制冷剂

合集下载

各种制冷剂的参数

各种制冷剂的参数

各种制冷剂的参数制冷剂是制冷系统中的重要组成部分,它们的参数直接影响着制冷效果和能耗。

本文将从不同制冷剂的参数方面介绍它们的特点和适用范围。

一、氨(NH3)氨是一种常用的制冷剂,具有较高的制冷效果和热导率。

氨的气体比热容较大,故制冷剂氨的冷却过程需要较大的冷却面积。

此外,氨的气体密度较大,对管道和设备的安全性要求较高,需要采取一定的安全措施。

二、氟利昂(Freon)氟利昂是一种常见的氢氟碳化物,作为制冷剂具有较低的毒性和燃烧性。

氟利昂具有较低的沸点和蒸发潜热,能够提供较大的制冷量。

然而,由于氟利昂对臭氧层有破坏作用,逐渐被禁止使用。

三、丁烷(n-Butane)丁烷是一种天然气制冷剂,具有较低的臭氧层破坏潜力和较高的制冷效果。

丁烷的燃烧热值较高,需要采取一定的安全措施。

由于丁烷是可再生资源,对环境友好,近年来得到了广泛应用。

四、二氧化碳(CO2)二氧化碳是一种环保型制冷剂,具有较低的全球变暖潜势和臭氧层破坏潜力。

二氧化碳的制冷效果较差,需要较高的工作压力和较大的制冷功率。

由于二氧化碳在大气中易于获取和排放,成本较低,近年来在商业和家用制冷领域得到了广泛应用。

五、氟里昂替代品(HFC)氟里昂替代品是指替代氟里昂的一类新型制冷剂,具有较低的全球变暖潜势和对臭氧层的破坏潜力。

氟里昂替代品制冷效果较好,但部分种类的制冷性能会受到环境温度和压力的影响。

六、直链烷烃(n-Alkanes)直链烷烃是一类天然气制冷剂,具有较低的臭氧层破坏潜力和较高的制冷效果。

直链烷烃的热导率较低,需要较长的传热路径,从而增加了制冷设备的体积。

由于直链烷烃是可再生资源,对环境友好,逐渐得到了应用。

七、氟烷(Fluorocarbons)氟烷是一类含氟有机化合物,作为制冷剂具有较低的臭氧层破坏潜力和较高的制冷效果。

氟烷的热导率较低,需要较大的冷却面积。

由于氟烷具有较高的化学稳定性,能够在广泛的温度范围内工作。

八、硫化氢(H2S)硫化氢是一种具有刺激性气味的气体,作为制冷剂使用较少。

制冷剂的种类及特性

制冷剂的种类及特性

制冷剂的种类及特性制冷剂是用于制冷系统中的介质,通过循环往复地进行蒸发和冷凝来实现对空气或物体的冷却。

制冷剂的种类和特性会对制冷系统的性能、环境影响以及安全性产生重要影响。

下面将介绍常见的制冷剂及其特性。

1.氨气(NH3):氨气是一种无色、有刺激气味的气体,具有优秀的制冷性能和热物理性质,因此被广泛应用于工业制冷系统。

它的优点包括高制冷效率、环境友好和广泛的温度范围。

但氨气有毒性和易燃性,对人体和环境的危害较大,因此在使用氨气时需要采取严格的安全措施。

2.氟利昂(CFCs、HCFCs和HFCs):氟利昂是一类化学物质,包括三氟甲烷(CFC-11)、二氟二氯甲烷(CFC-12)和全氟丙烷(HFC-134a)等。

它们具有优异的制冷性能和热力学性质,被广泛应用于商业和家用制冷设备。

然而,由于氟利昂会破坏臭氧层,导致臭氧空洞的产生,对环境造成严重影响。

因此,国际公约已经限制了氟利昂的使用。

3. 羟基乙基和羟基丙基(Glycols):羟基乙基和羟基丙基是水基制冷剂,由水和一种有机化合物混合而成,常用于低温制冷系统。

它们具有良好的热传导性能和化学稳定性,且无毒无味,因此在一些特殊应用中被广泛使用。

然而,其制冷性能较差,需要较高的能源消耗。

4.二氧化碳(CO2):二氧化碳是一种天然制冷剂,广泛存在于大气中,无毒无味。

它具有良好的环境友好性,不对臭氧层产生破坏,并具有零臭氧臭粒(ODP)和弱温室气体效应(GWP)。

因此,二氧化碳被视为一种可持续发展的制冷剂。

然而,由于其低临界温度和高压力要求,对系统压力容器的要求较高,限制了其应用范围。

5.碳氢化合物:碳氢化合物是一种有机化合物,如丙烷和丁烷,可用作替代氟利昂的制冷剂。

它们具有较低的环境影响,且在低温范围内具有良好的性能。

然而,由于其易燃性,对操作和安全性提出了更高的要求。

6.混合制冷剂:混合制冷剂是由两个或多个制冷剂混合而成,以实现理想的制冷性能。

比如,R404A是由R125、R143a和R134a等制冷剂混合而成。

制冷剂的种类及特性

制冷剂的种类及特性

制冷剂的种类及特性制冷剂是一种用于制冷与空调系统中的物质,它通过吸收系统内热量将其排出,从而实现了制冷效果。

不同种类的制冷剂具有不同的特性,下面是一些常见的制冷剂及其特性:1.氨(NH3):氨是一种广泛应用于工业制冷系统中的制冷剂,具有高效能和环保的特性。

氨的制冷能力非常大,并且具有较高的热传导性能。

此外,氨还具有较低的危险性,不易燃烧且不会对臭氧层产生破坏。

2.氟利昂(CFCs):氟利昂是一类人造的制冷剂,常见的有氟利昂12(R-12)和氟利昂22(R-22)。

氟利昂制冷剂具有高温下的较低压缩效率和较高的工作能力,广泛应用于商业和工业领域。

然而,氟利昂对臭氧层有破坏作用,已经被禁止使用。

3.碳氢化合物(HCFCs):碳氢化合物系列制冷剂是氟利昂的一种改良版本,如R-134a。

它们比氟利昂对臭氧层的破坏少,因此被广泛使用。

此外,碳氢化合物制冷剂也有较低的温室气体排放量。

4.羟氟烷(HFCs):羟氟烷系列制冷剂如R-410A和R-134a是目前最常用的制冷剂之一、它们是一类无色、无毒和无味的化学物质,对臭氧层没有破坏作用。

羟氟烷制冷剂具有较高的热效率,可以提供更好的制冷效果。

5.二氧化碳(CO2):二氧化碳是一种环保的制冷剂选择,它具有零臭氧破坏潜力和较低的温室效应。

二氧化碳制冷剂也具有较高的热效率,并且非常适合在商业和工业领域使用。

6. HFO(氢氟烃):HFO制冷剂是一类新型的环保制冷剂,如R-1234yf和R-1234ze。

它们具有非常低的温室气体排放量,而且不会对臭氧层产生损害。

HFO制冷剂适用于大多数制冷系统,但需要额外注意其可燃性。

总的来说,制冷剂的选择要考虑其制冷性能、环境友好性和安全性。

随着对环境保护要求的不断提高,逐渐被淘汰的制冷剂将被更环保的替代品所取代。

在未来,我们可以期待更多绿色、高效的制冷剂的出现。

制冷剂安全等级

制冷剂安全等级

制冷剂安全等级制冷剂是用于制冷设备中的一种特殊物质,它在制冷循环中起着传热媒介的作用。

制冷剂的安全等级是衡量其对人体和环境影响的指标之一。

不同的制冷剂具有不同的安全等级,本文将介绍几种常见制冷剂的安全等级及其相关知识。

1. R22制冷剂:R22是一种常见的氟利昂制冷剂,其安全等级为A1级。

这意味着R22制冷剂在正常使用条件下对人体无毒无害,不会对大气臭氧层造成破坏。

然而,由于R22属于温室气体,其全球变暖潜势较高,因此在全球范围内逐步被禁止使用。

2. R410A制冷剂:R410A是一种新型的制冷剂,其安全等级也为A1级。

与R22相比,R410A的制冷效果更好,能够提供更高的制冷效率。

同时,R410A对臭氧层的破坏潜力较低,对环境的影响也较小。

因此,R410A被广泛应用于现代空调系统中。

3. R134a制冷剂:R134a是一种HFC制冷剂,其安全等级为A1级。

与氟利昂制冷剂相比,R134a的全球变暖潜势更低,对臭氧层的破坏性也较小。

因此,R134a被广泛应用于汽车空调系统和商用制冷设备中。

4. R290制冷剂:R290是一种天然制冷剂,其安全等级为A3级。

R290属于烷烃类制冷剂,具有良好的环境友好性。

然而,由于R290属于易燃气体,其在使用和储存过程中需要特殊的安全措施。

因此,R290制冷剂在家用和商用制冷设备中的应用相对较少。

除了上述几种常见制冷剂,还有许多其他类型的制冷剂,它们的安全等级也各不相同。

选择合适的制冷剂应综合考虑其制冷性能、环境影响以及安全性能等因素。

在使用制冷剂时,应遵循相关的安全操作规程,确保人身安全和环境保护。

制冷剂的安全等级是衡量其对人体和环境影响的重要指标。

各种制冷剂具有不同的安全等级,选择合适的制冷剂对于保障人身安全和环境保护至关重要。

在使用制冷剂时,应严格遵守安全操作规程,确保制冷设备的正常运行和安全使用。

制冷剂汇总超详细

制冷剂汇总超详细

制冷剂汇总超详细制冷剂是用于冷冻和空调系统中的工质,主要用于吸热、压缩、冷凝和膨胀过程,实现制冷和空调效果。

它起着传热媒介的作用,使空调和冷冻设备的运行更加高效和可靠。

以下是对制冷剂的详细汇总,包括常见的制冷剂种类、特性和应用。

1.氨氨是一种无色气体,广泛用于工业制冷和冷冻设备中。

它具有良好的制冷性能,具有高制冷效果和潜热,适用于大型冷冻设备。

2.氟利昂系列氟利昂是一类重要的氟化碳类制冷剂,如R-12、R-22、R-134a等。

它们具有高制冷效率和热力性能稳定,适用于各种冷冻和空调设备,但由于其含有氯,可能对臭氧层产生破坏,逐渐被淘汰。

3.羟氟烷类羟氟烷类包括R-32、R-125等,它们是现代环保型制冷剂,不含氯,可有效减少对臭氧层的破坏,适用于中高温冷冻设备和空调系统。

4.二氧化碳二氧化碳是一种环保型制冷剂,具有零臭氧破坏潜力和很高的换热性能。

它被广泛用于商用和家用制冷设备,如超市制冷设备和汽车空调。

5.烃类制冷剂烃类制冷剂如丁烷和异戊烷,具有低环境影响和良好的性能。

它们适用于小型制冷设备和家用空调,但由于易燃,需谨慎使用。

6.混合制冷剂混合制冷剂是由两种或多种制冷剂混合而成,以获得更好的性能和适应性。

如R-404a是由R-143a、R-125、R-134a组成的混合制冷剂,适用于超市冷冻和制冷设备。

7.吸收式制冷剂吸收式制冷剂通过以低温升华液体来完成制冷循环。

它们常用于工业制冷和特定的应用,如太阳能冷冻系统。

在选择制冷剂时,需要考虑以下因素:1.制冷效率:制冷剂的传热性能和制冷效果要符合要求。

2.环保性:应选择对臭氧层具有较低破坏潜力的制冷剂。

3.安全性:制冷剂应无毒、无燃性,并符合相关安全标准。

4.成本:制冷剂的价格和可用性也是选择的考虑因素。

5.应用需求:根据制冷设备和系统的工作条件和要求选择合适的制冷剂。

总结:选择适合需求的制冷剂是实现高效和可靠冷冻和空调系统的关键。

广泛应用的制冷剂包括氨、氟利昂系列、羟氟烷类、二氧化碳、烃类和混合制冷剂等。

制冷剂物性

制冷剂物性

制冷剂物性1. 简介制冷剂是用于制冷和空调系统中的工质,用于从低温区域吸收热量并将其传递到高温区域。

制冷剂的物性是指其在不同温度和压力条件下的热力学和传热性质。

这些物性参数对于设计和优化制冷系统非常重要,因此了解制冷剂的物性是制冷领域的基础知识。

2. 制冷剂分类制冷剂通常根据其化学成分和应用特性进行分类。

常见的制冷剂分类如下:2.1. 按照化学成分•氨(NH3)•二氟二氯甲烷(R22)•四氟乙烷(R134a)•异丙醇(R600a)2.2. 按照应用特性•惰性制冷剂:如氮气(N2)和氦气(He),用于超低温制冷。

•非惰性制冷剂:具有较高的潜热和热导率,如氨和Freon系列。

3. 制冷剂的物性参数制冷剂的物性参数主要包括密度、蒸发潜热、热导率和粘度等。

3.1. 密度制冷剂的密度随温度和压力的变化而变化。

密度是制冷剂在给定条件下的质量与体积之比。

密度的大小影响着制冷系统的换热效果和压缩机的工作条件。

3.2. 蒸发潜热蒸发潜热是指在给定温度和压力下,制冷剂从液态转变为气态所吸收的热量。

蒸发潜热越大,制冷剂在蒸发过程中吸收的热量越多,故制冷效果也越好。

3.3. 热导率热导率是指制冷剂传导热量的能力。

热导率越高,制冷剂在传递热量时的效率越高。

3.4. 粘度粘度是描述流体内部阻力大小的物性参数。

粘度越大,制冷剂在流动过程中的阻力越大,流动性越差。

4. 不同制冷剂物性的比较不同制冷剂的物性参数有很大差异,下面以氨、R22、R134a和R600a为例进行比较:物性参数NH3 R22 R134a R600a密度(kg/m³)682 1194 133 2.029蒸发潜热(kJ/kg)1374 228 215 373热导率(W/m·K)0.51 0.022 0.083 0.08粘度(Pa·s) 1.5E-4 0.004 1.46E-5 1.4E-5从上表可以看出,不同制冷剂的物性参数差异较大。

制冷剂名词解释

制冷剂名词解释

制冷剂名词解释
制冷剂是指用于制冷或空调设备中的化学物质,通常以气体或液体形式存在。

它们通过在制冷循环中循环流动,传递热量,从而实现对空气或物体的冷却。

常见的制冷剂包括氨气(NH3)、氯气(Cl2)、氟气(F2)、二氧化碳(CO2)、氟利昂(Freon)等。

这些制冷剂具有不同的性质和应用范围。

氨气是一种常用的制冷剂,具有高热效应和良好的热传导性能。

它广泛应用于工业制冷、冷库和冷藏车等领域。

氯气在过去被广泛用于家用制冷设备中,但由于对臭氧层破坏的影响,逐渐被禁止使用。

氟气是目前使用最广泛的制冷剂之一,具有良好的热传导性能和稳定性。

然而,由于其对环境的破坏性,被逐渐淘汰。

二氧化碳制冷剂在近年来得到了广泛的关注和应用。

它是一种环保的制冷剂,不会对臭氧层造成损害,也不会对温室效应产生影响。

氟利昂是一类高效的制冷剂,但它们对臭氧层有破坏作用。

因此,国际社会已经采取行动限制和逐渐淘汰氟利昂的使用。

随着环保意识的提升,研发和使用更环保的制冷剂已成为行业的重要课题。

一些新型制冷剂如氢氟醚(HFO)、氢氟乙烯(HFO-1234yf)等逐渐应用于制冷设备中,以减少对环境的影响。

总的来说,制冷剂是实现空调和制冷功能的重要元素。

选择合适的制冷剂不仅需要考虑其制冷性能,还需要关注其对环境和人体健康的影响,并寻求更加环保和可持续的替代方案。

制冷剂详细介绍

制冷剂详细介绍

制冷剂(分几个部分添加)制冷剂的介绍制冷剂的一般分类常用制冷剂特性制冷剂的命名方法制冷剂概述制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。

制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。

它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。

对制冷剂性质的要求(1)具有优良的热力学特性,以便能在给定的温度区域内运行时有较高的循环效率。

具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。

(2)具有优良的热物理性能具体要求为:较高的传热系数、较低的粘度及较小的密度。

(3)具有良好的化学稳定性要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。

(4)与润滑油有良好互溶性(5)安全性工质应无毒、无刺激性、无燃烧性及爆炸性。

(6)有良好的电气绝缘性(7)经济性要求工质低廉,易于获得。

(8)环保性要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。

制冷剂的一般分类根据制冷剂常温下在冷凝器中冷凝时饱和压力Pk和正常蒸发温度T0的高低,一般分为三大类:1.低压高温制冷剂冷凝压力Pk≤2~3㎏/㎝(绝对),T0>0℃如R11(CFCl3),其T0=23.7℃。

这类制冷剂适用于空调系统的离心式制冷压缩机中。

通常30℃时,Pk≤3.06 ㎏/㎝。

2.中压中温制冷剂冷凝压力Pk<20 ㎏/㎝(绝对),0℃>T0>-60℃。

如R717、R12、R22等,这类制冷剂一般用于普通单级压缩和双级压缩的活塞式制冷压缩机中。

3.高压低温制冷剂冷凝压力Pk≥20 ㎏/㎝(绝对),T0≤-70℃。

如R13(CF3Cl)、R14(CF4)、二氧化碳、乙烷、乙烯等,这类制冷剂适用于复迭式制冷装置的低温部分或-70℃以下的低温装置中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非共沸混合制冷剂的制冷循环图
(5)其它烃类
其它各种有机化合物规定按600序号 编号,其编号是任选的。
3、制冷剂的选用原则 制冷剂的选用原则
我们期望制冷剂的冷凝压力不太高, 1, 制冷性能 我们期望制冷剂的冷凝压力不太高,蒸发压力在大气压以上或不 要比大气压低的太多,压力比较适中,排气温度不太高,单位容积制冷量大, 要比大气压低的太多,压力比较适中,排气温度不太高,单位容积制冷量大, 循环的性能系数高。传热性好。 循环的性能系数高 。 传热性好 。 2, 实用性 制冷剂的化学稳定性和热稳定性好,在制冷循环过程中不分解,不 制冷剂的化学稳定性和热稳定性好,在制冷循环过程中不分解, 变质。无毒,无害。来源广,价格便宜。 变质 。无毒 , 无害 。 来源广, 价格便宜 。 应满足保护大气臭氧层和减少温室效益的环境保护要求, 3, 环境可接受性 应满足保护大气臭氧层和减少温室效益的环境保护要求,制 温室效益指数应尽可能小。 冷剂的臭氧破坏指数必须为 0 , 温室效益指数应尽可能小 。
96.1.1全面限制 CFC 96.1.1全面限制 2030.1.1全面限制 HCFC 2030.1.1全面限制
HFC ODP=0 HCC
有毒
PFC ODP=0 PCC
强毒
(5).乙烷族 (5).乙烷族 氟利昂
C2H6 R170 C2H5Cl C2H5F R160 R161 C2H4Cl2 C2H4ClF C2H4F2 R150 R151 R152 C2H3Cl3 C2H3Cl2F C2H3ClF2 C2H3F3 R140a R141b R142b R143a C2H2Cl4 C2H2Cl3F C2H2Cl2F2 C2H2ClF3 C2H2F4 R130a R131 R132a R133a R134a C2HCl5 C2HCl4F C2HCl3F2 C2HCl2F3 C2HClF 4 C2HF5 R120 R121 R122 R123 R124 R125 C2Cl6 C2Cl5F C2Cl4F2 C2Cl3F3 C2Cl2F4 C2ClF5 C2F6 R110 R111 R112 R113 R114 R115 R116
高温(低压) 制冷剂1 中温(中压) 制冷剂2 低温(高压) 制冷剂3
约在3-20 约>20
1 离心式制冷机的空调系统
举 例
2 普通单级压缩和双级压缩的活塞式制冷系统,-60 °C以上 3 覆叠式装置的低温级
(1)无机化合物
无机化合物用序号700表示,化合物的分 子量(取整数部分)加上700就得出其制冷 剂的编号。例如,氨的分子量为17,其编 号为R717 。二氧化碳和水的编号分别为 R744和R718。
LCCP
(Life Cycle Climate Performance) 在TEWI基础上补充了制冷机和制冷剂生 产及报废过程中的能耗引起的温室效应。
2、制冷剂的种类和编号
根据制冷剂的分子结构可将制冷剂分为无机化合物和有机化合物 根据制冷剂的组成可分为单一制冷剂和混合制冷剂 根据制冷剂的物理性质可将制冷剂分为高温(低压)、中温(中压)、低温(高 压)制冷剂。
已经商品化的共沸制冷剂,依应用先后在R500 序号中顺次地规定其编号: R500R12/R152a(73.8/26.2mass%) R502R22/R115(48.8/51.2mass%) 已经商品化的非共沸制冷剂,依应用先后在 R400序号中顺次地规定其编号。混合制冷剂的 组分相同,比例不同,编号数字后接大写A、B、 C等字母加以区别。 R404AR125/143a/134a(44.0/52/4.0) R407CR32/125/134a(23.0/25.0/52.0)
制冷剂
制冷系统中循环流动的工作介质叫制冷剂 (又称制冷工质),它在系统的各个部件间 循环流动以实现能量的转换和传递,达到 制冷机向高温热源放热;从低温热源吸热, 实现制冷的目的。
1、制冷剂发展历史
1834年美国人珀金斯发明世界上第一台制冷机,采用的制冷剂 为乙醚(CH3OCH3)。 1866年二氧化碳(CO2)被用作制冷剂。 1872年波义耳发明以氨(NH3)为制冷剂的压缩机。 1876年使用二氧化硫(SO2)为制冷剂。 氯甲烷(CH3Cl)在1878年开始使用。到20世纪30年代,一系列 的卤代烃,美国杜邦公司称其为卤代烃(Freon)的制冷剂相继 问世。卤代烃12(即R12)于1931年,R11于1932年,R114于 1933年,R113于1934年,R22于1936年,R13于1945年,R14 于1955年陆续出现。 20世纪50年代开始使用共沸制冷剂。 60年代开始使用非共沸制冷剂。 20世纪80年代的CFC问题的出现及其替代技术的发展。
(4)混合制冷剂
为什么要使用混合工质?
----调节沸点 ----调节沸点
共沸工质:混合后沸点高于和低于各组分沸点 共沸工质: 非共沸工质: 非共沸工质:混合沸点在各组分之间
----调节热力性能 ----调节热力性能
高沸点组分中加入低沸点组分,qv提高 高沸点组分中加入低沸点组分, 反之,COP提高 反之,COP提高
卤代烃-氟利昂(3) 卤代烃-氟利昂(3)
CFC,氯氟烃
性能稳定,可进入平流层 只有受紫外线照射方分解出Cl离子 对臭氧层破坏作用较大
HCFC,氢氯氟烃
相对不稳定,到达平流层前已经分解 对臭氧层破坏作用较小
(4)甲烷族氟利昂 甲烷族氟利昂
甲烷
CH4 R50 CH3Cl CH3F R40 R41 CH2Cl2 CH2ClF CH2F2 R30 R31 R32 CHCl3 CHCl2F CHClF2 CHF3 R20 R21 R22 R23 CCl4 CCl3F CCl2F2 CClF3 CF4 R10 R11 R12 R13 R14
无机化合物 无机化合物:氨、水、二氧化碳 卤代烃:氟利昂 碳氢化合物:甲烷、乙烷、丙烷 混合制冷剂:共沸和非共沸 其他烃类:乙烯、丙烯
高温(低压)、中温(中压)、低温(高压)制冷 剂————按制冷剂标准沸点 标准沸点的不同区分 标准沸点
类别 ts(°C) 环境温度在30 °C 时的冷凝压力(bar) >0 -60-0 <-60 约<3 制冷剂 R11,R113,R114,R21 R12,R22,R717,R142,R502 R13,R14,R503,烷,烯
常见制冷剂的环保指标
TEWI
Impact )
(Total Equivalent Warming
是综合反映一台机器对全球变暖所造成影响的指标值。 TEWI=m• GWP•n+E• 其计算方法如下: : TEWI=m•l•GWP•n+E•n•β 其中, GWP是以CO2 为基准, m是系统中工质总质量 (kg),l为工质的年泄漏率(%),n 指系统运行年限(年), E 代表系统每年的能耗(kWh),β 体现每度电CO2的释放 (kWh) β CO 量(kg/kW h) (kg/kW h)。 TEWI包括 包括直接排放效应和间接排放效应 TEWI包括 直接排放效应和间接排放效应 。前者指 计算年限内泄漏的制冷剂相当于多少公斤CO2 的积聚效 果,后者体现产生1kWh电由燃料燃烧所释放的CO2量。 需要指出的是,间接温室效应对各个国家而言是不同的, 取决于该国火力发电和水力发电的比例以及火力发电的 全厂热效率。
(1)热力性质及其对循环的影响
在相同的工作温度下,不同制冷剂的制冷循环特性由它们的热力性质所决定。 (1)制冷剂的饱和蒸汽压力曲线纯质的饱和蒸汽压力是温度的单值函数,用饱和 蒸汽压力曲 线可以描述这种关系。 制冷剂在标准大气压(101.32kPa)下的沸腾温度称为标准蒸发温度或标准沸点,用 ts 表示。 制冷剂的标准蒸发温度大体上可以反映用它制冷能够达到的低温范围。ts 越低的制冷剂,能够达 到的制冷温度越低。所以,习惯上往往依据 的高低,将制冷剂分为高温、中温、低温制冷 剂。由于各种物质的饱和蒸汽压力曲线的形状大体相似,在某一相同的温度下,标准蒸发温度高的 制冷剂的压力低;标准蒸发温度低的制冷剂的压力高,即高温工质又 属于低压工质;低温工质 又属于高压工质。 制冷剂的饱和蒸汽压力-温度特性决定了给定工作温度下制冷循环的压力和压力比。
要求制冷剂临界温度高
T k 2
pk
Tk
3 wc wC
2'
p0
T0
4
q0 q 0
1 S
对于绝大多数物质,其临界温度与标准蒸发温度存在以下关系: 这说明:标准沸点低的低温制冷剂的临界温度也低;高温制冷剂的临界温度也高。 不可能找到一种制冷剂,它既有较高的临界温度又有很低的标准沸点。故对于每一种制冷剂,其工作温 度范围是有限的。另外,蒸发制冷循环应远离临界点。若冷凝温度 tk 超过制冷剂的临界温度 ,则无 法凝结;若 略低于 ,则虽然蒸汽可以凝结,但节流损失大,循环的制冷系数大为降低。爱森曼 (Eiseman)发现,当对比冷凝温度 / 和对比蒸发温度 / 相同时,各种制冷剂理论循环的制冷系数大体 相等。
(2)卤代烃-氟利昂 卤代烃关系式为2m+2=n+p+q+r。 命名:R(m-1)(n+1)pBr,如:CF2Cl2为R12 , 环状衍生物的编号的规则相同,只在字母R后加 一个字母C,如C4F8为RC318。 同分异构体相同编号,而随着同分异构变得愈来 愈不对称,附加小写a、b、c等。如CH2FCH2F, 编号为R152;它的同分异构体分子式为CHF2CH3, 编号为R152a。
共沸与非共沸混合物
Zeotropic & Azeotropic Blends
T
P=定值
1
T
气相区
C
P=定值
1
气相区
2
Bl
B A
Bg
2
共沸点
液相区
液相区 X
0
1
0
X
相关文档
最新文档