初中数学竞赛培优辅导反证法和构造法(含答案)

合集下载

初中九年级数学竞赛培优讲义全套专题10 最优化_答案[精品]

初中九年级数学竞赛培优讲义全套专题10 最优化_答案[精品]

专题10 最优化例1. 4 提示:原式=112-62-+)(x . 例2. B 提示:由-1≤y ≤1有0≤≤1,则=22+16+3y 2=142+4+3是开口向上,对称轴为71-=x 的抛物线. 例3. 分三种情况讨论:①0≤a <b ,则f ()在a ≤≤b 上单调递减,∴f (a )=2b ,f (b )=2a ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b a a b 解得⎩⎨⎧==31b a ②a <b ≤0,则f ()在a ≤≤b 上单调递增,∴f (a )=2a ,f (b )=2b ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b b a a 此时满足条件的(a ,b )不存在. ③a <0<b ,此时f ()在=0处取得最大值,即2b =f (0)=213,b =413,而f ()在=a 或=b 处取最小值2a .∵a <0,则2a <0,又∵f (b )=f (413)=021341321-2>+⨯)(,∴f (a )=2a ,即2a =2132-2+a ,则⎪⎩⎪⎨⎧=--=413172b a 综上,(a ,b )=(1,3)或(17-2-,413) 例4. (1)121≤≤x ,y 2 = 21+216143-2+-)(x .当=43时,y 2取得最大值1,a =1; 当21=x 或=1时,y 2取得最小值21,b =22.故a 2+b 2=23. (2) 如图,AB =8,设AC =,则BC =8- ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+xBF =AD =2.10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x当且仅当D ,C ,E 三点共线时,原式取最小值.此时△EBC ∽△DAC ,有224===DA EB CA BC , 从而=AC =3831=AB .故原式取最小值时,=38. (3)如图, 原式=[]2222222)24()13()32()01(032--0y x y x -+-+-+-+-+)()(=AB +BC +CD ≥AD ,其中A (-2,0),B (0,3),C (1,2y ),D (3,4),并且当点B ,C 在线段AD 上时,原式取得最小值,此时5423=x ,5432=y .例5. 由S =ay m y n a 2)(22+--,得an -S +2ay =a 22n y -,两边平方,经整理得0)()(4322222=+-+-+m a S an y S an a y a .因为关于y 的一元二次方程有实数解,所以[][]0)(34)(422222≥+-⨯--m a S an a S an a ,可化为2223-m a an S ≥)(.∵S >an ,∴am an S 3-≥,即am an S 3+≥,故S 最小=am an 3+.例6(1)设1≥1,2≥2,≥,于是1+2+…+≤1+2+…+ = 2003,即20032)1(≤+k k (+1)≤4006,∵62×63=3906<4006<4032=63×64,∴≤62. 当1=1,2=2,…61=61,62=112时,原等式成立,故的最大可能值为62.(2) 若取⎩⎨⎧=+=-222ba cb ac ,则2)1(2+=b b c 由小到大考虑b ,使2)1(+b b 为完全平方数.当b =8时,c 2=36,则c =6,从而a =28.下表说明c 没有比6更小的正整数解.显然,表中c 4-3的值均不是完全平方数,故c 的最小值为6.A 级1.7- 11- 2.1 3.14 提示:y =5-,=4-,原式=3(-3)2+14. 4.A 提示:原式=27-(a +b +c )2. 5.D 6.C 7.(1)y =-+1000(500≤≤800) (2)①S =(-500)(-+1000)=-2+1500-500000(500≤≤800);②S -(-750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件. 8.(1)-4≤m ≤2 (2)设方程两根为1,2,则12+22=4(m -34)2+1034,由此得12+22最小值为1034,最大值为101. 9.设a 2-ab +b 2=,又a 2+ab +b 2=1②,由①②得ab =12(1-),于是有(a +b )2=12(3-)≥0,∴≤3,从而a +b =.故a ,b 是方程t 2t +12k -=0的两实根,由Δ≥0,得133k ≤≤. 10.设A (1,0),B (2,0),其中 1,2是方程a 2+b +c =0的两根,则有1+2=b a -<0,12=ca >0,得1<0,2<0,由Δ=b 2-4ac >0,得b >|OA |=|1|<1,|OB |=|2|<1,∴-1<1<0,-1<2<0,于是ca=12<1,c <a .由于a 是正整数,已知抛物线开口向上,且当=-1时,对应的二次函数值大于0,即a-b +c >0,a +c >b .又a ,b ,c 是正整数,有a +c ≥b +1>2+1,从而a +c >2+1,则212>>≥,于是a >4,即a ≥5,故b b ≥5.因此,取a =5,b =5,c =1,y =52+5+1满足条件,故a +b +c 的最小值为11. 11.(1)该设备投入使用天,每天平均损耗为y =11111[500000(0500)(1500)(2500)(500)]4444x x -+⨯++⨯++⨯++++L =11(1)[500000500x ]42x x x -++⨯=500000749988x x ++. (2)y =500000749988x x ++7749999988≥=.当且仅当5000008xx =,即=2000时,等号成立.故这台设备投入使用2000天后应当报废.B 级 1.20 提示:a 2-8b ≥0,4b 2-4a ≥0,从而a 4≥64b 2≥64a ,a ≥4,b 2≥4. 2.4 提示:构造方程. 3.提示:设经过t 小时后,A ,B 船分别航行到A 1,B 1,设AA 1=,则BB 1=2,B 1A 1=4.D 提示:a 2+b 2≥2ab ,c 2+d 2≥2cd ,∴a 2+b 2+c 2+d 2≥2(ab +cd )≥.∴ab +cd ≥2,同理bc +ad ≥2,ac +bd ≥2. 5.A 提示:=s -2≥0,y =5-43s ≥0,=1-13s ≥0,解得2≤s ≤3,故s 的最大值与最小值的和为5. 6.A 提示:|AB |=C (2125,24k k k -++-),ABC S V 2+2+5=(+1)2+4≥4. 7.设此商品每个售价为元,每日利润为S 元.当≥18时,有S =[60-5(-18)](-10)=-5(-20)2+500,即当商品提价为20元时,每日利润为500元;当≤18时,S =[60+10(18-)](-10)=-10(-17)2+490,即当商品降价为17元时,每日利润最大,最大利润为490元,综上,此商品售价应定为每个20元. 8.设对甲、乙两种商品的资金投入分别为,(3-)万元,设获取利润为s ,则s 15x =s -15x =2+(9-10s )+25s 2-27=0,∵关于的一元二次方程有实数解,∴(9-10s )2-4×(25s 2-27)≥0,解得1891.05180s ≤=,进而得=0.75(万元),3-=2.25(万元).即甲商品投入0.75万元,乙商品投入2.25万元,获得利润1.05万元为最大. 9.y =5--,代入y +y +=3,得2+(-5)+(2-5+3)=0.∵为实数,∴Δ=(-5)2-4(2-5+3)≥0,解得-1≤≤133,故的最大值为133,最小值为-1. 10.设b c x a b==,则b =a ,c =a 2,于是,a +b +c =13,化为a (2++1)=13.∵a ≠0,∴2++1-13a =0 ①.又a ,b ,c 为整数,则方程①的解必为有理数,即Δ=52a-3>0,得到1≤a ≤5231≤a ≤16.当a =1时,方程①化为2+-12=0,解得1=-4,2=3. 故a min =1,b =-4,c =16 或a min =1,b =3,c =9.当a =16时,方程①化为2++316=0.解得1=-34,2=-14.故a min =16,b =-12,c =9;或a min =16,b =-4,c =1. 11.设1,2,…,n 中有r 个-1,s 个1,t 个2,则219499r s t r s t -++=⎧⎨++=⎩,得3t +s =59,0≤t ≤19.∴13+23+…+n 3=-r +s +8t =6t +19.∴19≤13+23+…+n3≤6×19+19=133.∴在t =0,s =59,r =40时,13+23+…+n 3取得最小值19;在t =19,s =2,r =21时,13+23+…+n 3取得最大值133. 12.∵把58写成40个正整数的和的写法只有有限种,∴12+22+…+402的最大值和最小值存在.不妨设1≤2≤…≤40.若1>1,则1+2=(1-1)+(2+1),且(1-1)2+(2+1)2=12+22+2(2-1)+2>12+22.于是,当1>1时,可以把1逐步调整到1,此时,12+22+…+402的值将增大.同理可以把2,3,…,39逐步调整到1,此时12+22+…+402的值将增大.从而,当1,2,…,39均为1,40=19时,12+22+…+402取得最大值,即A =22239111+++L 1442443个+192=400.若存在两个数i ,j ,使得j -i ≥2(1≤i <j ≤40),则(i +1)2+(j -1)2=i 2+j 2-2(i -j -1)<i 2+j 2.这表明,在 1,2,…,40中,若有两个数的差大于1,则把较小的数加1,较大的数减1此时,12+22+…+402的值将减小,因此,当12+22+…+402取得最小值时,1,2,…,40中任意两个数的差都不大于1.故 当1=2=…=22=1,23=24=…=40=2时,12+22+…+402取得最小值,即222111+++L 144244322个222222+++⋯+=94从而,A+B=494.。

反证法含答案.doc

反证法含答案.doc

3 a,b,c中至少有一个大于一。

6、已知a,b,c E R,a + b-^c = 0, abc = 1,求证:27、若函数/'(x)在区间[a.b]±.是增函数,那么方程/(.x) = 0在区间[a.b]±.至多只有一个实数根。

8、已知a.b,c 6(0,1),求证:(1 -a)/>,(1 -Z?)c,(1 -c)a 不能同时大于9、已知函数/(%) = «' +^^(a>l)x + 1⑴、证明:函数f(x)在(-1,+8)上为增函数;(2)、用反证法证明方程/(.r) = 0没有负数根。

10、组装甲、乙、丙三种产品,需要A、B、。

三种零件,每件甲产品用零件A、。

各2个,每件乙产品用零件A 2个,零件8 1个,每件丙产品用零件8、C各1个,如组装10件甲,5件乙,8件丙,则剩下2个A零件,1个C零件,B零件恰好用完,试证无论如何改变甲、乙、丙的件数,都不能将零件A、B、C用完。

反证法1、已知下列三个方程:x2 + 4ax - 4a + 3 = 0, x2 + (a - l)x + tz2 = 0, x2 + 2ax-2a = 0 f 至少有一个方程有实数根,求实数。

的取值范围。

2、已知函数/*(/)是(-oo,+oo)上的增函数,a,b G R ,对命题"若。

+ Z?20,贝ljf(o)+f0)2f(-。

)+/(2尸,写出其逆命题,判断其真假并证明你的结论。

3、已知Q,b,c,d e R ,且Q +Z? = c + d =1,。

+ /?』〉1 ;求证:a,b,c,d中至少有一个是负数。

4、已知面肱内有两条相交直线。

,力(交点为p)和面N平行;求证:面M 〃面N。

5、若a,b,c均为实数,Ka = x2 -2y — = y2 -2z + — ,c = z2 -2x-^- —;求证:2 3 6Q,b,c中至少有一个大于0.:.a-^-b + c >0 ,这与tz+Z? + c <0相矛盾;?.假设不成立;a,b,c中至少有一个大于0.36、假设Q,b,C都小于等于一2abc = 1;.\ a,b,c三者同为正或一正两负;a +b +c = 0;:. a,b f c中只能是一正两负;不妨设a > Q,b <Q,c <0 ,则b + c = -a,be =—,即b,c 为方程x1 + ax+ — = 0 的两个a a负根;A = a2-->0;.-.fl>V4>3 —=-,这假设相矛盾;a V 8 23Q,b,c中至少有一个大于二o27、假设方程/(.x) = 0在区间[,麟]上至少有两个根。

初中数学竞赛辅导讲义及习题解答 第30讲 从创新构造入手

初中数学竞赛辅导讲义及习题解答 第30讲 从创新构造入手

第三十讲 从创新构造入手有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解.所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的.构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有:1.构造方程;2.构造函数;3.构造图形;4.对于存在性问题,构造实例;5.对于错误的命题,构造反例;6.构造等价命题等.【例题求解】【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求证:1))(())((22211211-=++=++b a b a b a b a .思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻.注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等.【例2】 求代数式1342222+-+++x x x x 的最小值.思路点拨 用一般求最值的方法很难求出此代数式的最小值.222222)30()2()10()1(13422-+-+-++=+-+++x x x x x x ,于是问题转化为:在x 轴上求一点C(1,0),使它到两点A(一1,1)和B(2,3)的距离和(CA+CB)最小,利用对称性可求出C 点坐标.这样,通过构造图形而使问题获解.【例3】 已知b 、c 为整数,方程052=++c bx x 的两根都大于1-且小于0,求b 和c 的值.思路点拨 利用求根公式,解不等式组求出b 、c 的范围,这是解本例的基本思路,解法繁难.由于二次函数与二次方程有深刻的内在联系,构造函数,令c bx x y ++=25,从讨论抛物线与x 轴交点在1-与0之间所满足的约束条件入手.【例4】 如图,在矩形ABCD 中,AD=a ,AB=b ,问:能否在Ab 边上找一点E ,使E 点与C 、D 的连线将此矩形分成三个彼此相似的三角形?若能找到,这样的E 点有几个?若不能找到,请说明理由.思路点拨 假设在AB 边上存在点E ,使Rt △ADE ∽Rt △BEC ∽Rt △ECD ,又设AE=x ,则BC BE AE AD =,即ax b x a -=,于是将问题转化为关于x 的一元二次方程是否有实根,在一定条件下有几个实根的研究,通过构造方程解决问题.【例5】 试证:世界上任何6个人,总有3人彼此认识或者彼此不认识.思路点拨 构造图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比如2个人彼此认识就把连接2个人的对应点的线段染成红色;2个人彼此不认识,就把相应的线段染成蓝色,这样,有3个人彼此认识就是存在一个3边都是红色的三角形,否则就是存在一个3边都是蓝色的三角形,这样本题就化作:已知有6个点,任何3点不共线,每2点之间用线段连结起来,并染上红色或蓝色,并且一条边只能染成一种颜色.证明:不管怎么染色,总可以找出三边同色的三角形.注:“数缺形时少直观,形缺少时难入微”数形互助是一种重要的思想方法,主要体现在:(1)几何问题代数化;(2)利用图形图表解代数问题;(3)构造函数,借用函数图象探讨方程的解.利用代数法解几何题,往往是以较少的量的字母表示相关的几何量,根据几何图形性质列出代数式或方程(组),再进行计算或证明.特别地,证明几何存在性的问题可构造方程,利用一元二次方程必定有解的的的代数模型求证;应用为韦达定理,讨论几何图形位置的可能性.有些问题可通过改变形式或换个说法,构造等价命题或辅助命题,使问题清晰且易于把握.对于存在性问题,可根据问题要求构造出一个满足条件的结论对象,即所谓的存在性问题的“构造性证明”.学历训练1.若关于x 的方程012)1(22=-+-mx x m 的所有根都是比1小的正实数,则实数m 的取值范围是 .2.已知a 、b 、c 、d 是四个不同的有理数,且1))((=++d a c a ,1))((=++d b c b ,那么))((c b c a ++的值是 .3.代数式9)12(422+-++x x 的最小值为 .4.A 、B 、C 、D 、E 、F 六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛 了5、4、3、2、1场,则还未与B 队比赛的球队是 .5.若实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的取值范围是 .6.设实数分别s 、t 分别满足0199192=++s s ,019992=++t t ,并且1≠st ,求ts st 14++的值.7.已知实数a 、b 、c 满足0))((<+++c b a c a ,求证:)(4)(2c b a a c b ++>-.8.写出10个不同的自然数,使得它们中的每个是这10个数和的一个约数,并说明写出的10个自然数符合题设条件的理由.9.求所有的实数x ,使得xx x x 111-+-= .10.若是不全为零且绝对值都小于106的整数.求证:2110132>++c b a .11.已知关于x 的方程k x x =+-1322有四个不同的实根,求k 的取值范围.12.设10<<z y x ,,0,求证1)1()1()1(<-+-+-x z z y y x .13.从自然数l ,2,3,…354中任取178个数,试证:其中必有两个数,它们的差为177.14.已知a 、b 、c 、d 、e 是满足8=++++e d c b a ,162222=++++e d c b a 的实数,试确定e 的最大值.15.如图,已知一等腰梯形,其底为a 和b ,高为h .(1)在梯形的对称轴上求作点P ,使从点P 看两腰的视角为直角;(2)求点P 到两底边的距离;(3)在什么条件下可作出P 点?参考答案。

初中数学竞赛精品标准教程及练习34反证法

初中数学竞赛精品标准教程及练习34反证法

初中数学竞赛精品标准教程及练习34反证法反证法是数学中一种常用的证明方法,它通过假设待证命题为假,然后推导出矛盾的结论,从而推断待证命题为真。

本文将介绍反证法的基本思想和应用,并提供一些相关练习。

一、反证法的基本思想反证法的基本思想是假设待证命题为假,然后推导出矛盾的结论,从而推断待证命题为真。

具体步骤如下:1.假设待证命题为假。

2.将待证命题的否定形式作为假设,并推导出矛盾的结论。

3.根据矛盾的结论,得出待证命题为真。

二、反证法的应用反证法在数学竞赛中常用于证明诸如存在性、唯一性、等式、不等式等问题。

下面通过一些例题来说明反证法的具体应用。

例1:证明3的平方根是无理数。

假设3的平方根是有理数,即可以表示为分数的形式,即√3=a/b,其中a和b互质且b不等于0。

将该等式两边平方得到3=a^2/b^2,即3b^2=a^2、说明a^2为3的倍数。

根据整数的唯一分解定理,如果一个整数的平方是3的倍数,那么该整数也是3的倍数。

假设a不是3的倍数,则可以得出a^2不是3的倍数,与前面的结果矛盾。

所以,假设不成立,即3的平方根是无理数。

例2:已知一条直线与平面上两个不在同一条直线上的点A和B重合,证明该直线与平面上所有点重合。

假设该直线与平面上其他点C不重合,即不在同一条直线上。

由于直线与平面上的任意两点确定一条直线,所以A、B、C三点确定三条不同的直线。

由于A、B两点与直线重合,所以这三条直线相交于同一点,即A、B、C三点共线,与题设矛盾。

所以,假设不成立,即该直线与平面上所有点重合。

三、练习题1.证明:不存在最大的自然数。

2.已知a、b、c是正整数,且满足a^2+b^2=4c^2,证明a和b不能同时为奇数。

3.证明:根号2是无理数。

4.已知a、b、c是正整数,且满足a^2+b^2=c^2,证明a、b、c不能同时为奇数。

以上是一些关于反证法的练习题,希望你能通过这些练习加深对反证法的理解和应用。

反证法是一种常用的数学证明方法,通过假设待证命题为假,推导出矛盾的结论,从而推断待证命题为真。

初中数学竞赛专项训练之逻辑推理附答案

初中数学竞赛专项训练之逻辑推理附答案

初中数学竞赛专项训练之逻辑推理一、选择题:1、世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队得0分,平局时两队各得1分,小组赛完以后,总积分最高的两个队出线进入下轮比赛,如果总积分相同,还要按净胜球排序,一个队要保证出线,这个队至少要积 ( )A. 6分B. 7分C. 8分D. 9分2、甲、乙、丙三人比赛象棋,每局比赛后,若是和棋,则这两个人继续比赛,直到分出胜负,负者退下,由另一个与胜者比赛,比赛若干局后,甲胜4局,负2局;乙胜3局,负3局,如果丙负3局,那么丙胜 ( )A. 0局B. 1局C. 2局D. 3局3、已知四边形ABCD 从下列条件中①AB ∥CD ②BC ∥AD ③AB =CD ④BC =AD ⑤∠A =∠C ⑥∠B =∠D ,任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况有 ( )A. 4种B. 9种C. 13种D. 15种4、某校初三两个毕业班的学生和教师共100人,一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形阵(排数≥3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空档处,那么满足上述要求的排法的方案有 ( )A. 1种B. 2种C. 4种D. 0种5、正整数n 小于100,并且满足等式n n n n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡632,其中[]x 表示不超过x 的最大整数,这样的正整数n 有( )个A. 2B. 3C. 12D. 166、周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,张老师和8个学生跳舞……依次下去,一直到何老师,他和参加跳舞的所有学生跳过舞,这个晚会上参加跳舞的学生人数是 ( )A. 15B. 14C. 13D. 127、如图某三角形展览馆由25个正三角形展室组成,每两个相邻展室(指有公共边的小三角形)都有门相通,若某参观者不愿返回已参观过的展室(通过每个房间至少一次),那么他至多能参观( )个展室。

初中数学竞赛题汇编(代数部分1)

初中数学竞赛题汇编(代数部分1)

初中数学竞赛题汇编(代数部分1)江苏省泗阳县李口中学沈正中精编、解答例1若m2=m+1,n2=n+1,且m≠n,求m5+n5的值。

解:由已知条件可知,m、n是方程x2-x-1=0两个不相等的根。

∴m+n=1,mn=-1∴m2+n2=(m+n)2-2mn=3或m2+n2=m+n+2=3又∵m3+n3=(m+n) (m2-mn+n2)=4∴m5+n5=(m3+n3) (m2+n2)-(mn)2(m+n)=11例2已知解:设,则u+v+w=1……①……②由②得即 uv+vw+wu=0将①两边平方得u2+v2+w2+2(uv+vw+wu)=1 所以u2+v2+w2=1即例3已知x4+x3+x2+x+1=0,那么1+x+x2+x3+x4+……x2014=。

解:1+x+x2+x3+x4+…x2014=(1+x+x2+x3+x4)+(x5+x6+x7+x8+x9)+…+(x2010+x2011+x2012+x2013+x2014)=(1+x+x2+x3+x4)+x5(1+x+x2+x3+x4)+…+ x2010(1+x+x2+x3+x4)=0例4:证明循环小数为有理数。

证明:设=x…①将①两边同乘以100,得…②②-①,得99x=261.54-2.61 即x=。

例5:证明是无理数。

证明(反证法):假设不是无理数,则必为有理数,设=(p、q是互质的自然数),两边平方有p2=2q2…①,所以p一定是偶数,设p=2m(m为自然数),代入①整理得q=2m2,所以q也是偶数。

p、q均为偶数与p、q是互质矛盾,所以不是有理数,即为有理数。

例6:;;。

解:例7:化简(1);(2)(3);(4);(5);(6)。

解:(1)方法1方法2 设,两边平方得:由此得解之得或所以。

(2)(3)(4)设,两边平方得:由此得解之得所以=+1+(5)设则所以(6)利用(a+b)3=a3+b3+3ab(a+b)来解答。

设两边立方得:即x3-6x-40=0将方程左边分解因式得(x-4)(x2+4x+10)=0因(x2+4x+10)=(x+2)2+6>0 所以(x-4)=0 ,即x=4所以=4例8:解:用构造方程的方法来解。

初中竞赛数学用构造法解题(含解答)

初中竞赛数学用构造法解题(含解答)

用构造法解题归类当我们在对所碰到的数学命题认真的观察、仔细的分析前提下,依托所掌握的知识背景,充分发挥想像力,进行灵巧的构思,在已知与未知之间建立起一个优美的数学模型。

通过对此模型的研究,达到完成解决命题的目的。

这种方法称为构造法。

一、 构造几何图形通过构造图形去解决数学问题,充分体现了一种非常重要的数学思想方法:数形结合法。

“数”与“形”是数学中的两个最基本的概念,它们是数学的两大支柱。

数量关系抽象、几何图形直观。

将这两个既对立、又统一的概念巧妙地加以沟通,是研究、解决数学问题的一种重要的方法。

(1)构造直角梯形例1 设m ,n ,p 为正整数且的最小值。

求nm p p n m +=-+,0222 解:由题意,运用勾股定理的逆定理构造直角梯形,易知当m ≠n 时,AE >CD ,当m=n 时,AE=CD ,所以AE ≥CD 。

即0<m+n ≤2p ,所以n m p +≥22即 n m p +的最小值为22。

(2)构造直角三角形例1 求22.50的正切函数值。

思路:我们可以借助450角的函数值,通过构造等腰直角三角形支解决。

同样这种题目也可以变为求150的正切值,请同学们自己支思考并解决。

(3)构造矩形例 1 凸八边形ABCDEFGH 的八个内角都相等,且AB 、BC 、CD 、DE 、EF 、FG 的长度为。

、、、、、232231225,求这个八边形的周长。

思路:凸八边形的每个内角都相等,那么它们应等于135度,每个角的外角都等于45度,我们可延长八边形的边AB 、EF 与CD 、GH ,得一矩形,矩形的四个角为等腰直角三角形,据等腰直角三角形的边的关系和矩形对边相等的关系不难求出凸八边形ABCDEFGH 的周长为2910+。

评注:如果是凸八边形的内角都相等,且知道连续四边的长,可借助矩形去解决。

(4)构造等腰三角形例1 如图所示,四边形ABCD 中,AB=CD ,E 、F 分别为AD 、BC 的中点,BA 、CD 的延长线分别交FE 的延长线于M 、N ,求证:∠AME=∠DNE 。

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优辅导 反证法和构造法
一、选择题:
1.若假设“整数a,b,c 中恰有一个偶数”不成立,则有( ) A 、a,b,c 都是奇数 B 、a,b,c 都是偶数
C 、a,b,c 中至少有两个偶数
D 、a,b,c 都是奇数或至少有两个偶数 2.已知△ABC 的周长为18,c b a 、、三边的关系为c b a ≤≤,则( ) A 、a <6 B 、a >6 C 、a >7 D 、6≤a
3.A 、B 、C 、D 、E 、F 、六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛了5、4、3、2、1场,则还未与B 队比赛的球队是( )
A 、C 队
B 、D 队
C 、E 队
D 、F 队 4.设等式在实数范围内成立,其中a 、x 、y 是两两不同的
实数,则
的值是( )
A 、3
B 、
31 C 、2 D 、3
5 5.关于x 的一元二次方程2a x 2
-2x-3a-2=0的一根大于1,另一根小于1,则a 的取值范围
是 ( )
A 、a >0或a <-4.
B 、a <-4.
C 、a >0.
D 、-4<a <0.
二、填空题
6.用反证法证明:“三角形中最多有一个角是直角或钝角。

”时,第一步应反设:
________________________________________________. 7.不查表可求得=︒5.22cot _________.
8.321-+-++x x x 的最小值是______________.
9.若28,142
2=++=++x xy y y xy x ,则=+y x _________.
10.已知))((4)2a c b a c b --=-(且0≠a ,则a
c
b +=______________.
三、解答题
11.设 c b a ,, 为互不相等的非零实数,求证三个方程:022
=++c bx ax ,
022=++a cx bx ,022=++b ax cx 不可能都有两个相等的实数根。

12.求证:ABC ∆内不存在这样的点P ,使得过P 点的任意一条直线把ABC ∆的面积分成相等的两部分。

13.为使关于x 的方程b x x =+-1322
有四个不同的实根,求b 的变化范围。

14.设d c b a 、、、都是正数。

证明:存在三边长等于
ab d b a cd d c a c b 2,2,22222222+++++++的三角形,并计算这个三角形的
面积。

参考答案
一、选择题: 1.选D 。

整数a,b,c 中恰有一个偶数。

这个命题中的“恰”字意思是“刚刚只有”要否定它,要具备两层含义:①没有②有但是不只一个。

故选D 。

2.选D 。

假设a > 6,则a b c ≥≥> 6,那么c b a ++> 18。

这与△ABC 的周长为18矛盾。

故选D 。

3.选C 。

构造图形解题。

我们把队伍看作点(每三点不共线)。

已经赛过的两只球队用线段连接起来。

由图形,我们可以清晰地看到,E 只和A 之间有连线段。

故还未与B 队比赛的球队是E 队。

4.选B
由二次根式的定义,构造不等式组,得:a(x-a)≥0,x-a ≥0,从而可知a ≥0; 同理,由a(y-a)≥0,a-y ≥0知a ≤0。

∴a=0,此时已知等式化为。

从而x=-y ≠0。

到此易知原式=3
1。

5.解:选A 。

构造二次函数y=2ax 2-2x-3a-2.原方程一根大于1,一根小于1, 则二次函数y 与x 轴的交点在点(l ,0)两侧,观察图象可得
解这两个不等式组,得a >0或a <-4.
二、填空题
6.分析:本题应注意“最多有一个”包含着“只有一个”和“一个都没有”两种情况,它
的反面是“不最多有一个”,即“有两个”、“有三个”,合起来为“至少有两个”,因此假设为“三角形中至少有两个角是直角或钝角”。

7.21+。

通过构造等腰直角三角形求得。

8.最小值是4。

根据绝对值的几何意义将问题变化为:如图,在数轴上有三点A 、B 、C ,其所对应的数分别是-1、2、3,在数轴上求一点P 使PA+PB+PC 最小。

显然,当P 点在B 点时PA+PB+PC 最小,最小值是4。

9.=+y x 6或-7。

分析:已知的两个方程都是二元二次方程,很难降次或消元。

考虑把两方程相加可构造关于y x ,的对称式42)()2(22=++++y x y xy x 即
042)()2=-+++y x y x (视y x +为一整体,解此一元二次方程可得=+y x 6或-7。

10.值为2
由已知条件联想到一元二次方程的求根公式。

故构造方程0))(()(2
=--+-+a c b a x c b x ∴()[]()[]0=----a c x b a x ∴a c x b a x -=-=21, ∵△=0,故a c b a -=- ∴c b a +=2 ∴=+a
c
b 2
三、解答题
11.反证之,若题中方程都有两个相等的实数根,则有

但由题意上式应大于0,此矛盾证得本题。

-1
1
2
3
12.证明:假设在ABC ∆内存在一点P ,使得过P 点的任一条直线把ABC ∆的面积分成相等的两部分(如图)。

连接CP BP AP 、、并分别延长交对边F E D 、、。

由假设,
ADC ABD S S ∆∆=,于是D 为BC 的中点,同理F
E 、分别是AB AC 、的中点,从而P 是ABC ∆的重心。

过P 作BC 的平行线分别交AC AB 、于N M 、,则
9
4
=
∆∆A B C
A M N S S ,这与假设过P 点的任一条直线把ABC ∆的面积分成相等的两部分矛盾。

13.构造函数解题。

关于x 的方程b x x =+-1322
有四个不同的实根,即函数
1322+-=x x y 与函数b y =的图象有四个不同的交点。

分别作出这两个函数的图
象。

其中函数1322
+-=x x y 的图象是函数1322+-=x x y 的图象在x 轴下方的部分关于x 轴作对称变换到x 轴上方,在x 轴上方的部分不变而得到的。

函数b y =的图象是一条平行于x 轴的直线。

从图象中可以看出当0<b<2时,直线b y =与函数1322
+-=x x y 的图象有四个不同的交点也即原方程有四个不同的实数根。

14.注意到ab d b a cd d c a c b 2,2,2
2222222+++++++的特点,
构造以d c b a ++、为边的矩形ABCD (如图)。

于是,22c b EF +=
,2)(22222cd d c a d c a CE +++=++=
CF =,2)(22222ab d b a b a d +++=
++
所以CEF ∆就是满足题设要求的三角形。

由图得CEF ∆的面积:
)(CBE FAE CD F AABCD CEF S S S S S ∆∆∆∆++-=钜形
111
()()[()()]
222
1
()2
a b c d d a b bc a c d ac bc bd =++-++++=++。

相关文档
最新文档