. 96分,96.4分
13. 一个样本为1,3,2,2,a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为________.
14. (2014·浙江温州)八年级(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道
题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表所示:
参赛同学答对题数答错题数未答题数
A 190 1
B 172 1
C 152 3
D 171 2
E ——7
(1)根据以上信息,求A,B,C,D四位同学成绩的平均分.
(2)最后获知A,B,C,D,E五位同学的成绩分别是95分,81分,64分,83分,58分.
①求E同学的答对题数和答错题数.
②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).
参考答案
1.C 2.B 3.C 4.C 5.(1)排名顺序为甲、丙、乙. (2)乙. 6.B 7.D 8.C 9.(1)8环. (2)S 甲2
>S 乙2
. (3)乙 甲 10.(1)1.10~1.15 kg (2)0.53. (3)3000
11.(1)14.2%. (2)1209.2亿元. (3)从增速这组数据的中位数分析:该市2015年社会消费品零售总额为1347.0×(1+14.2%)亿元;从增速这组数据的平均数分析:五年增速这组数据的平均数为
15.1%+18.7%+14.2%+10.4%+12.5%
5
=14.18%.∴该市2015年社会消费品零售总额为
1347.0×(1+14.18%)亿元;从零售总额趋势或增速趋势等其他角度分析,言之有理均可. 12.D[提示:得94分的有12人,得98分的有18人.] 13.87[提示:a ,b ,c 中有2个3,1个0.] 14.(1)x
-=
(19+17+15+17)×5+(2+2+1)×(-2)
4
=82.5(分). (2)①设E 同学答对x 题,答错
y 题,由题意,得⎩⎪⎨⎪⎧5x -2y =58,x +y =20-7,解得⎩
⎪⎨⎪
⎧x =12,y =1.答:E 同学答对12题,答错1题. ②C 同学记错了,
他实际答对14题,答错3题,未答3题.[4×(82.5-80.75)=7(分).经检验,C 同学的成绩71分与实际成绩64分不符,刚好相差7分.同①可得C 同学实际答对14题,答错3题.]。