函数的性质的应用教学设计

合集下载

高一数学《函数概念与性质》教学设计-优质教案

高一数学《函数概念与性质》教学设计-优质教案
6.学习活动设计
教师活动
学生活动
环节一:(根据课堂教与学的程序安排)
教师活动1
(教学环节中呈现的学习情境、提出驱动性问题、学习任务类型;对应学生活动,示范指导学科思想方法,关注课堂生成,纠正思维错漏,恰当运用评价方式与评价工具持续评价促进学习。下同)
学生活动1
(学生在真实问题情境中开展学习活动;围绕完成学习任务开展系列活动与教的环节对应,学生分析任务-设计方案-解决问题-分享交流中学习并有实际收获。下同)
基本信息
学科
数学
电子邮箱
年级
高一
教科书版本及章节
苏教版2020
单元(或主题)教学设计
单元名称
函数概念与性质
1.单元(或主题)教学设计说明
本单元的学习,可以帮助学生建立完整的函数概念,不仅把函数理解为刻画变量之间依赖关系的数学语言和工具,也把函数理解为实数集合之间的对应关系;能用代数运算和函数图像揭示函数的主要性质;在现实问题中,能利用函数构建模型,解决问题。
10.教学反思与改进(单节课教与学的经验性总结,基于学习者分析和目标达成度进行对比反思,教学自我评估与教学改进设想。课后及时撰写,突出单元整体实施的改进策略,后续课时教学如何运用本课学习成果,如何持续促进学生发展)
1.教学内容分析
2.学习者分析
(学生与本课时学习相关的学习经验、知识储备、学科能力水平、学生兴趣与需求分析,学生发展需求、发展路径分析,学习本课时可能碰到的困难)
3.学、学科核心素养的发展进阶,描述学生经历学习过程后应达成的目标和学生应能够做到的事情。可分条表述)
活动意图说明:(简要说明教学环节、学习情境、学习活动等的组织与实施意图,预设学生可能出现的障碍,说明环节或活动对目标达成的意义和学生发展的意义。说出教与学活动的关联,如何在活动中达成目标,关注课堂互动的层次与深度)

高中数学第59课函数教案

高中数学第59课函数教案

高中数学第59课函数教案
一、教学目标
1. 了解函数的定义和性质。

2. 掌握函数与方程或不等式的联立解法。

3. 培养学生分析问题、解决问题的能力。

二、教学重点与难点
1. 函数的定义和性质。

2. 函数与方程或不等式的联立解法。

3. 函数的应用问题。

三、教学过程
1. 导入新知识:通过举例让学生认识函数的概念和定义。

2. 学习函数的性质:奇偶性、周期性、单调性等。

3. 学习函数与方程或不等式的联立解法:通过实例演练。

4. 完成相关练习题,巩固所学内容。

5. 总结本节课的重点内容,解答学生提出的问题。

四、教学资源
1. 教材《高中数学》。

2. 教具:PPT、黑板、彩色粉笔等。

五、教学评价
在课堂上通过提问、讨论、练习等形式进行评价,以检验学生是否掌握了函数的相关知识和解题方法。

六、作业布置
1. 完成课后练习题。

2. 预习下节课内容。

七、教学反思
本节课注重培养学生的解决问题能力,并通过实例让学生学会应用函数的解决方法。

在教学过程中,可以多采用启发式的教学方法,激发学生的学习兴趣,提高课堂效果。

利用函数性质判定方程解的存在教学设计

利用函数性质判定方程解的存在教学设计

利用函数性质判定方程解的存在一、教材分析《利用函数性质判定方程解的存在》是北师大版教材必修一,第四章,第一节的内容。

函数在数学中占据着不可替代的核心地位,它与其它知识具有广泛的联系,而本节课“利用函数性质判定方程解的存在”就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。

本节内容起着承上启下的作用:在函数性质的基础上,利用函数的图象和性质来判断方程根的存在,是函数图像与性质内容的延续。

函数零点的概念和函数零点存在的判定方法,这又是学习下一节“利用二分法求方程的近似解”的基础。

同时,本节课还是培养学生“数形结合思想”、“函数与方程思想”、“转化与化归思想”的优质载体。

二、学情分析学生已经具备了:(1)基本初等函数的图象和性质;(2)初步了解一元二次方程和相应二次函数的关系;(3)初步具备将“数”与“形”相结合及转化的意识。

缺乏的能力:(1)应用函数解决问题的能力还不强;(2)由特殊到一般的归纳能力还不够;(3)数形结合的思想敏锐性还有待提高。

三、教学目标:1.知识与技能:(1)能说出函数零点的概念(2)能归纳并叙述函数零点存在性定理(3)会判断函数零点的个数和所在区间2.过程与方法:经历“类比—归纳—应用”的过程;经历方程与函数的转化过程3.情感、态度与价值观:体验自主探究,合作交流的乐趣;体会事物间普遍联系的辩证思想四、教学重点、难点:重点:函数零点的概念,函数零点的判定方法。

难点:探究发现函数零点的存在性,利用函数的图像和性质判断函数零点的个数五、教法学法: 教法:启发—探究—讨论 学法:自主—合作—交流 六、教学过程:教学准备:导学案,多媒体 课时安排:1课时(一)设问激疑,创设情景 问题引入:求下列方程的根 前两个方程学生容易求解,后两个却无从下手,于是,引出本节课所要解决的问题,同时引入本节课题《利用函数性质判定方程解的存在》。

(二)启发引导,形成概念 探究(一):函数零点的概念问题1:一元一次方程10x -= 的解?一次函数1y x =- 图像与x 轴交点坐标?方程的根与交点的横坐标有什么关系?问题2:给定二次函数y =x 2+2x -3,(1)做出函数图像,观察函数的图像与x 轴的交点是什么?(2)方程x 2+2x -3=0的根是什么?(3)方程的根与交点的横坐标有什么关系?由问题1、2引出函数零点的概念,及函数零点与对应方程根之间的联系。

高中数学“函数的概念与性质”大单元教学设计分析

高中数学“函数的概念与性质”大单元教学设计分析

课程篇高中数学“函数的概念与性质”大单元教学设计分析郭辉林(广东省南雄市第一中学,广东南雄)培养学生的核心素养是当前高中数学教学中需要教师重点完成的一项教学任务,教师要关注每节课的教学目标,还要站高定位,从单元整体入手规划教学内容,完成主题、单元的教学目标。

换言之,要求教师着重展开大单元教学,推动数学教学质量的提升。

本文以“函数的概念与性质”中“函数的奇偶性”课时教学为例,展开了大单元教学的主要设计,对其设计思路进行重点探讨。

一、高中数学大单元教学的必要性分析新课改背景下,要求在实际的数学教学中关注学生的学习过程,创设与生活关联的、具有任务导向性的真实情境,促进学生自主、合作、探究学习,强化对学生核心素养的培养。

此时,教学目标从知识点的了解、理解与记忆转变为学科核心素养的关键能力、必备品格与价值观念的培育,这就要求必须提升教学设计的站位和格局,即从关注单一的知识点、课时转变为大单元设计,以此改变学科教学的碎片化,力求实现教学设计与素养目标的有效对接。

因此,展开高中数学大单元教学是当前教育改革视域下的必然选择。

二、高中数学“函数的概念与性质”大单元教学设计的突破性分析大单元教学设计在高中数学“函数的概念与性质”中的应用,能够让学生在实际的探究中实现思维碰撞,推动学生数学学科核心素养的提升。

相应教学设计主要在以下几方面实现突破。

(一)重视问题引导积极创设多种学习情境,并以问题为导向、驱动,让学生在课堂教学中展开深度学习,加深学生对所学知识点的理解以及掌握。

(二)重视过程探索结合讲解、探索、推理、观察、动手实践等多种教学活动的展开,引导学生自主思考、得出知识点定义,让学生能够在课堂教学中经历猜想、验证、证明、理解等学习过程,丰富学习体验。

(三)重视能力培养引导学生参与问题探究,实现对学生猜想能力、问题分析与解决能力、动手能力、逻辑推理能力等多种能力的更好培养。

(四)重视文化渗透结合生活化图片的提供,让学生切实感悟到“数学源于生活”,引导学生发现生活中的数学美,从而达到进一步提升学生文化素养的效果。

2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册

2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册
(3)实验法:在教学过程中,教师引导学生利用计算机软件绘制函数图像,观察函数2.教学手段
(1)多媒体设备:教师利用多媒体课件,生动形象地展示函数的性质和图像,激发学生的学习兴趣,提高教学效果。
(2)教学软件:教师运用教学软件,如数学建模软件、函数图像绘制工具等,辅助教学,使学生更好地理解函数的应用。
核心素养目标分析
本节课的核心素养目标主要围绕数学抽象、数学建模、数学运算、直观想象四个方面展开。
首先,通过实际问题引入函数模型,培养学生从复杂问题中抽象出函数关系的能力,即数学抽象素养。学生需要能够识别实际问题中的数量关系,自主构建函数模型,从而培养其抽象思维能力。
其次,通过对实际问题进行数学建模,让学生学会如何用函数来描述现实世界中的变化规律,培养学生的数学建模素养。学生需要能够将现实问题转化为数学问题,运用函数理论知识进行分析,进而提高其解决实际问题的能力。
(3)学生可以利用在线函数图像绘制工具,自主探索函数的性质和变化规律,加深对函数概念的理解。
(4)建议学生学习一些数学软件的使用方法,如MATLAB、Python等,掌握这些软件在函数分析和应用方面的功能,提高自己的实际问题解决能力。
内容逻辑关系
①函数应用的基本概念:
-重点词汇:函数、自变量、因变量、函数值、定义域、值域等。
选择几个典型的函数应用案例进行分析。
详细介绍每个案例的背景、特点和意义,让学生全面了解函数应用的多样性或复杂性。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用函数解决实际问题。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与函数应用相关的主题进行深入讨论。

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

《函数概念与性质》大单元教学设计

《函数概念与性质》大单元教学设计

《函数概念与性质》大单元教学设计一、教学目标1.知识目标:了解函数的概念与性质,掌握函数的定义、表示方法及函数的性质;2.能力目标:能够运用函数的概念与性质解决实际问题;3.情感目标:培养学生对数学的兴趣,提高学生的数学思维和解决问题的能力。

二、教学重难点1.教学重点:函数的定义、表示方法及函数的性质;2.教学难点:运用函数的概念与性质解决实际问题。

三、教学过程设计1.导入(5分钟)通过出示一个常见的实际问题引导学生思考,如:小明每天早上起床到上学时间为1小时,那么他离上学时间还有多长时间?请用数学语言表示。

2.概念引入(15分钟)向学生介绍函数的概念,并通过一些例子解释函数的含义和特点。

如交代“自变量”和“因变量”的概念。

3.函数的定义(25分钟)a.向学生详细解释函数的定义:“如果每一个自变量(也叫实数)在定义域内对应唯一的函数值(也叫函数值或者因变量),那么这个便是一个函数。

”b.给出一些图形、表格等的实例,通过分析自变量和因变量之间的关系判断是否为函数。

4.函数的表示方法(20分钟)a.向学生介绍函数的四种常用表示方法:语言、图形、公式和数据表。

b.分别给出几个函数的例子,并要求学生将其转化为其他表示方法。

5.函数的性质(25分钟)a.介绍函数的奇偶性、单调性、周期性和有界性等性质,并总结性质的概念和判断方法。

b.通过一些练习题让学生巩固理解。

6.解决实际问题(25分钟)a.提供一些实际问题,引导学生根据问题抽象出函数,并通过解析问题确定问题的解答方式。

b.指导学生将问题中的自变量和因变量用数学符号表示,并利用已学的函数的概念与性质解决问题。

c.师生互动,讨论问题的解答方式。

7.归纳总结(15分钟)a.回顾本节课的核心知识点,通过课堂讨论巩固学生对函数的概念和性质的理解。

b.师生共同总结函数的概念与性质,并梳理思路。

四、教学手段1.多媒体教学:通过投影仪呈现图形和表格等案例,增加教学效果;2.板书:重要的概念、定义、公式和思路等;3.课堂讨论:通过小组或全班讨论的方式,激发学生的思维和兴趣;4.教学演示:通过解决实际问题的案例,引导学生掌握函数的定义、表示方法及函数的性质。

对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】篇一:高中数学对数函数教案篇一教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。

2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。

3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。

教学重点,难点重点是理解对数函数的定义,掌握图像和性质。

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。

教学方法启发研讨式教学用具投影仪教学过程一。

引入新课今天我们一起再来研究一种常见函数。

前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。

这个熟悉的函数就是指数函数。

提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。

并由一个学生口答求反函数的过程:由得。

又的值域为,所求反函数为。

那么我们今天就是研究指数函数的反函数__对数函数。

2.8对数函数(板书)一。

对数函数的概念1、定义:函数的反函数叫做对数函数。

由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。

如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。

在此基础上,我们将一起来研究对数函数的图像与性质。

二。

对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。

同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.3函数的基本性质的应用
教学设计
一、课标分析
1.本内容是在高中数学人教社A版必修1讲完1.2.1函数的单调性和奇偶性之后,安排的一节专题研究课。

这节课承接前面所研究的函数的定义、表示方法、单调性、奇偶性,是这些内容的深化、提高,并且是在研究完具体初等函数的性质之后再进行的,从感性认识提高到理性认识。

另一方面,为后面学习指数函数、对数函数、及数列这种特殊的函数打下基础,与不等式、求函数的值域、最值、导数等等都有着紧密的联系,同时它对后面的函数的进一步学习在思维上起着进一步深化、拓展的作用。

2.本节课在函数中是由具体到抽象的一个重要过渡,它对后面利用函数性质的进一步研究抽象函数问题起着重要的铺垫、引领作用。

3.通过函数的性质的研究,能够培养、训练、提高学生的逻辑思维能力和发散思维能力,对其他知识的进一步学习、探索产生良好迁移作用具有奠基性的作用。

4.通过对函数性质的研究,能够对其它学科的学习,比如说物理学中的波形图、化学中的无机化学、生物学中的遗传等知识,使学生在思维上具有正面的积极导向,给予数学上的基础性支撑。

5.渗透转化等数学思想方法。

从学习过程中感悟转化思想的作用,化繁为简、化抽象为直观,为今后进一步学习、深化,打下坚实基础。

二、教材分析
函数的性质与应用位于高一数学教材必修1,且贯穿于整个高中学习。

在高考中,函数的性质是命题的主线索,并且考察的类型较多,涉及到函数的单调性、单调区间、奇偶性、周期性、最值、图象,函数与导数、不等式的联系等,在选择、填空和解答题中都有体现。

其中函数的单调性、奇偶性和周期性更是重中之重。

而学生对函数各性质的掌握和应用能力还不够。

三、学生分析
从学生的知识上看,学生已经学过函数的基本性质,接下来的任务是对函数性质的应用如何加强.从各种函数关系中研究它们的共同属性,应该是顺理成章的。

从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

四、教学目标
1、知识与技能目标:会熟练地综合运用函数性质解决相关问题,并会根据题
意自己设计条件解决问题;
2、过程与方法目标:着重培养学生自己获取知识的能力。

渗透函数与方程、数
形结合、化归与转化、分类讨论的数学思想,并培养学生思
维的发散能力;
3、情感、态度与价值观:通过师生互动、生生互动的教学活动过程,让学生体
会成功的愉悦,培养学生热爱数学的态度,提高学习数学
的兴趣,树立学好数学的信心。

五、重点难点
1、教学重点:会熟练地综合运用函数的两种性质解决相关问题。

2、教学难点:如何化抽象会具体去思考关于性质的相关问题。

六、方法策略
教师是教学的主体、学生是学习的主体,通过双主体的教学模式方法:
启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。

探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。

合作学习——通过组织小组讨论达到探究、归纳的目的。

七、教具选择
板书与多媒体的有机整合展示,通过对图形的直观体验理解概念,化解难点,帮助学生更容易找寻其中的规律,获得更大的创新空间。

八、教学过程
★例1:求函数y=x-1,反比例函数 x 1
y =
,二次函数3-2y 2x =的单调区 间。

★例2、用定义法证明函数上是增函数。

在)0,(1
2
)(-∞-=x
x x f
★例3、
分析:f(3)可以求,然后利用奇偶性的性质可以求出f(-3)=-3. ☆变式训练:求上题中,当x<0时,f(x)的解析式。

解:当x<0时,-x>0,则f(-x)=x x x 2)(2)-x (22+=-- ∵函数f(x)为奇函数 ∴f(-x)=-f(x) ∴f(x)=x 2x -2-
★例4、已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4, 则g(1)等于( )
A 、4
B 、3
C 、2
D 、1
分析:利用函数奇偶性f(-x)与f(x)的关系,再两式相加、减即可求得。

☆变式训练、已知f(x)是偶函数,g(x)是奇函数,且满足f(x)+g(x)=1
-x 1
, 求f(x)与g(x)的解析式。

★例5已知函数f(x)是R 上的偶函数,且f(x)在),0[+∞上单调递减,若f(a)≥f(-2),
x
x
____
)3(,2)(0)(2=--=≥f x x x f x x f 求时,为奇函数,且当已知函数
求a 的取值范围。

☆变式训练、若f(x)在),0()0,(+∞-∞ 上为奇函数,且在),0(+∞上为增函数,满足 f(-2)=0,求不等式0)(<∙x f x 的解集。

九、 【作业布置】:
(基础训练题:)
1、偶函数)(x f y =在区间]4,0[上单调递减,则有( )
(A ))2(f )31(f )1(f >>- (B ))2(f )1(f )3
1
(f >->
(C ))31(f )1(f )2(f >-> (D ))3
1
(f )2(f )1(f >>-
2、函数m x x g x x f +--==2)1()(||2)(和的单调递增区间依次是( )
A .]1,(],0,(-∞-∞
B .),1[],0,(+∞-∞
C .]1,(),,0[-∞+∞ D. ),1[),,0[+∞+∞ 3、已知定义在R 上的函数()x f 是奇函数,且)2()()2(f x f x f -=+,则)8(-f =
( ) A .-8 B .0 C .-2 D .-4 (能力提高题:) 4、已知函数].5,3[x ,1
x 1
x 2)x (f ∈+-=
(1)判断f(x)在区间[3,5]上的单调性并加以证明; (2)求f (x)的最大值和最小值。

5、定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数, 若f(1-m )<f(m),求实数m 的取值范围。

(综合训练题:)
6、已知函数f(x )是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2, (1)求函数f(x)和g(x);
(2)判断函数f(x)和g(x)的奇偶性;
(3)求函数f(x)+g(x)在]2,
(上的最小值。

0,
【设计意图:作业布置是教学的一个有机组成部分,它能让学生对这节课加深印象,能让教师对学生有更全面的了解。

在教学过程中,我发现每个班级的学生都有着或多或少的差异,分层布置作业能满足不同学生的学习需要,激发学生的学习积极性,使每个学生都能得到发展。

】。

相关文档
最新文档