数学:中学数学竞赛培优教程试题19及解析
(完整版)2019年初中七年级数学竞赛试题及答案,推荐文档

对于任意一条直线 l ,在直线 l 从平面图形的一侧向另一侧平移的过程中,当图形被直线 l 分割后,设直线 l 两侧图形的面积分别为 S1,S2.两侧图形的面积由 S1<S2(或 S1>S2)的情形, 逐渐变为 S1>S2(或 S1<S2)的情形,在这个平移过程中,一定会存在 S1=S2 的时刻.因此,一定 存在一条直线,将一个任意平面图形分割成面积相等的两部分.---- ----15 分
--------------------15 分
18.(15 分)(1)在图中每画出一条给 0.5 分
-----------------2 分
(2)① -----------------------5 分
②
S1<S2 S1=S2 S1>S2
(3)存在.
S1<S2 S1=S2 S1>S2
-------------11 分 ---------------13 分
请你在图18中相应图形下方的横线上分别填写s1s2的数量关系式用182请你在图18中分别画出反映s1s2三种大小关系的直的横线上分别填写s1s2的数量关系式用3是否存在一条直线将一个任意的平面图形如图请简略说出理由184分割成面积相等的两部分19
2019 年初中七年级数学竞赛试题及答案
一、选择题(每小题 6 分,共 48 分;以下每题的 4 个结论中,仅有一个是正确的,请 将正确答案的英文字母填在题后的圆括号内.)
17.(15 分)设第一代表团有 a 人,第二代表团有 b 人,由题意得:
a 35m 15 , b 35n 20 ,其中 m、n 是自然数--------------------3 分
两个代表团共拍了 a×b 张照片,
七年级数学尖子生培优竞赛专题辅导第十九讲几何不等式(含答案)

第十九讲几何不等式趣提引路】已知:如图19一1,三个居民区分别记作A、B、C,邮电局记作0,它是的三条角平分线的交点, 0、A、B、C每两地之间有宜线道路相连,一邮递员从邮电局出发,走遍各居民区再回到O点,若AC> BOAB.问:哪条路线走的距离最短?并说明理由.解析若不考虑顺序,所走路线有三条:OABCO(或OCR40)、OBACO(或OCABO), OBCAOC或OACBO), 其中OABCO最短.在AC上截取AB' =AB,连结OB',设三条路线OABCO, OBACO, OBCAO的距离分别为〃「厶、厶,易证△ AOB^AAO B, A50=B0,d厂心=(OB+BC+CA+AO)—(OA+AB+BC+CO) =0B+ (AC -AB)一CO=OB'+ (AC-AB )一CO=OB'+B'(7 — CO〉。
, A d3>d t,同理d2>d x.・•.路线OABCO最短.知识拓展】1.三角形的不等关系是研究许多几何不等问题的基础,这种不等关系分为两类:一类是在同一三角形中进行比较;一类是在两个三角形中比较•这里主要方法是把要比较的边或角如何转化到同一个三角形或适当安排在两个三角形之中.2.在同一个三角形中有关边或角不等关系的证明,常有以下泄理:(1)三角形任何两边之和大于第三边(2)三角形任何两边之差小于第三边(3)三角形的一个外角大于任何一个与它不相邻的内角.(4)同一三角形中大边对大角.(5)同一三角形中大角对大边例1如图19-2,在等腰梯形ABCD中,AD//BC, AB=CD, E、F分别在AB、CD上且AE=CF.求证:EF2 丄(AD+BC).------- i ------- /c G图19・2证明如图所示,延长AD至2,使DD严BC,延长36?至(7「使CC「=AD,连结G D「则ABC;®是平行四边形,ABCD和CDD、C、是两个全等的梯形,在上取一点G 使D、G=AE,连结FG和EGFh AE=CF,则£F=FG,又EG=A D. =AD+BC.•••2EF=EF+FG2EG=AD+BC.即EF=- (AD+BC)・2点评当且仅当点F落在EG上时,即E为AB的中点时,结论中的等号成立•证明这类不等式的一个常用方法是能过添加辅助线,把要比较大小的线段或角集中到一个三角形中,或者适当地安排在两个三角形中, 以便应用上述基本不等关系.例 2 如图19-3, △ABC 中,AB>AC. BE、CF 是中线,求证:BE>CF.解析BE、CF不在同一个三角形中.无法比较它们的大小,将BE平移到FG,在AGCF中比较FC与FG的大小即可.证明将BE、CE分別平移到FG、FD,则四边形EFDC为口作FH丄BC于H.VAB>AC9且F、E分别为AB、AC 的中点,:.FB>CE.:.FB>FD.由勾股泄理得:HB>HD,即FB>FD又•••GH=GB+BH=EF+BH=DC+BH>CD+DH=CH,即GH>CH, :.GF>CF.即BE>CF・例3 如图19-4,在等腰AABC中,AB=AC, D为形内一点,ZADOZADB.求证:DB>DC.解析由于厶DC、/ADB与BD、DC不在同一三角形之中,所以考虑将某一图形绕着某点旋转一是角度,使图中的对应元素不变,使它们能集中在同一个三角形之中.证明把AABD绕点A按逆时针方向旋转至AACD',连接DD',则AD^AD'.:.ZADD^ = ZAZT D,而ZADC> ZADB,:.ZADOZAD C・••• ZADD f + ZD' DC> ZAD f D+ ZCD D••• ZD DC> ZDD C・:.CD r>DC,即DB>DC.点评几何图形在平移、对称、旋转变换中,只是图形位置发生变化,而线段的长度、角的大小不变. 例4 如图19-5,在ZVIBC中,心b、c分别为ZA. ZB、ZC的对边,且求证:2ZB<ZA4-ZC.证明延长BA到D 使AD=BC=u,延长BC到& 使CE=AB=c,连结DE,这就把图形补成一个等腰三角形,即有BD=BE=a+c ・:.ZBDE=ZBED・ffl!9-5DF//AC. CF//AD,相交于F,连结EF,则ADFC是平行四边形.•••CF=AD=BC・又ZFCE=ZCBA,•••△FCE仝△CBA (SAS)・:.EF=AC=b.于是DEWDF+ EF=2bJ+c=BD=BE.这样,在ABDE中,便有ZB<ZBDE=ZBED・2ZB< ZBDE+ ZBED= 180°一ZB=ZA+ZC,即2ZB<ZA+ZC.例5过三角形的重心任作一宜线,把这个三角形分成两部分,求证:这两部分面积之差不大于整个三角形面积的丄9证明如图19-6,设AABC重心为G,过点G分别作各边的平行线与各边交点依次为B「C「C?、A?・连结 A 九、B| 、C] C21•.•三角形重心到一个顶点的距离等于它到对边中点距离的二倍,:• A| A = A[ B、= B\B,B B? = B、Cj = C] C,CC2 = G = A,A.■ ■ ■ ■V A l A2//BC. B\B」AC、C\CJ AB・••图中的9个小三角形全等.即AA C x C.所以上述9个小三角形的而积均等于AABC而积的1・9若过点G作的直线恰好与直线AG、BG、B2 A2,重合,则AABC被分成的两部分的而积之差等于一个小三角形的而积,即等于而积的1.9若过点G作的直线不与直线AG、BG、场儿重合,不失一般性,设此直线交AC于F,交AB于E, 交G C?于D •:GB严GJ ZEB\G=ZD:C,Zfi, GE=ZC2 GD.GD.:・EF分皿眈成两部分的而积之差等于|S,5-S他伽心|,而这个差的绝对值不会超过5AC|C.C的而积.从而EF分AABC成两部分的而积之差不大于AABC而积的丄・9综上所述:过三角形重心的任一直线分三角形成两部分的而积之差不大于整个三角形而积的丄.9好题妙解】佳题新题品味例1如图19-7,求VPHT + J(4_x)‘ +4的最小值.R图19・7解析本题周旋于根式,那就不易求岀最小值,但从式子的特征联想到勾股定理,由数想形,构成直角三角形可使问题迅速解决.解构造如图19-7 所示的RtAPAC. RtAPBD> 使AC=1, BD=2, PC=x, CD=4,且PC、PD 在直线 /上,则所求最小值转化为“在直线/上求一点P,使PA+PB的值最小”.取点A关于/的对称点A',显然有M+PB=% +PB2A' B= j3’+¥ =5.・•. A/P+T + J(4二x),+4 的最小值是5.例2 如图19-8,已知AD是AABC的角平分线,且AB>AC,求证:BD>DC.解析由于AB>AC,所以可在AB h截取AE=AC.连接DE,易证△ ADE^/\ADC.于是DE=DC,这样把DC. BD放入ABDE 中进行比较即可.证明:TAD为角平分线,•••作△/!£>(?关于AD为对称轴的△△£>£・:・DC=DE、ZADE= A ADC ・••• ZBED> ZADE= ZADC> ZABD.:.ZBED>ZEBD•:・BD>ED即BD>CD.中考真题欣赏例1 (陕四中考题)如图19-9,已知人》为厶ABC的中线,求证:AD<- (AB+AC)・2解析考虑如何将A AC. AD转移到同一个三角形中去,采取中线加倍法.证明延长AD 至E,使得DE=AD,连结CE,则厶ABD^AECD, :.EC=AB,在AACE 中,AE<AC+EC 即2AD<AB+AC, AD<- (AB+AC).2例2 (连云港市中考题)在△ABC中,AC=5,中线AD=4.则边AB的取值范帀是()A. 1VABV9B.3<AB<\3C.5<AB<\3D.9<AB<\3解析参见图19-9.延长AD至E, DE=AD,连结CE,由三角形三边的关系可知3VCEV13,又CE =AB.故3VABV13,选B.竞赛样题展示例1 (1996年“希望杯”初二竞赛题)如图19-10,在厶ABC中,ZB=2ZC,则AC与2AB之间的大小关系是()A・AC>2AB B・ AC=2AB C. ACW2AB D. AC<2AB解析关键在于构造等腰三角形,延长CB至D 使得BD=AB,则ZD=ZD/\B=ZC, AD=AC,在厶ABD中,AB+BD^2AB>AD.即2AB>AC.选D例2 (2000年“希望杯”初二竞赛题)如图19-11, AABC中:AB>AC. AD. AE分别是BC边上的中线和ZA的平分线,比较AD和AE的大小关系.解析延长AD 至F,使DF=AD,连结BF•则AADC^AFDB, :.AC=FB. ZDAC=ZF. \9AB>AC.•••AB>FB, :.ZF>ZBAF. :. ZDAC> ZBAF,•••点D 在点E 的左边,A ZBAF< ZEAC. V ZADE= Z BAF+ A ABC. kAED=ZC+/EAC, ZABCVZC, Z. ZADE< ZAED,故AD>AE.RI19-91^19-10例3如图19-12,在ZVIBC中,P、Q、/?将英周长三等分,且P、Q在AB上,求证:迪竺>2.S/u 肚9解析易想到作AABC和△PQR的髙,将三角形的而积比化成线段的乘积比,并利用平行线截线段成比例泄理,把其中两条高的比转换成三角形边上线段的比.证明如图32作V丄帖厶,R5于H,则进=册=册不妨设IWBC的周长为1,则PQ丄 AB<丄,3 2•陀、2■ ■ , ” — *AB 3':AP^AP+BQ=AB-PQ< 1-1例4 (2000年江苏省初三竞赛题)如图19-13,四边形ABCD中,AB=BC, ZABC=60a , P为四边形ABCD 内一点,且ZAPD=120°・证明:用+PD+PCMBD・解析在四边形ABCD外侧作等边三角形AB D,由ZAPD= 120°可证明B'P=AP+PD.易知B CMPB' +PC,得B'CWAP +PD+PC.下iiEBD=£C・VAAB D是等边三角形,:.AB r=AD, ZBAD=60°,又易知ZVIBC是等边三角形,故AC=AB, ZB AC =60°,于是△ AB C竺AADB,:・B'C=DB・例5设h「叽、虬是锐角心菟三边上的髙,求证:訂罟弊“解析如图19-14>在RtAADC中,由于AC>AD,故同理可证c> h b, a> h c,Sg3又A迢,从而等h a + % + 九 <"+b+c.设AABC 的垂心为H 点, 由于 HA+HB>AB, HB+HOBC,HC+HA>AC, 则 HA+HB+HC>1 (a+b+c)・2从而h a + h b + h e >HA + HB + HC>-(a+h+c),2即5+hJ ②a+b+c 2由①、②得丄v34_vi2 a+b+c例6如图19-15,在Z\ABC 中,®AC ,过点A 作EF//BC,D 为EF 上异于A 点的任一点,求证,AB+AC 〈BD+DC ・解析将AACD 以直线EF 为对称轴对折到厶AC' D 中, ••• ZC'AD 二 ZDAC 二 ZACB 二 ZABC ・・・・ ZC ,AD+ZDAC+ZBAC=ZABC+ZACB+ZBAC=180° .・・.B 、A 、C'三点共线..v BC Z <C D+DB, 又•••AC'二AC, CD 二 DC',・•・ AC' +AB<BD-DC.即 AB+ACCBD+DC ・过关检测】A 级1. _______________________________________________________ 在Z\ABC 中,AD 为中线,AB=7, AC 二5,则AD 的取值范围为 _________________________________________ .2. (1994年安徽省数学竞赛题)已知在AABC 中,ZAWZBMZC,且2ZB 二5ZA,则ZB 的取值范围 是 _______ .3. (1997年太原市初中数学竞赛试题)用长度相等的100根火柴棍,摆放成一个三角形,使最大边的 长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴棍的根数 ___________ •4. (1998年全国高中理科试验班招生数学试题)面积为1的三角形中,三边长分别为a 、b 、c,且满 足a£bWc,则a+b 的最小值是 ___________ .5. (2000年江苏数学竞赛培训题)在任意AABC 中,总存在一个最小角(「则这个角的取值范围为c r^19-15B 级AABC 中,E 、F 分别为 AC 、AB 上任一点,BE 、CF交于 P,求证:PE+PF<AE+AF.1.如图 19-16,2.如图 19-17, 等线段 AB 、CD 交于 0,且ZA0C=60° ,求证:AC+BD2AB. 3.如图 19-18, 矩形ABCD 中,E 、F 分别是AB 、CD 上的点,求证:EF<AC.A4.已知a. b、、y 均小于0, x2 + y2 =1.求证:y]a2x2 +h2y2 + y]a2y2 +b2x2 >a+b.5.如图19-19. 在AABC 中,ZB=2ZC,求证:AC<2AB.6•平而上有n个点,其中任意三点构成一个直角三角形,求n的最大值7•如图19-20.已知ZkABC中AB>AC, P是角平分线AD上任一点,求证:AB-AOPB-PC.第十九讲几何不等式A 级1. 1 <AD<62. 75°W 乙BW100。
初三数学培优试题(含答案)

初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。
2019年初三数学竞赛试卷及答案

2019年初三数学竞赛试卷学校___________________年级___________班 姓名_________________ 一、选择题(共5小题,每小题6分,共30分)1、抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为223y x x =--,则b c 、的值为 ( ) A 、22b c ==, B 、20b c ==, C 、21b c =-=-, D 、32b c =-=,2、如图,在等腰三角形△ABC 的斜边AB 上取两点M 、N ,使∠MCN =45°,记AM =m ,MN =x ,BN =n ,则以x 、m 、n 为边长的三角形的形状是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、随x 、m 、n 变化而变化3、如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为( ) A. B.C. D.4、已知函数2|82|y x x =﹣﹣和y kx k =+(k≠0,k 为常数),则不论k 为何值,这两个函数的图象( )A 、有且只有一个交点B 、有且只有二个交点C 、有且只有三个交点D 、有且只有四个交点5、已知关于x 的不等式组 恰有5个整数解,则t 的取值范围是( ).A 、6-<t <112-B 、6-≤t <112-C 、6-<t ≤112-D 、6-≤t ≤112-二、填空题(共5小题,每小题6分,共30分)6、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为 .FAAB CN255332x xx t x +⎧->-⎪⎪⎨+⎪-<⎪⎩7、如图,△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于E ,F 是OE 的中点.如果BD//CF ,BC =25,则线段CD 的长度为__________________.8、如图,在平面直角坐标系内放置一个直角梯形AOCD .已知AB =3,AO =8,OC =5,若点P 在梯形内,且S △PAD =S △POC ,S △PAO =S △PCD ,那么点P 的坐标是________.9、在平面直角坐标系xOy 中,不论k 取什么样的实数,直线y =kx ﹣3k +4总经过一个定点P ,若以原点O 为圆心的圆过点A (13,0),与⊙O 交于B 、C 两点,则弦BC 的长的最小值为10、小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.三、解答题(共4题,满分60分)11、如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC -∠CBE .(第11题)12、如图,已知AB 为圆O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD AB ⊥,DE CO ⊥,垂足为E .若10CE =,且AD 与DB 的长均为正整数,求线段AD 的长.13、已知:y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点.(1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最小值.14、如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.参考答案 1、B2、15、B ;提示:作∠CAD =∠BAM ,AD =AM , 可得△ABM ≌△ACD ,再得△MN ≌△AND ,可得结论3. B ; 【解析】过点E 作EM ⊥BC 于M ,交BF 于N ,易证得△ENG ≌△BNM (AAS ),MN 是△BCF 的中位线,根据全等三角形的性质,即可求得GN =MN =12,由折叠的性质,可得BG =3,求得BF =2BN =5,由勾股定理即可求得BC 的长.4. B ;【解析】函数y =8-2x -x 2中,令y =0,解得:x =-4或2.则二次函数与x 轴的交点坐标是(-4,0)和(2,0).则函数的图象如图.一次函数y =kx +k (k 为常数)中,令y =0,解得:x =-1,故这个函数一定经过点(-1,0).经过(-1,0)的直线无论k 多大,都是2个交点.故选B . 5、C . 解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 6、解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 78、ABCM ND(第6题)9、2410、207; 解:设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y 所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又 20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.11、解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CEBE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12、解:连接AC ,BC ,则90ACB ∠=︒.又CD AB ⊥,DE CO ⊥,由Rt △CDE ∽Rt △COD 可得2CE CO CD ⋅=,由Rt △ACD ∽Rt △CBD 可得(第11题)2CD AD BD =⋅,所以CE CO AD BD ⋅=⋅.设AD a DB b ==,,a b ,为正整数,则2a bCO +=,又10CE =,代入上式得 102a bab +⋅=, …………10分 整理得(5)(5)25a b --=.考虑到a b >,只能是550a b ->->,得52551a b -=-=,. 因此30AD a ==. …………20分13、【解析】(1)当k =1时,函数为一次函数y =-2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k ≠1.12x =综上所述,k 的取值范围是k ≤2.(2)①∵x 1≠x 2,由(1)知k <2且k ≠1.由题意得(k -1)x 12+(k +2)=2kx 1.将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得:2k (x 1+x 2)=4x 1x 2. 又∵x 1+x 2=21k k -,x 1x 2=21k k +-, ∴2k ·21k k -=4·21k k +-.解得:k 1=-1,k 2=2(不合题意,舍去).∴所求k 值为-1. ②如图5,∵k 1=-1,y =-2x 2+2x +1=-2(x -12)2+32. 且-1≤x ≤1.由图象知:当x =-1时, y 最小=-3;当x =12时,y 最大=32. ∴y 的最大值为32,最小值为-3. 14、解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12n a a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7. …………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10ki m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k kj m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾. 故必存在一个正整数i (1≤i ≤7),使得7|(10)ki m +,即i 为m 的魔术数. 所以,n 的最小值为7.。
数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
九年级数学下学期培优作业19 试题

OABD E 卜人入州八九几市潮王学校九年级下册数学培优作业191、如图,△ABC 内接于⊙O ,AD 是的边BC 上的高,AE 是⊙O 的直径,连BE. 〔1〕求证:△ABE ∽△ADC ;〔2〕假设AB=2BE=4DC=8,求△ADC 的面积.2、如图,AB 、CD 为⊙O 两弦,且AB=CD ,M 、N 分别为AB 、CD 的中点。
求证:∠AMN=∠CNM3、:如图,∠AOB=900,D 、C 将⌒AB 三等分,弦AB 与半径OD 、OC 交于点F 、E 。
求证:AE=DC=BF 。
4、如图,△ABC 内接于⊙O ,AB 是直径,D 为弧AC 的中点,连接BD ,交AC 于G,过D 作DE ⊥AB 于E 点, 交⊙O 于H 点,交AC 于F 点。
〔1〕、求证:FD=FG(2)、假设AF ·FC=32,ED=6,求ADF S。
5、如图,AE 是△ABC 外接圆⊙O 的直径,BC ∥AE ,过C 点作CD ⊥AE 于D ,CD 交AB 于F〔1〕求证:△ACF ~△ABC ;〔2〕假设CF=2DF=2,AD=4,求⊙O 的直径.6、如图,AE 是△ABC 外接圆⊙O 的直径,假设B 、C 在AE 的同一侧,过C 点作CD ⊥AE 于D ,CD 交AB 于F 。
〔1〕求证:∠ACF=∠B ;〔2〕假设点B 为弧CE 的中点,CD=3AD=3,求ACB S ∆的值.7、:如图等边ABC ∆内接于⊙O,点P 是劣弧PC 上的一点〔端点除外〕CD .〔1〕假设AP过圆心O ,如图①,请你判断PDC ∆是什么三角形?并说明理由.〔2又是什么三E A C DBF E O A角形?为什么?8、(1)如图OA 、OB 是⊙O 的两条半径,且OA⊥OB,点C 是OB 延长线上任意一点:过点C 作CD 切⊙O 于点D ,连结AD 交DC 于点E .求证:CD=CE(2)假设将图中的半径OB 所在直线向上平行挪动交OA 于F ,交⊙O 于B’,其他条件不变,那么上述结论CD=CE 还成立吗为什么(3)假设将图中的半径OB 所在直线向上平行挪动到⊙O 外的CF ,点E 是DA 的延长线与CF 的交点,其他条件不变,那么上述结论CD=CE 还成立吗为什么9、在直径为AB 的半圆内,划出一块三角形区域,如下列图,使三角形的一边为AB ,顶点C 在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC 的矩形水池DEFN ,其中D 、E 在AB 上,如图24-94的设计方案是使AC=8,BC=6. 〔1〕求△ABC 的边AB 上的高h .〔2〕设DN=x ,且ABNFh DN h =-,当x 取何值时,水池DEFN 的面积最大?〔3〕实际施工时,发如今AB 上距B 点1。
高中数学竞赛培优教程(一试)第五版电子版

高中数学竞赛培优教程(一试)第五版电子版高中数学竞赛培优教程(一试)第五版电子版:一、数论1、重要概念认识(1)数论及其基本概念(2)数论中的重要概念(3)因数分解、自整除、递归2、素数的基本性质(1)素数的定义(2)求素数的方法(3)素数的性质3、整除性质(1)余数定理(2)倍数定理(3)欧拉定理(4)欧几里德定理4、欧拉函数(1)欧拉函数的性质(2)求欧拉函数值(3)应用欧拉函数求素数个数二、组合数1、组合数的基本概念(1)组合数的定义(2)组合数的性质2、组合数的求法(1)排列组合的求法(2)卡塔尔乘方的求法(3)频率表的求法3、组合数的计数法(1)构造法(2)两个位置求和(3)一次函数的性质4、组合数的重要性质(1)奇偶性(2)加减乘除法(3)快速改变组合列表三、概率1、随机事件与概率(1)概率(2)试验(3)事件求概率2、独立性与条件概率(1)独立事件(2)条件概率(3)贝祖定理3、联合概率与贝叶斯定理(1)联合概率(2)贝叶斯定理(3)费雪推论4、随机变量与概率分布(1)随机变量(2)概率分布(3)分布函数及其性质四、微积分1、函数与曲线(1)函数及其基本概念(2)函数图形(3)曲线及其特征2、复变函数(1)复变函数的定义(2)复变函数的性质(3)复变函数的向量表示3、微积分的基本概念(1)极限、导数、和积分的定义(2)导数的几何意义(3)多变量函数的导数及其计算4、积分(1)积分的定义(2)积分的性质(3)重要形式的积分(4)向量积分。
数学:中学数学竞赛培优教程试题10及解析

15、三角形总复习【知识精读】1. 三角形的内角和定理与三角形的外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 特殊三角形的性质与判定(如等腰三角形);5. 直角三角形的性质与判定。
三角形一章在平面几何中占有十分重要的地位。
从知识上来看,许多内容应用十分广泛,可以解决一些简单的实际问题;从证题方法来看,全等三角形的知识,为我们提供了一个及为方便的工具,通过证明全等,解决证明两条线段相等,两个角相等,从而解决平行、垂直等问题。
因此,它揭示了研究封闭图形的一般方法,为以后的学习提供了研究的工具。
因此,在学习中我们应该多总结,多归纳,使知识更加系统化,解题方法更加规范,从而提高我们的解题能力。
【分类解析】1. 三角形内角和定理的应用例1. 如图1,已知中,于D ,E 是AD 上一点。
∆ABC ∠=︒⊥BAC AD BC 90,求证:∠>∠BED C证明:由AD ⊥BC 于D ,可得∠CAD =∠ABC 又 ∠=∠+∠ABD ABE EBD 则 ∠∠ABD EBD > 可证 ∠∠CAD EBD >即∠∠BED C >说明:在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于180°间接求得。
2. 三角形三边关系的应用例2. 已知:如图2,在中,,AM 是BC 边的中线。
∆ABC AB AC >求证: ()AM AB AC >-12证明:延长AM 到D ,使MD =AM ,连接BD在和中,∆CMA ∆BMD AM DM AMC DMB CM BM ===,∠∠,∴≅∴=∆∆CMA BMDBD AC在中,,而∆ABD AB BD AD -<AD AM =2()∴-<∴>-AB AC AMAM AB AC 212说明:在分析此问题时,首先将求证式变形,得,然后通过倍长中2AM AB AC >-线的方法,相当于将绕点旋转180°构成旋转型的全等三角形,把AC 、AB 、2AM ∆AMC 转化到同一三角形中,利用三角形三边不等关系,达到解决问题的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学竞赛讲座第10讲计数的方法与原理 计数方法与原理是组合数学的主要课题之一,本讲介绍一些计数的基本方法及计数的基本原理。
一、枚举法 一位旅客要从武汉乘火车去北京,他要了解所有可供乘坐的车次共有多少,一个最易行的办法是找一张全国列车运行时刻表,将所有从武汉到北京的车次逐一挑出来,共有多少次车也就数出来了,这种计数方法就是枚举法。
所谓枚举法,就是把所要求计数的所有对象一一列举出来,最后计算总数的方法。
运用枚举法进行列举时,必须注意无一重复,也无一遗漏。
例1四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张。
问:一共有多少种不同的方法? 解:设四个学生分别是A,B,C,D,他们做的贺年片分别是a,b,c,d。
先考虑A拿B做的贺年片b的情况(如下表),一共有3种方法。
同样,A拿C或D做的贺年片也有3种方法。
一共有3+3+3=9(种)不同的方法。
例2甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止。
问:一共有多少种可能的情况? 解:如下图,我们先考虑甲胜第一局的情况: 图中打√的为胜者,一共有7种可能的情况。
同理,乙胜第一局也有 7种可能的情况。
一共有 7+7=14(种)可能的情况。
二、加法原理如果完成一件事情有n类方法,而每一类方法中分别有m1,m2,…,mn种方法,而不论采用这些方法中的任何一种,都能单独地完成这件事情,那么要完成这件事情共有:N=m1+m2+…mn种方法。
这是我们所熟知的加法原理,也是利用分类法计数的依据。
例3 一个自然数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”。
例如1331,7,202都是回文数,而220则不是回文数。
问:1到6位的回文数一共有多少个?按从小到大排,第2000个回文数是多少? 解:一位回文数有:1,2,…,9,共9个; 二位回文数有:11,22,…,99,共9个; 三位回文数有:101,111,…,999,共90个; 四位回文数有:1001,1111,…,9999,共90个; 五位回文数有:10001,10101,…,99999,共900个; 六位回文数有:100001,101101,…,999999,共900个。
到六位数为止,回文数共有 9+9+90+90+900+900=1998(个)。
第1999个回文数是1000001,第2000个回文数是1001001。
例4设有长度为1,2,…,9的线段各一条,现在要从这9条线段中选取若干条组成一个正方形,共有多少种不同的取法?这里规定当用2条或多条线段接成一条边时,除端点外,不许重叠。
解法1:因为 所以正方形的边长不大于11。
下面按正方形的边长分类枚举: (1)边长为11:9+2=8+3=7+4=6+5,可得1种选法; (2)边长为10:9+1=8+2=7+3=6+4,可得1种选法; (3)边长为 9:9=8+1=7+2=6+3=5+4,可得5种选法; (4)边长为8:8=7+1=6+2=5+3,可得1种选法; (5)边长为7:7=6+1=5+2=4+3,可得1种选法; (6)边长≤6时,无法选择。
综上计算,不同的取法共有 1+1+5+1+1=9(种)。
解法2:由于这些线段互不等长,故至少要用7条线段才能组成一个正方形。
当恰取7条线段组成正方形时,正方形的3条边各用2条线相接,另一条边只用一条线段;当恰用8条线段时,只能每边各用2条线段相接(容易看出,其他情况不可能发生)。
因为1+2+…+9=45,45不能被4整除,所以用9条线段,不可能组成正方形。
由解法一知,拼出的正方形边长至多为11,又易知正方形的边长不可能为1,2,3,4,5,6。
有了以上分析就容易计数了。
(1)取出7条线段,有以下7种: 7=1+6=2+5=3+4; 8=1+7=2+6=3+5; 9=1+8=2+7=3+6=4+5 (这个式子有5种); (2)取出8条线段,有以下2种: 1+9=2+8=3+7=4+6; 2+9=3+8=4+7=5+6。
综上所述,不同的取法共有7+2=9(种)。
三、乘法原理如果完成一件事必须分n个步骤,而每一个步骤分别有m1,m2,…,mn种方法,那么完成这件事共有:N=m1×m2×…×mn种方法。
这就是乘法原理,它是分步法的依据。
乘法原理和加法原理被称为是计数的基本原理。
我们应注意它们的区别,也要注意二者的联合使用。
例5一台晚会上有6个演唱节目和4个舞蹈节目。
求: (1)当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序? (2)当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序? 解:(1)先将4个舞蹈节目看成1个节目,与6个演唱节目一起排,有7!=7×6×5×4×3×2×1=5404(种)方法。
第二步再排4个舞蹈节目,有4!=4×3×2×1=24(种)方法。
根据乘法原理,一共有 5040×24=120960(种)方法。
(2)首先将6个演唱节目排成一列(如下图中的“□”),一共有6!=6×5×4×3×2 ×1=720(种)方法。
×□×□×□×□×□×□× 第二步,再将4个舞蹈节目排在一头一尾或2个演唱节目之间(即上图中“×”的位置),这相当于从7个“×”中选4个来排,一共有7×6×5×4=840(种)方法。
根据乘法原理,一共有720×840=604800(种)方法。
例6有8个队参加比赛,如果采用下面的淘汰制,那么在赛前抽签时,实际上可以得到多少种不同的安排表? 解:8个队要经过3轮比赛才能确定冠亚军。
将第1轮的4组,自左至右记为1,2,3,4组,其中第1,2组为甲区,3,4组为乙区。
8个队抽签即是在上图的8个位置排列,共有 8!=8×7×6×5×4×3×2×1=40320(种) 不同的方法。
但是,两种不同的排列不一定是实际上不同比赛的安排表。
事实上,8队中的某4队都分在甲区或乙区,实际上是一样的;同区的4队中某2队在某一组或另一组,实际上也是一样的;同组中的2队,编号谁是奇数谁是偶数实际也是一样的。
由乘法原理知,在40320种排法中,与某一种排法实质上相同的排法有 2×22×24=27=128(种),故按实际不同比赛安排表的种数是四、对应法 小孩子数苹果,往往掰着手指头,一个一个地掰,掰完左手掰右手,这种数苹果的方法就是对应法。
小孩子把苹果与自己的手指头一对一,他掰了几个指头,也就数出了几个苹果。
一般地,如果两类对象彼此有一对一的关系,那么我们可以通过对一类较易计数的对象计数,而得出具有相同数目的另一类难于计数的对象的个数。
例7在8×8的方格棋盘中,取出一个由 3个小方格组成的“L”形(如图1),一共有多少种不同的方法? 解:每一种取法,有一个点与之对应,这就是图1中的A点,它是棋盘上横线与竖线的交点,且不在棋盘边上。
从图2可以看出,棋盘内的每一个点对应着4个不同的取法(“L”形的“角”在2×2正方形的不同“角”上)。
由于在 8×8的棋盘上,内部有7×7=49(个)交叉点,故不同的取法共有 49×4=196(种)。
例8数3可以用4种方法表示为1个或几个正整数的和,如3,1+2,2+1,1+1+1。
问:1999表示为1个或几个正整数的和的方法有多少种? 分析与解:我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号。
例如对于数3,上述4种和的表达方法对应: 111,11+1,1+11,1+1+1。
显然,将1999表示成和的形式与填写1998个空隙处的方式之间一对一,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有五、容斥原理 在应用加法原理时,关键在于把所要计数的对象分为若干个不重不漏的类,使得每类便于计数。
但是具体问题往往是复杂的,常常扭成一团,难以分为不重不漏的类,而要把条理分清楚就得用加法原理的推广——容斥原理。
为了表达方便,我们用A表示A类元素的个数,用B表示B类元素的个数,用 A∪B表示是 A类或是 B类元素的个数,用A∩B表示既是A类又是B类元素的个数。
A∪B∩C,A∪B∩C的意义类似。
容斥原理1 如果被计数的事物有两类,那么A∪B=A+B-A∩B。
容斥原理2 如果被计数的事物有三类,那么A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩B。
容斥原理的实质在于包含与排除,或形象地称之为“多退少补”。
容斥原理若用韦恩图进行分析和记忆,十分方便,留给读者研究。
例9在100名学生中,有10人既不会骑自行车又不会游泳,有65人会骑自行车,有73人会游泳,既会骑自行车又会游泳的有多少人? 解:从100名总人数中减去既不会骑自行车又不会游泳的10人,就是会骑自行车或会游泳的人数 100-10=90(人)。
既会骑自行车又会游泳的有(65+73)-90=48(人)。
例10在1至100的自然数中,不能被2整除,又不能被3整除,还不能被5整除的数,占这100个自然数的百分之几? 解:由容斥原理2知,1至100的自然数中,或能被2整除,或能被3整除,或能被5整除的自然数的个数是 =50+33+20-16-6+3=74。
所以,在1至100的自然数中,不能被2整除,又不能被3整除,还不能被5整除的自然数有100-74=26(个),占这100个自然数的26%。
六、归纳法 对于比较复杂的问题,可以先观察其简单情况,归纳出其中带规律性的东西,然后再来解决较复杂的问题。
例11 10个三角形最多将平面分成几个部分? 解。
设n个三角形最多将平面分成an个部分。
n=1时,a1=2; n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。
这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。
n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即: a3=2+2×3+4×3。