06-分析力学基础-第二类拉格朗日方程.ppt
分析力学基础-拉格朗日方程

其他应用领域
要点一
机器人学
在机器人学中,拉格朗日方程被用于描述机器人的运动规 律。通过建立机器人运动的拉格朗日方程,可以求解出机 器人的关节角度和速度,为机器人的运动控制提供理论依 据。
要点二
生物力学
在生物力学中,拉格朗日方程也被应用于描述生物体的运 动规律。例如,在分析动物的运动行为或人体姿势控制时 ,可以使用拉格朗日方程来描述生物体的运动状态和变化 规律。
解析解法的优缺点分析
优点
解析解法可以得到系统的精确解,适用 于简单模型和特定条件下的复杂模型。
VS
缺点
对于复杂模型,解析解法可能非常困难甚 至无法求解,需要借助数值方法或其他近 似方法。
04
拉格朗日方程的数值解法
数值解法的概念和步骤
概念
数值解法是一种通过数学计算来求解数学问 题的方法,它通过将问题离散化,将连续的 问题转化为离散的问题,然后使用计算机进 行计算求解。
步骤
1.建立数学模型:根据实际问题建立数学模 型,将实际问题转化为数学问题。2.离散化 :将连续的问题离散化,将连续的时间和空 间划分为若干个小的单元,每个单元称为一 个网格点或节点。3.求解离散化后的方程: 使用数值方法求解离散化后的方程,得到每 个网格点的数值解。4.后处理:对计算结果 进行后处理,提取所需的信息,并进行分析
分析力学基础-拉格 朗日方程
目录
• 引言 • 拉格朗日方程的推导 • 拉格朗日方程的解析解法 • 拉格朗日方程的数值解法 • 拉格朗日方程的应用领域
01
引言
拉格朗日方程的背景和重要性
背景
拉格朗日方程是分析力学中的基 本方程,它描述了系统的运动规 律。
重要性
拉格朗日方程在理论物理、工程 技术和科学研究等领域有着广泛 的应用,是理解和研究复杂系统 运动行为的关键工具。
2_拉格朗日方程

O
(x1,y1)
A
P1
(x2,y2) B(x3,y3)
P2
F
(1)
由已知条件可得
x1
1 2
l1 sin 1 l 2 sin (2)
x 2 l1 sin
2 y 3 l1 cos l 2 cos
把(2) 式代入(1) 式得
P1 (
1 2
l1 sin ) P2 ( l1 sin
x i x i ( q1 , q 2 , , q s , t ) y i y i ( q1 , q 2 , , q s , t ) z i z i ( q1 , q 2 , , q s , t )
或 式中
( i 1, 2 , , n , s 3 n )
ri ri ( q 1 , q 2 , , q s , t )
以上分量式若改用s 个独立广义坐标表示,然后令s 个独立的 虚位移前的乘数等于零,则可得出所求的平衡条件。 若求约束力,则要利用拉格朗日未定乘数。 广义坐标下 ri 的虚位移为
ri
n
s
ri
由此得广义坐标下的平衡方程是
W
Q
1
q
q 0
s
F
i 1 s
n
i n
i 1
虚功原理:受理想约束的力学体系平衡的充要条件是此力学 体系的诸主动力在任意虚位移中所做的元功之和为零。这就 是虚功原理,也叫虚位移原理。是1717年伯努利首先发现。 对于理想约束体系,利用虚功原理可以方便的求出主动力满 足的平衡条件,但无法求出约束反力。 由于约束,3n 个坐标不独立,即作用在任一质点上的合外 力在虚位移方向上的投影,一般不会全令之为零。否则就可 能变成n 个自由质点的平衡方程。
《理论力学 动力学》 第三讲 第二类拉格朗日方程的应用

2、第二类拉格朗日方程的应用例1质量为m 1的物块C 以细绳跨过定滑轮B 联于点A, A ,B 两轮皆为均质圆盘,半径为R ,质量为m 2, 弹簧刚度为k ,质量不计。
ACOxAOCx例2已知:如图所示的运动系统中,重物M 1的质量为m 1,可沿光滑水平面移动。
摆锤M 2的质量为m 2,两个物体用长为l 的无重杆连接。
M 1M 2φC 求:此系统的运动微分方程。
2、第二类拉格朗日方程的应用解:系统有两个自由度,选M 1的水平坐标x 1和φ为广义坐标, 并将质点位置用广义坐标表示:111212,0;sin ,cos x x y x x l y l j j===-=将上式两端对时间t 求导数得:111212,0;cos sin x x yx x l y l j j j j ===-=-&&&&&&&&,系统的动能为:222122211()22T m x m x y =++&&&22212111()(2cos )22m l m m x l x j j j =++-&&&&选质点M 2在最低处时的位置为系统的零势能位置,则系统的势能为:)cos 1(2j -=gl m V 系统的主动力为有势力,此为保守系统,可写出系统的动势,运用保守系统的拉格朗日方程求解,此处我们运用一般形式的第二类拉格朗日方程求解。
d 0(12)d k T TQ k N t q q æö¶¶--==ç÷¶¶L &,,,注意:零势能位置的选取不是唯一的。
选取原则:计算方便代入拉格朗日方程得到:1212110()cos T Tm m xm l x xj j ¶¶==+-¶¶&&&,2121221d ()()cos sin d T m m x m l m l t x j j j j¶=+-+×¶&&&&&&10x V Q x ¶=-=¶先计算)cos 1(2j -=gl m V 22212111()(2cos )22m l T m m x l xj j j =++-&&&&221221sin cos T T m lx m l mlx j j jj j j¶¶==-¶¶&&&&&,222121d ()cos sin d T m l m lx m lx t jj j j j ¶=-+×¶&&&&&&&2sin V Q m gl j j j¶=-=-¶212122()cos sin 0m m xm l m l j j j j +-+×=&&&&&(cos sin )sin 0m l l x x m gl jj j j j -+×+=&&&&&&2、第二类拉格朗日方程的应用x 1φ再计算如果质点M 2摆动很小,可以近似地认为1cos sin »»j j j ,且可以忽略含和的高阶小量,2j &1xj &&微分方程可改写为:1212()0m m xm l j +-=&&&&1l x g jj -=-&&&&从以上两式中消去,得到1x&&1210m m gm lj j ++=&&这是自由振动的微分方程,其通解为:)sin(0q w j +=t A 固有角频率:lgm m m 1210+=w 摆动周期:如果21m m >>则质点M 1的位移x 1将很小,质点M 2的摆动周期将趋于普通单摆的周期:1lim 2m T ®¥=也可以从微分方程中消去,得到:j&&可见质点M 1沿x 方向也作自由振动。
拉格朗日第二类方程

代入初始条件,t =0 时, 0 0 , 0 0 得 C1 C2 0
故:
3M
gt 2
(2P9Q)( Rr)2
20
[例]图示系统,物块C质量为m1 ,均质轮A、B质量均为m2, 半径均为R,A作纯滚动,求系统的运动微分方程。 解:系统具有一自由度,保守
系统。以物块C的平衡位置为
原点,取x为广义坐标:
AF q j
(4)不含约束力。
二、保守系统的拉格朗日方程
如果作用于质点系的力是有势力,则:
Qj
V q j
而拉氏方程为:
15
d dt
T q j
T q j
V q j
由于V=V(q1,q2,...,qk),不含广义速度,所以
V q j
0,
d dt
V q j
0
上式为:
d dt
T q j
T q j
d dt
V q j
V q j
或:d dt
(T V q j
)
(T V q j
)
0
令L=T-V——拉格朗日函数
d dt
(
L q j
)
L q j
0 ( j1,2,,k )
保守系统的拉格朗日第二类方程。
16
应用拉氏方程解题的步骤:
1. 判定质点系的自由度 f,选取适宜的广义坐标。必须注意: 不能遗漏独立的坐标,也不能有多余的(不独立)坐标。
Q
A
M
T
1 2P 6
9Q (R g
r ) 2
;
d T
dt
1 2P 9Q (R r)2
6
g
;
T 0
19
理论力学-拉格朗日方程PPT

拉格朗日方程的推导
拉格朗日方程的推导基于哈密顿原则,通过对系统的运动原理进行最小作用 量的假设,推导出系统的运动方程。
拉格朗日方程的应用
拉格朗日方程在各个物理学和工程学领域都有广泛的应用,例如刚体动力学、 量子力学、控制理论等。
经典示例:单摆运动
单摆运动是拉格朗日方程应用的经典示例之一,通过建立摆角和摆长的关系,可以得到描述摆动的拉格 朗日方程。
拉格朗日方程的优点
相较于牛顿方程,拉格朗日方程具有独特பைடு நூலகம்优点,如坐标自由度更广、描述力学系统更简洁等。
拉格朗日方程在其他领域的应 用
除了物理学和工程学领域外,拉格朗日方程还在经济学、生物学等领域中有 着广泛的应用,为解决复杂问题提供了新的视角。
理论力学-拉格朗日方程 PPT
欢迎大家来到这个关于理论力学的PPT。本次内容将深入探讨拉格朗日方程的 定义、与牛顿方程的关系、推导方法、应用、经典示例和其他领域的应用。
拉格朗日方程的定义
拉格朗日方程是解决运动的一种优雅方法,通过定义拉格朗日函数和广义坐 标来描述系统的动力学行为。
拉格朗日方程与牛顿方程的关系
拉格朗日第二类方程

( j 1,2,, k )
(6.2.5)
适用范围:完整系统。
14
j , q j ,t) (1) T T (q
(2)有势力、非有势力都适用
(3) Q j
AF q j
(4)不含约束力。 二、保守系统的拉格朗日方程 如果作用于质点系的力是有势力,则:
V Qj q j
n 1 1 2 2 ( m v ) ( m v i i i i ) k d i 1 2 i 1 2 [ ]q j j q q j j 1 dt n
d T T [ ]q j j q j j 1 dt q
k
( m)
13
将(d)(m)代入(c)得:
d T T ) q j 0 Q jq j ( j 1 j 1 dt q j q j k d T T 或: (Q j ) q j 0 j 1 j q j dt q
k k
由于δqj彼此独立,所以:
d T T Qj j q j dt q
1 2 P 9Q 0 M (R r)2 6 g 6M g 2 ( 2 P 9Q )( R r )
积分,得:
3M 2 gt C1t C 2 2 ( 2 P 9Q )( R r )
0 0 得 C1 C2 0 代入初始条件,t =0 时, 0 0 ,
由于V=V(q1,q2,...,qk),不含广义速度,所以
保守系统的拉格朗日第二类方程。
16
应用拉氏方程解题的步骤: 1. 判定质点系的自由度 f,选取适宜的广义坐标。必须注意: 不能遗漏独立的坐标,也不能有多余的(不独立)坐标。 2. 计算质点系的动能T,表示为广义速度和广义坐标的函数。 3. 计算广义力 Q j
分析力学拉格朗日方程

分析力学拉格朗日方程分析力学是物理学中的一个重要分支,它主要研究物体的运动规律和力学系统的宏观性质。
拉格朗日力学是分析力学的基础,是分析力学发展过程中的一个重要理论。
它由意大利数学家拉格朗日于18世纪发展而来,利用广义坐标和拉格朗日方程来描述物体的运动学和动力学。
在拉格朗日力学中,系统的运动由极值原理来决定。
这个极值原理是“达朗贝尔原理”,即系统的运动满足使作用量(S)是极值的路径。
作用量是拉格朗日力学中的一个重要概念,它表示物体在运动过程中所受到的所有力的作用。
具体来说,作用量可以表示为:S = ∫ (L - T) dt其中,L是拉格朗日函数,表示系统的动能和势能之差;T是系统的动能,表示物体的运动能量。
积分表示对整个运动过程的积分求和。
根据达朗贝尔原理,系统的运动满足作用量的极值条件,即δS=0。
为了使作用量的变分δS等于零,我们可以通过拉格朗日方程来推导系统的运动方程。
假设系统有n个自由度,我们引入广义坐标q1, q2, ..., qn来描述系统的位置。
每个广义坐标都是关于时间的函数,即q(t)。
拉格朗日函数L也是广义坐标的函数,即L(q, dq/dt, t)。
其中dq/dt表示广义坐标的时间导数。
利用拉格朗日函数,我们可以定义拉格朗日方程:d/dt (∂L/∂(dq/dt)) - ∂L/∂q = 0这个方程就是拉格朗日方程。
其中∂L/∂(dq/dt)表示拉格朗日函数对广义速度的偏导数,∂L/∂q表示拉格朗日函数对广义坐标的偏导数。
该方程描述了系统在广义坐标下的运动规律。
拉格朗日方程的推导过程是基于变分法和哈密顿原理的。
通过对作用量进行变分,我们可以得到极值的条件,即达朗贝尔原理。
然后利用这个极值条件,我们可以推导出拉格朗日方程。
拉格朗日方程在物理学中有着广泛的应用,不仅可以用来描述质点的运动,还可以用来描述刚体的运动、连续介质的运动、以及相对论力学等。
它提供了一种统一的描述物体运动的方法,同时也为我们研究物体的宏观性质提供了一个有力的工具。
分析力学基础-第二类拉格朗日方程

广义坐标vA 。(Rr)
A
vA r
R r
r
M1-16
T
1 2
JO&2
1 2
Q g
v
2 A
1 2
J AA2
1 2
1 3
P g
(R
r)2&2
1 2
Q g
(R
r)2&2
1 2
1 2
Q g
r2
(R
r)2 r2
&2
1 2P 9Q (R r)2&2
12 g
W ( ) M
Q
W ( )
M
T&
1 6
2P
得
(m1 m2 )&x&1 m2l&&cos m2l&2 sin 0
M1-14
同理:
T& m2l2& m2lx&1 cos
T
m2lx&in
d dt
T x&1
m2l(l&&
cos &x&1
x&1&sin )
由拉格朗日方程d
dt
(
T q&k
)
T qk
Qk
得
m2l(l&& cos&x&1 x&1&sin) m2gl sin
)
M1-13
系统势能:(选质点 M2 在最低位置为零势能位
置)
V m2gl(1 cos)
求导运算可得:
T x&1
(m1
m2
)
x&1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 求出上述一组微分方程的积分。
M1-9
[例] 物块C的质量为m1,A,B两轮 皆为均质圆轮,半径R,质量为m2, 求系统的运动微分方程。
解:图示机构只有一个自由度,所受
约束皆为完整、理想、定常的,以物 块平衡位置为原点,取x 为广义坐标。
系统势能: (以弹簧原长为弹性势能零点)
V1 2k(0x)2m1gx
为理想完整系的拉格朗日方程,方程数等于质点系的自由度数。 其中:
Qk
Байду номын сангаас
n
Fi
i1
ri qk
——主动力的广义力,可以是力、力矩或其他力学量 (不包含约束反力)
T
n
1 2
mivi2
——体系相对惯性系的动能
i1
pk
T qk
——广义动量,可为线动量、角动量或其他物理量
M1-4
2. 保守体系的拉格朗日方程
如果主动力都是保守力,即 FV,则为广义力
Q ki n 1F i q r ik i n 1 V r i q r ik q V k Q ki n 1F i q r iki n 1 F ix q x k i F iy q y k i F iz q zk i
i n1 V xi q xk i V yi q yk i V zi q zk i q V k
➢ 拉氏方程是从能量的角度来描述动力学规律的,能量是整个物理 学的基本物理量而且是标量,因此拉氏方程为把力学规律推广到其 他物理学领域开辟了可能性,成为力学与其他物理学分支相联系的 桥梁。
M1-7
3. 对拉格朗日方程的评价
(2) 拉氏方程的价值 拉氏方程在理论上、方法上、形式上和应用上用高度统一的
M1-5
2. 保守体系的拉格朗日方程 将Qk代入拉格朗日方程式,得
ddt(qTk)qTk q Vk 0
势能V不包含广义速度,引入拉格朗日函数
L T V L (q k,q k,t)
为拉格朗日函数(动势),是表征体系约束运动状态和相互作用 等性质的特征函数。
保守体系的拉格朗日方程为:
d( L) L 0 dt qk qk
2. 计算质点系的动能T,表示为广义速度和广义坐标的函数。
3. 计算广义力 Q j(j1,2, ,k),计算公式为:
Q j i n1(Xi q xijYi q yijZi q zij) 或
Qj
W ( j) qj
若主动力为有势力,也可将势能 V 表示为广义坐标的函数。
4. 建立拉氏方程并加以整理,得出k个二阶常微分方程。
M1-13
系统势能:(选质点 M2 在最低位置为零势能位置)
i n1(F im iri) q rik0 k1,2, N
M1-2
变换
1.
ri qk
ri qk
2.
d dt
ri qk
ri qk
3. i n 1m ir i q r ik i n 1m id d t r i q r ik i n 1m ir id d t q r ik
i n1mid dtriqriki n1miriqrik
规律,描述了力学系统的动力学规律,为解决体系的动力学问题 提供了统一的程序化的方法,不仅在力学范畴有重要的理论意义 和实用价值,而且为研究近代物理学提供了必要的物理思想和数 学技巧。
M1-8
应用拉氏方程解题的步骤:
1. 判定质点系的自由度k,选取适宜的广义坐标。必须注意: 不能遗漏独立的坐标,也不能有多余的(不独立)坐标。
d d ti n1 m iri q rik qki n11 2m iriri
d d t qki n11 2m ivi2 qki n11 2m ivi2
d dt
T qk
T qk
M1-3
由
Qki n1m iriqrik
k1,2, N
可得
d d t q T k q T k Q k k 1 ,2 , N
注意广义力可得
M1-1
注意到广义力可得
Qki n1m iriqrik
k1,2, N
上式中的第二项与广义力相对应,称为广义惯性力。
上式应用起来很不方便。我们要作变换
拉格朗日改造动力学普遍方程的第一步:就是把主动力的虚功改 造为广义力虚功。
拉格朗日改造动力学普遍方程的第二步:就是改造惯性虚功项, 使之与系统的动能的变化联系起来。
3—5 第二类拉格朗日方程
1. 基本形式的拉格朗日方程
质点 i 的虚位移
ri kN 1qrikqk
i1,2,3, n
将上式代入动力学普遍方程(3-15)式:
in1(Fi miri)kN1qrikqk kN 1[i n1(Fimiri)qrik]qk0
因qk是独立的,所以
i n1(F im iri) q rik0 k1,2, N
M1-10
系统动能:
T1 2m 1x21 2JBB 21 2JI
2 A
1 2 m 1 x 2 1 2 1 2 m 2 R 2B 2 1 2 2 3 m 2 R 2A 2
m1
2m2 2
x2
系统的拉格朗日函数(动势)
LTV m 1 2 2 m 2x 2 1 2 k (0 x )2 m 1 g x
代入拉格朗日方程
d dt
(qLk )qLk
0
( m 1 2 m 2 ) x k (0 x ) m 1 g 0
M1-11
注意到
k0 m1g
可得系统的运动微分方程 (m 1 2 m 2)x k x0
M1-12
已知:M1的质量为m1, M2的质量为m2, 杆长为l。
试建立此系统的运动微分方程。
想一想:上式的成立、适用条件是什么?
M1-6
3. 对拉格朗日方程的评价
(1) 拉氏方程的特点(优点): 是一个二阶微分方程组,方程个数与体系的自由度相同。形式简 洁、结构紧凑。而且无论选取什么参数作广义坐标,方程形式不变。 方程中不出现约束反力,因而在建立体系的方程时,只需分析已 知的主动力,不必考虑未知的约束反力。体系越复杂,约束条件越 多,自由度越少,方程个数也越少,问题也就越简单。
解:图示机构为两个自由度,取x1,
为广义坐标,则有。
x2x1lsin y1 0 y2 lcos
求导:
x2x1lcos y1 0
系统动能:
y2 lsin
T1 2m 1x1 21 2m 2(x2 2y2 2)
1 2 (m 1 m 2 )x 1 2 m 2 2 l(l2 2 x 1c o s)