《大学物理AI》作业 No.04 机械能 、机械能守恒定律(参考解答)

合集下载

大学物理-机械能守恒定律

大学物理-机械能守恒定律

解:重力的功:W=mgl( cosf-cos45°) ,根据动能定理有:
1 mv 2 mgl(cosf cos45)
2
O
所以 v 2gl (cosf cos45)
当f=10°时, v=2.33 m/s (亦可用功能原理求解)
45 °
f
l T
B'
B
C'
A
C mg
19
三、计算题
1.一质量为m的质点在沿x轴方向的合外力 F F0ekx作用下(其中,F0 ,k 为正的恒量),从x=0处自静止出发,求它沿x轴运动时所能达到的最大速 率。
Fy
dy
Fz
dz)
xB
Ax xA Fxdx
yB
Ay yA Fydy
zB
Az zA Fzdz
A Ax Ay Az
6
功的单位(焦耳)
1J 1Nm
平均功率 P A
t
瞬时功率
P
lim
ΔA
dW
Fv
t0 Δt
dt
P Fvcos
功率的单位(瓦特)
1 W 1 J s1 1 kW 103 W
(a)

即,各力作功之和等于合力作的功。 但对质点系:写不出像质点那样的简单式子, 即,各力作功之和不一定等于合力的功。
10
例 1 一质量为 m 的小球 竖直落入水中, 刚接触水面时
其速率为 v0 .设此球在水中所
受的浮力与重力相等,水的阻
力为 Fr bv , b 为一常量.
求阻力对球作的功与时间的函
v
ds
P
17
m 1.0 kg l 1.0 m
0 30o
θ 10o
A mgl (cos cos0 )

机械能守恒定律习题及答案

机械能守恒定律习题及答案

机械能守恒定律习题及答案机械能守恒定律习题及答案机械能守恒定律是物理学中的重要概念,它指出在没有外力做功的情况下,一个物体的机械能保持不变。

这个定律在解决各种物理问题时非常有用,下面将介绍一些与机械能守恒定律相关的习题及答案。

习题一:一个小球从高度为h的位置自由落下,落地后以速度v反弹,反弹高度为h/2。

求小球的初始速度。

解答:根据机械能守恒定律,小球在自由落体过程中的机械能等于反弹过程中的机械能。

自由落体过程中,小球的机械能只有动能,反弹过程中,小球的机械能有动能和势能。

在自由落体过程中,小球的动能为mgh,势能为0。

在反弹过程中,小球的动能为mv^2/2,势能为mgh/2。

根据机械能守恒定律,可以得到以下等式:mgh = mv^2/2 + mgh/2化简后可得:gh = v^2/2 + gh/2再次化简可得:gh/2 = v^2/2代入反弹高度为h/2,可得:gh/2 = v^2/2解得:v = sqrt(gh)所以小球的初始速度为sqrt(gh)。

习题二:一个弹簧恢复力常数为k的弹簧,一个质量为m的物体以速度v撞向弹簧,撞击后弹簧被压缩到最大距离x。

求物体的初始动能和弹簧的势能。

解答:在撞击前,物体的动能为mv^2/2,弹簧的势能为0。

在撞击后,物体的动能为0,弹簧的势能为kx^2/2。

根据机械能守恒定律,可以得到以下等式:mv^2/2 = kx^2/2化简后可得:mv^2 = kx^2解得:v = sqrt(k/m) * x所以物体的初始动能为mv^2/2 = kx^2/2,弹簧的势能为kx^2/2。

习题三:一个质量为m的物体以速度v从高度为h的位置滑下,滑到底部后撞击一个质量为M的物体,撞击后两个物体一起向上弹起,达到最高点时的高度为H。

求M与m的比值。

解答:在滑下过程中,物体的机械能只有动能,滑到底部后的动能为mv^2/2。

在弹起过程中,物体的机械能有动能和势能,两个物体的总机械能为(M+m)gH。

机械能守恒定律(含答案)

机械能守恒定律(含答案)
A. B. C. D.
9.质量为 的物体,从静止开始以 的加速度下落高度 的过程中()
A.物体的机械能守恒B.物体的机械能减少
C.物体的重力势能减少 D.物体克服阻力做
10.某同学身高 ,在运动会上参加跳高比赛,起跳后身体横着越过了 高度的横杆,据此可估算他起跳时竖直向上的速度大约为( 取 )
A. B. C. D.
15.如图所示,斜面倾角 ,小球从斜面上A点做平抛运动的初动能为6J,不计空气阻力,小球落在斜面上P点的动能为多少.
16.如图所示,小球用不可伸长的长度为 的轻绳悬于O点,小球A在最低点需获得多大的速度才能在竖直平面内做完整的圆周运动?
答案:
1、D 2、CD 3、ABD 4、D 5、C 6、BD 7、A 8、B
11.如图所示,轻弹簧的一端悬挂于O点,另一端与小球P相连接,将P提起使弹簧处于水
平位置且无形变,然后自由释放小球,让它自由摆下,在小球摆到最低点的过程中()
A.小球的机械能守恒
B.小球的动能增加
C.小球的机械能减小
D.不能确定小球的机械能是否守恒
12.一个质量为 的物体以 的加速度竖直向下加速运动,则在此物体下降 高度的过程中,物体的重力势能减小了_____,动能增加了______,机械能增加了_______.
13.如图所示,ABC是一段竖直平面内的光滑的 圆周长的圆形轨道,圆轨道的半径为R,O为圆心,OA水平,CD是一段光滑的水平轨道,一根长 粗细均匀的细杆开始时正好搁在圆轨道的两个端点上,现由静止开始,释放细杆,则此杆最后在水平轨道上滑行的速度为________.
14.一人在高出地面 处抛出一个质量为 的小球,不计空气阻力,小球落地时的速率为 ,则人抛球时对小球做的功为________.

物理机械能守恒定律题及解析

物理机械能守恒定律题及解析

物理机械能守恒定律题及解析
题目:一个质量为10kg的物体,从高度为5m的斜面顶端下滑,初始速度为零,斜面底端有一个垂直向上的弹簧。

物体压缩弹簧后被弹起,最后飞出斜面,求物体飞出斜面的速度和弹簧对物体做的功。

解析:根据机械能守恒定律,物体在运动过程中,其重力势能和动能之间相互转化,而总的机械能保持不变。

在本题中,物体在斜面上运动,重力势能转化为动能,而弹簧的弹力对物体做功,将一部分动能再次转化为弹簧的势能,最终物体飞出斜面时,其速度和弹簧的势能分别为:
1.物体飞出斜面的速度
根据机械能守恒定律,物体在斜面上的重力势能和动能之和保持不变,即:
mgh + 0 = 1/2 m v^2
其中,m为物体的质量,g为重力加速度,h为物体在斜面上的高度,v为物体在斜面上的速度。

根据题目给出的条件,可以计算出物体在斜面上的速度:
v = sqrt(2gh) = sqrt(2 x 9.8 x 5) = 7.98 m/s
2.弹簧对物体做的功
弹簧对物体做功,将物体的动能转化为弹簧的势能,根据机械能守恒定律,有:
1/2 m v^2 = W
其中,m为物体的质量,v为物体在斜面上的速度,W为弹簧对物体做的功。

根据题目给出的条件,可以计算出弹簧对物体做的功:
W = 1/2 m v^2 = 1/2 x 10 x 7.98^2 = 304.1 J
因此,弹簧对物体做的功为304.1焦耳。

大学物理AI能量守恒定律

大学物理AI能量守恒定律


zh
in
an
dx = 3c t 2 dt 由题意,质点所受阻力大小为 f = k v 2 = 9 k c 2 t 4 = 9 k c 2 / 3 x 4 / 3 � � l 27 2 / 3 7 / 3 则阻力的功为 Af = ∫ f ⋅ dx = − ∫ 9 k c 2 / 3 x 4 / 3dx = − kc l 0 7
5 ~ 10 秒内再应用动量定理: 10 秒末速度

10
0
20dt = mv10 − mv5 得
v10 =
20(10 − 5) + v5 = 20 + 20 = 40 (m ⋅ s −1 ) 5
根据质点的动能定理,10 秒内变力作的功为
1 2 1 A = mv10 − 0 = × 5 × 40 2 = 4000 (J) 2 2 �
e. co m
(C)
2.今有一劲度系数为 k 的轻弹簧,竖直放置,下端悬一质量为 m 的小球。开始时使弹簧 为原长而小球恰好与地接触。今将弹簧上端缓慢地提起,直到小球刚能脱离地面为止, � 在此过程中外力作功为 F
m2 g 2 2k
R1 − R 2 R1 R 2
选C
4.质量为 m 的质点在外力作用下,其运动方程为 r = A cos ω t i + B sin ω t j , 式中 A 、B、 ω 都是正的常数。则力在 t 1 = 0 到 t 2 = π /( 2 ω ) 这段时间内所作的功为 [
对于 B 点,机械能为:
3.如图所示,质量 m = 2 kg 的物体从静止开始,沿 1 / 4 圆弧从 A 滑到 B, 在 B 处速度的大小为 v = 6 m ⋅ s −1 , 已知圆的半径 R = 4m, 则 物体从 A 到 B 的过程中摩擦力对它所作的功为

高考物理试题之机械能守恒定律

高考物理试题之机械能守恒定律

高考物理试题之机械能守恒定律1. 引言在高中物理学中,机械能守恒定律是一个重要的概念。

它揭示了在没有外力或有限外力作用下,机械能(包括动能和势能)在系统中是守恒的。

本文旨在介绍机械能守恒定律的基本概念、应用及相关问题的解答。

2. 机械能守恒定律的基本概念机械能守恒定律是指在一个孤立系统中,机械能的总量保持不变。

机械能由动能和势能组成,分别是系统中物体的运动能和位置能。

在没有外力或外力做功为零的情况下,机械能守恒定律成立。

3. 机械能的表示及计算公式通常情况下,机械能表示为E,它等于动能(KE)和势能(PE)的和。

动能的表达式为1/2mv²,其中m为物体的质量,v为物体的速度。

势能的表达式根据不同的情况有所不同,比如,在重力势能的情况下,势能等于mgh,其中g为重力加速度,h为物体的高度。

机械能守恒定律的计算公式可以表示为:E₁ = E₂,其中E₁为系统的初始机械能,E₂为系统的最终机械能。

4. 机械能守恒定律在实际问题中的应用机械能守恒定律在解决一些实际问题中起到了重要作用,下面将以几个常见的实例来说明:4.1. 轮滑者下坡问题假设一个轮滑者沿着一条陡峭的斜坡下滑,在没有摩擦的情况下,轮滑者的机械能在下滑过程中守恒。

根据机械能守恒定律,轮滑者的动能将转化为势能,从而使得速度减小,高度增加。

可以利用机械能守恒定律来解题,求解轮滑者在下滑过程中的速度和高度的变化。

4.2. 弹簧振子问题考虑一个弹簧振子,当振子从最大位移处向相反方向振动时,机械能守恒定律成立。

在这种情况下,振动的幅度会逐渐减小,但总的机械能保持不变。

通过机械能守恒定律,可以求解振子在不同时间点的速度和位移。

4.3. 绳子问题当一个物体通过一个固定点绕圆周运动时,机械能守恒定律也成立。

在这种情况下,物体的动能会转化为势能,从而使得物体在绳子上升的过程中速度减小,高度增加。

通过机械能守恒定律,可以解决绳子上物体的速度和高度变化问题。

机械能守恒定律及其应用(含答案)

专题机械能守恒定律及其应用【考情分析】1.掌握重力势能、弹性势能的概念,并能计算。

2.掌握机械能守恒的条件,会判断物体的机械能是否守恒。

3.掌握机械能守恒定律的三种表达形式,理解其物理意义,并能熟练应用。

【重点知识梳理】知识点一重力做功与重力势能1.重力做功的特点(1)重力做功与路径无关,只与初末位置的高度差有关。

(2)重力做功不引起物体机械能的变化。

2.重力势能(1)公式:E p=mgh。

(2)特性:①标矢性:重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同。

②系统性:重力势能是物体和地球所组成的“系统”共有的。

③相对性:重力势能的大小与参考平面的选取有关。

重力势能的变化是绝对的,与参考平面的选取无关。

3.重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。

(2)定量关系:重力对物体做的功等于物体重力势能的减少量。

即W G=E p1-E p2=-ΔE p。

知识点二弹性势能1.定义:物体由于发生弹性形变而具有的能.2.弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加,即W =-ΔE P.知识点三机械能守恒定律及其应用1.机械能:动能和势能统称为机械能,其中势能包括重力势能和弹性势能.12.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.(2)守恒条件:只有重力或系统内弹力做功.(3)常用的三种表达式:①守恒式:E1=E2或E k1+E P1=E k2+E P2.(E1、E2分别表示系统初末状态时的总机械能)②转化式:ΔE k=-ΔE P或ΔE k增=ΔE P减.(表示系统势能的减少量等于动能的增加量)③转移式:ΔE A=-ΔE B或ΔE A增=ΔE B减.(表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能)【典型题分析】高频考点一机械能守恒的理解与判断【例1】(2019·浙江选考)奥运会比赛项目撑杆跳高如图所示,下列说法不正确的是( )A.加速助跑过程中,运动员的动能增加B.起跳上升过程中,杆的弹性势能一直增加C.起跳上升过程中,运动员的重力势能增加D.越过横杆后下落过程中,运动员的重力势能减少动能增加【答案】B【解析】加速助跑过程中速度增大,动能增加,A正确;撑杆从开始形变到撑杆恢复形变时,先是运动员部分动能转化为杆的弹性势能,后弹性势能转化为运动员的动能与重力势能,杆的弹性势能不是一直增加,B错误;起跳上升过程中,运动员的高度在不断增大,所以运动员的重力势能增加,C正确;当运动员越过横杆下落的过程中,他的高度降低、速度增大,重力势能被转化为动能,即重力势能减少,动能增加,D正确。

大学物理机械能守恒定律

弹性碰撞
弹性碰撞中,两物体之间的相互作用力是保守力,因此系统机械能守恒。通过分析碰撞前 后的速度、动量等物理量,可以求解碰撞过程中的能量转化和损失情况。
03 弹性碰撞中机械能守恒
Байду номын сангаас
完全弹性碰撞过程描述
碰撞前后动能守恒
在完全弹性碰撞中,两个物体碰撞前后的总动能保持不变。
碰撞前后动量守恒
同时,两个物体碰撞前后的总动量也保持不变。
例题3
一质量为 $m$ 的匀质球体,半径为 $R$, 绕通过其中心且与球面垂直的轴以角速度 $omega$ 转动。若在球面上挖去一个质 量为 $Delta m$ 的小球体,求剩余部分 的动能和势能变化。
06 振动系统中机械能守恒
简谐振动过程中能量转化关系
简谐振动中,动能和势能不断相 互转化,但总机械能保持不变。
在平衡位置,动能最大,势能最 小;在最大位移处,动能最小,
势能最大。
简谐振动的能量与振幅的平方成 正比。
受迫振动和共振现象中能量传递特点
受迫振动中,驱动力的频率接 近系统固有频率时,振幅显著 增大,能量传递效率提高。
共振现象是系统固有频率与外 界驱动力频率相等时发生的, 此时能量传递效率最高。
在共振现象中,系统的振幅达 到最大值,能量在驱动力和系 统之间高效传递。
典型例题分析
例题1
一弹簧振子在光滑水平面上做简谐振动,分析其在振动过程中的能 量转化关系。
例题2
一单摆受到周期性驱动力作用,分析其在受迫振动过程中的能量传 递特点。
例题3
一RLC振荡电路在共振状态下工作,分析电路中的能量转化和传递过 程。
THANKS FOR WATCHING
感谢您的观看

(完整word)机械能守恒定律习题(含答案),推荐文档

第六节机械能守恒定律1、如下图所示,小球从高处下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的是()(A)重力势能和动能之和总保持不变(B)重力势能和弹性势能之和总保持不变(C)动能和弹性势能之和总保持不变(D)重力势能、弹性势能和动能之和总保持不变2、在利用电磁打点计时器验证自由下落过程中机械能守恒的实验中,电磁打点计时器是用来测量____的仪器,某学生在实验时打出的纸带如图所示,其中O为重锤由静止下落时打下的第一个点,A、B、C、D为选出的计数点,每相邻两点间都有一个点未画出,用刻度尺测得各点到O点的距离都标在纸带上,实验所在地重力加速度g=9.8m/s2,根据数据计算:打下C 点时重锤的速度大小v= (填计算式)=(填数值)。

重锤从O由静止下落到打C点时的动能增加为mJ,重力势能的减力量为mJ.3、(1)用落体法验证机械能守恒定律,下面哪些测量工具是必需的?( )(A)天平(B)弹簧秤(C)刻度尺(D)秒表(2)图是实验中得到的一条纸带。

已知打点计时器所用电源的频率为50Hz,当地的重力加速度g=9.80m/s2,测得所用重物的质量为1.00kg,纸带上第0、1两点间距离接近2mm,A、B、C、D是连续打出的四个点,它们到O点的距离如图所示,则由图中数据可知,重物由O点运动到C点,重力势能的减少量小于________J,动能的增加量等于________J(取三位有效数字)。

动能增量小于重力势能的减少量的原因主要是_________________________________________________________________________________________4、在验证机械能守恒定律的实验中,得到一条打了点的纸带,如图(甲)所示,点a为释放纸带前打的点,b、c、d 为连续的三点,由此能否验证机械能守恒定律?若得到一条纸带如图(乙)所示,a仍为释放纸带前打的点,c、d为连续的两点。

机械能守恒定律(含答案)剖析

第3课时 机械能守恒定律一、基础知识(一)重力做功与重力势能1、重力做功的特点(1)重力做功与路径无关,只与初末位置的高度差有关.(2)重力做功不引起物体机械能的变化.2、重力势能(1)概念:物体由于被举高而具有的能.(2)表达式:E p =mgh .(3)矢标性:重力势能是标量,正负表示其大小.3、重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.(2)定量关系:重力对物体做的功等于物体重力势能的减少量.即W G =-(E p2-E p1)= -ΔE p .(二)弹性势能1、概念:物体由于发生弹性形变而具有的能.2、大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.3、弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系,用公式表示:W =-ΔE p .方法提炼 应用机械能守恒定律解题的一般步骤1.选取研究对象⎩⎪⎨⎪⎧单个物体多个物体组成的系统 2.分析研究对象在运动过程中的受力情况,明确各力的做功情况,判断机械能是否守恒.3.选取零势能面,确定研究对象在初、末状态的机械能.4.根据机械能守恒定律列出方程.5.解方程求出结果,并对结果进行必要的讨论和说明.(三)机械能守恒的判断1、机械能守恒的条件只有重力或弹力做功,可以从以下四个方面进行理解:(1)物体只受重力或弹力作用.(2)存在其他力作用,但其他力不做功,只有重力或弹力做功.(3)其他力做功,但做功的代数和为零.(4)存在相互作用的物体组成的系统只有动能和势能的相互转化,无其他形式能量的转化.2、机械能守恒的判断方法(1)利用机械能的定义判断(直接判断):分析动能和势能的和是否变化.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.1.机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;只有重力做功不等于只受重力作用.2.对一些绳子突然绷紧、物体间碰撞等,除非题目特别说明,否则机械能必定不守恒.3.对于系统机械能是否守恒,可以根据能量的转化进行判断.(四)机械能守恒观点的理解1、守恒观点(1)表达式:E k1+E p1=E k2+E p2或E1=E2.(2)意义:系统初状态的机械能等于末状态的机械能.(3)注意问题:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.2、转化观点(1)表达式:ΔE k=-ΔE p.(2)意义:系统(或物体)的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.(3)注意问题:要明确势能的增加量或减少量,即势能的变化,可以不选取零势能参考平面.3、转移观点(1)表达式:ΔE A增=ΔE B减.(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量.(3)注意问题:A部分机械能的增加量等于A部分末状态的机械能减初状态的机械能,而B部分机械能的减少量等于B部分初状态的机械能减末状态的机械能.二、练习1、关于重力势能,下列说法中正确的是()A.物体的位置一旦确定,它的重力势能的大小也随之确定B.物体与零势能面的距离越大,它的重力势能也越大C.一个物体的重力势能从-5 J变化到-3 J,重力势能减少了D.重力势能的减少量等于重力对物体做的功答案 D解析物体的重力势能与参考面有关,同一物体在同一位置相对不同的参考面的重力势能不同,A选项错.物体在零势能面以上,距零势能面的距离越大,重力势能越大;物体在零势能面以下,距零势面的距离越大,重力势能越小,B选项错.重力势能中的正、负号表示大小,-5 J的重力势能小于-3 J的重力势能,C选项错.重力做的功等于重力势能的变化,D选项对.2、置于水平地面上的一门大炮,斜向上发射一枚炮弹.假设空气阻力可以忽略,炮弹可以视为质点,则() A.炮弹在上升阶段,重力势能一直增大B.炮弹在空中运动的过程中,动能一直增大C.炮弹在空中运动的过程中,重力的功率一直增大D.炮弹在空中运动的过程中,机械能守恒答案AD解析炮弹在空中运动时,动能先减小后增大.重力的功率亦是先减小后增大,由于忽略空气阻力,所以炮弹的机械能守恒,选项A、D正确.3、关于机械能是否守恒,下列说法正确的是()A.做匀速直线运动的物体机械能一定守恒B.做圆周运动的物体机械能一定守恒C.做变速运动的物体机械能可能守恒D .合外力对物体做功不为零,机械能一定不守恒答案 C解析 做匀速直线运动的物体与做圆周运动的物体,如果是在竖直平面内则机械能不守恒,A 、B 错误;合外力做功不为零,机械能可能守恒,C 正确,D 错误.4、将质量为100 kg 的物体从地面提升到10 m 高处,在这个过程中,下列说法中正确的是(取g =10 m/s 2) ( )A .重力做正功,重力势能增加1.0×104 JB .重力做正功,重力势能减少1.0×104 JC .重力做负功,重力势能增加1.0×104 JD .重力做负功,重力势能减少1.0×104 J答案 C解析 W G =-mgh =-1.0×104 J ,ΔE p =-W G =1.0×104 J ,C 项正确.5、如图所示,在光滑水平面上有一物体,它的左端接连着一轻弹簧,弹簧的另一端固定在墙上,在力F 作用下物体处于静止状态,当撤去力F 后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是( )A .弹簧的弹性势能逐渐减少B .物体的机械能不变C .弹簧的弹性势能先增加后减少D .弹簧的弹性势能先减少后增加答案 D解析 开始时弹簧处于压缩状态,撤去力F 后,物体先向右加速运动后向右减速运动,所以物体的机械能先增大后减小,所以B 错.弹簧先恢复原长后又逐渐伸长,所以弹簧的弹性势能先减少后增加,D 对,A 、C 错.6、下列物体中,机械能守恒的是( )A .做平抛运动的物体B .被匀速吊起的集装箱C .光滑曲面上自由运动的物体D .物体以45g 的加速度竖直向上做匀减速运动 答案 AC解析 物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒;匀速吊起的集装箱,绳的拉力对它做功,不满足机械能守恒的条件,机械能不守恒;物体以45g 的加速度向上做匀减速运动时,由牛顿第二定律mg -F =m ×45g ,有F =15mg ,则物体受到竖直向上的大小为15mg 的外力作用,该力对物体做了正功,机械能不守恒.7、亚运会中的投掷链球、铅球、铁饼和标枪等体育比赛项目都是把物体斜向上抛出的运动,如图所示,这些物体从被抛出到落地的过程中 ( )A .物体的机械能先减小后增大B .物体的机械能先增大后减小C .物体的动能先增大后减小,重力势能先减小后增大D .物体的动能先减小后增大,重力势能先增大后减小答案 D8、如图所示,质量为m 的钩码在弹簧秤的作用下竖直向上运动.设弹簧秤的示数为F T ,不计空气阻力,重力加速度为g .则( )A .F T =mg 时,钩码的机械能不变B .F T <mg 时,钩码的机械能减小C .F T <mg 时,钩码的机械能增加D .F T >mg 时,钩码的机械能增加解析 无论F T 与mg 的关系如何,F T 与钩码位移的方向一致,F T 做正功,钩码的机械能增加,选项C 、D 正确.答案 CD9、(2011·课标全国·16)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关答案 ABC解析 运动员到达最低点前,重力一直做正功,重力势能减小,选项A 正确.蹦极绳张紧后的下落过程中,弹力一直做负功,弹性势能增加,选项B 正确.除重力、弹力外没有其他力做功,故系统机械能守恒,选项C 正确.重力势能的改变与重力势能零点的选取无关,故选项D 错误.10、如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一固定的竖直墙壁.现让一小球自左端槽口A 点的正上方由静止开始下落,从A 点与半圆形槽相切进入槽内,则下列说法正确的是 ( )A .小球在半圆形槽内运动的全过程中,只有重力对它做功B .小球从A 点向半圆形槽的最低点运动的过程中,小球处于失重状态C .小球从A 点经最低点向右侧最高点运动的过程中,小球与槽组成的系统机械能守恒D .小球从下落到从右侧离开槽的过程中,机械能守恒答案 C解析 小球从A 点向半圆形槽的最低点运动的过程中,半圆形槽有向左运动的趋势,但是实际上没有动,整个系统只有重力做功,所以小球与槽组成的系统机械能守恒.而小球过了半圆形槽的最低点以后,半圆形槽向右运动,由于系统没有其他形式的能量产生,满足机械能守恒的条件,所以系统的机械能守恒.小球到达槽最低点前,小球先失重,后超重.当小球向右上方滑动时,半圆形槽向右移动,半圆形槽对小球做负功,小球的机械能不守恒.综合以上分析可知选项C 正确.11、如图所示,将物体从一定高度水平抛出(不计空气阻力),物体运动过程中离地面高度为h 时,物体水平位移为x 、物体的机械能为E 、物体的动能为E k 、物体运动的速度大小为v .以水平地面为零势能面.下列图象中,能正确反映各物理量与h 的关系的是 ( )答案 BC解析 设抛出点距离地面的高度为H ,由平抛运动规律x =v 0t ,H -h =12gt 2可知:x = v 0 2(H -h )g,图象为抛物线,故A 项错误;做平抛运动的物体机械能守恒,故B 项正确;平抛物体的动能E k =mgH -mgh +12m v 20,C 项正确,D 项错误.12、如图所示,小球以初速度v 0从光滑斜面底部向上滑,恰能到达最大高度为h 的斜面顶部.A 是内轨半径大于h 的光滑轨道、B 是内轨半径小于h 的光滑轨道、C 是内轨直径等于h 的光滑轨道、D 是长为12h 的轻棒,其下端固定一个可随棒绕O 点向上转动的小球.小球在底端时的初速度都为v 0,则小球在以上四种情况下能到达高度h 的有( )答案 AD13、山地滑雪是人们喜爱的一项体育运动.一滑雪坡由AB 和BC 组成,AB 是倾角为37°的斜坡,BC 是半径为R =5 m 的圆弧面,圆弧面和斜面相切于B 点,与水平面相切于C 点,如图3所示,AB 竖直高度差h =8.8 m ,运动员连同滑雪装备总质量为80 kg ,从A 点由静止滑下通过C 点后飞落(不计空气阻力和摩擦阻力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8).求:(1)运动员到达C 点时的速度大小;(2)运动员经过C 点时轨道受到的压力大小.答案 (1)14 m/s (2)3 936 N解析 (1)由A →C 过程,应用机械能守恒定律得:mg (h +Δh )=12m v 2C 又Δh =R (1-cos 37°)解得:v C =14 m/s(2)在C 点,由牛顿第二定律得:F C -mg =m v 2C R解得:F C =3 936 N.由牛顿第三定律知,运动员在C 点时对轨道的压力大小为3 936 N.14、如图所示,一质量m =0.4 kg 的滑块(可视为质点)静止于动摩擦因数μ=0.1的水平轨道上的A 点.现对滑块施加一水平外力,使其向右运动,外力的功率恒为P =10.0 W .经过一段时间后撤去外力,滑块继续滑行至B 点后水平飞出,恰好在C 点沿切线方向进入固定在竖直平面内的光滑圆弧形轨道,轨道的最低点D 处装有压力传感器,当滑块到达传感器上方时,传感器的示数为25.6 N .已知轨道AB 的长度L =2.0 m ,半径OC 和竖直方向的夹角α=37°,圆形轨道的半径R =0.5 m .(空气阻力可忽略,重力加速度g = 10 m/s 2,sin 37°=0.6,cos 37°=0.8),求:(1)滑块运动到C 点时速度v C 的大小;(2)B 、C 两点的高度差h 及水平距离x ;(3)水平外力作用在滑块上的时间t .解析 (1)滑块运动到D 点时,由牛顿第二定律得F N -mg =m v 2D R滑块由C 点运动到D 点的过程,由机械能守恒定律得mgR (1-cos α)+12m v 2C =12m v 2D 联立解得v C =5 m/s(2)滑块在C 点时,速度的竖直分量为v y =v C sin α=3 m/sB 、C 两点的高度差为h =v 2y 2g=0.45 m 滑块由B 运动到C 所用的时间为t y =v y g=0.3 s 滑块运动到B 点时的速度为v B =v C cos α=4 m/sB 、C 间的水平距离为x =v B t y =1.2 m(3)滑块由A 点运动到B 点的过程,由动能定理得Pt -μmgL =12m v 2B 解得t =0.4 s答案 (1)5 m/s (2)0.45 m 1.2 m (3)0.4 s15、如图所示的是某公园设计的一种惊险刺激的娱乐设施,轨道除CD 部分粗糙外,其余均光滑,一挑战者质量为m ,沿斜面轨道滑下,无能量损失地滑入第一个圆管形轨道.根据设计要求,在最低点与最高点各放一个压力传感器,测试挑战者对轨道的压力,并通过计算机显示出来.挑战者到达A 处时刚好对管壁无压力,又经过水平轨道CD 滑入第二个圆管形轨道.在最高点B 处挑战者对管的内侧壁压力为0.5mg ,然后从平台上飞入水池内.若第一个圆管轨道的半径为R ,第二个圆管轨道的半径为r ,水面离轨道的距离为h =2.25r ,g 取10 m/s 2,管的内径及人相对圆管轨道的半径可以忽略不计.则:(1)挑战者若能完成上述过程,则他至少应从离水平轨道多高的地方开始下滑?(2)挑战者从A 到B 的运动过程中克服轨道阻力所做的功为多少?(3)挑战者入水时的速度大小是多少?解析 (1)挑战者到达A 处时刚好对管壁无压力,可得出mg =m v 2A R设挑战者从离水平轨道H 高处的地方开始下滑,运动到A 点时正好对管壁无压力,在此过程中机械能守恒mgH =12m v 2A +mg ·2R ,解得H =5R 2(2)在B 处挑战者对管的内侧壁压力为0.5mg ,根据牛顿第二定律得:mg -F N =m v 2B r, 挑战者在从A 到B 的运动过程中,利用动能定理得:mg ·2(R -r )-W f =12m v 2B -12m v 2A 联立解得W f =52mgR -94mgr (3)设挑战者在第二个圆管轨道最低点D 处的速度为v ,则-mg ·2r =12m v 2B -12m v 2 解得v =322gr 挑战者离开第二个圆管轨道后在平面上做匀速直线运动,然后做平抛运动落入水中,在此过程中机械能守恒,设挑战者入水时的速度大小为v ′,则mgh +12m v 2=12m v ′2 解得:v ′=3gr答案 (1)5R 2 (2)52mgR -94mgr (3)3gr16、如图所示,ABC 和DEF 是在同一竖直平面内的两条光滑轨道,其中ABC 的末端水平,DEF 是半径为r =0.4 m的半圆形轨道,其直径DF 沿竖直方向,C 、D 可看做重合的点.现有一可视为质点的小球从轨道ABC 上距C 点高为H 的地方由静止释放.(g 取10 m/s 2)(1)若要使小球经C 处水平进入轨道DEF 且能沿轨道运动,H 至少多高?(2)若小球静止释放处离C 点的高度h 小于(1)中H 的最小值,小球可击中与圆心等高的E 点,求h .答案 (1)0.2 m (2)0.1 m解析 (1)小球沿ABC 轨道下滑,机械能守恒,设到达C 点时的速度大小为v ,则mgH =12m v 2 ①小球能在竖直平面内做圆周运动,在圆周最高点必须满足mg ≤m v 2r② ①②两式联立并代入数据得H ≥0.2 m. (2)若h <H ,小球过C 点后做平抛运动,设球经C 点时的速度大小为v x ,则击中E 点时,竖直方向上有r =12gt 2 ③水平方向上有r =v x t④ 又由机械能守恒定律有mgh =12m v 2x ⑤由③④⑤联立可解得h =r 4=0.1 m17、(2012·浙江理综·18)由光滑细管组成的轨道如图所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平地面高为H 的管口D 处由静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是( )A .小球落到地面时相对于A 点的水平位移值为2RH -2R 2B .小球落到地面时相对于A 点的水平位移值为22RH -4R 2C .小球能从细管A 端水平抛出的条件是H >2RD .小球能从细管A 端水平抛出的最小高度H min =52R答案 BC解析 要使小球从A 点水平抛出,则小球到达A 点时的速度v >0,根据机械能守恒定律,有mgH -mg ·2R =12m v 2,所以H >2R ,故选项C 正确,选项D 错误;小球从A 点水平抛出时的速度v =2gH -4gR ,小球离开A 点后做平抛运动,则有2R =12gt 2,水平位移x=v t ,联立以上各式可得水平位移x =22RH -4R 2,选项A 错误,选项B 正确.18、如图所示是全球最高的(高度为208米)北京朝阳公园摩天轮, 一质量为m 的乘客坐在摩天轮中以速率v 在竖直平面内做半径 为R 的匀速圆周运动,假设t =0时刻乘客在最低点且重力势能 为零,那么,下列说法正确的是( )A .乘客运动的过程中,重力势能随时间的变化关系为E p =mgR (1-cos vR t )B .乘客运动的过程中,在最高点受到座位的支持力为m v 2R -mgC .乘客运动的过程中,机械能守恒,且机械能为E =12m v 2D .乘客运动的过程中,机械能随时间的变化关系为E =12m v 2+mgR (1-cos v R t )答案 AD解析 在最高点,根据牛顿第二定律可得,mg -F N =m v 2R ,乘客受到座位的支持力为F N=mg -m v 2R ,B 项错误;由于乘客在竖直平面内做匀速圆周运动,其动能不变,重力势能发生变化,所以乘客在运动的过程中机械能不守恒,C 项错误;在时间t 内转过的弧度为v R t ,所以对应t 时刻的重力势能为E p =mgR (1-cos vR t ),总的机械能为E =E k +E p=12m v 2+mgR (1-cos v R t ),A 、D 项正确.19、光滑曲面轨道置于高度为H =1.8 m 的平台上,其末端切线 水平;另有一长木板两端分别搁在轨道末端点和水平地面间, 构成倾角为θ=37°的斜面,如图所示.一个可视做质点的质量为m =1 kg 的小球,从光滑曲面上由静止开始下滑 图14 (不计空气阻力,g 取10 m/s 2,sin 37°≈0.6,cos 37°≈0.8)(1)若小球从高h 0=0.2 m 处下滑,则小球离开平台时速度v 0的大小是多少? (2)若小球下滑后正好落在木板的末端,则释放小球的高度h 1为多大?(3)试推导小球下滑后第一次撞击木板时的动能与它下滑高度h 的关系表达式,并在图15中作出E k -h 图象.答案 (1)2 m/s (2)0.8 m (3)E k =32.5h 图象见解析图解析 (1)小球从曲面上滑下,只有重力做功,由机械能守恒定律知: mgh 0=12m v 20①得v 0=2gh 0=2×10×0.2 m /s =2 m/s(2)小球离开平台后做平抛运动,小球正好落在木板的末端,则 H =12gt 2② Htan θ=v 1t③联立②③两式得:v 1=4 m/s 又mgh 1=12m v 21 得h 1=v 212g=0.8 m(3)由机械能守恒定律可得:mgh =12m v 2小球离开平台后做平抛运动,可看做水平方向的匀速直线运动和竖直方向的自由落体运动,则: y =12gt 2④x =v t ⑤ tan 37°=yx⑥ v y =gt⑦ v 2合=v 2+v 2y ⑧ E k =12m v 2合⑨ mgh =12m v 2⑩由④⑤⑥⑦⑧⑨⑩式得:E k =32.5h考虑到当h >0.8 m 时小球不会落到斜面上,其图象如图所示.20、(2012·大纲全国·26)一探险队员在探险时遇到一山沟,山沟的 一侧竖直,另一侧的坡面呈抛物线形状.此队员从山沟的竖 直一侧,以速度v 0沿水平方向跳向另一侧坡面.如图所 示,以沟底的O 点为原点建立坐标系xOy .已知,山沟竖直 一侧的高度为2h ,坡面的抛物线方程为y =12h x 2;探险队员图12的质量为m .人视为质点,忽略空气阻力,重力加速度为g . (1)求此人落到坡面时的动能;(2)此人水平跳出的速度为多大时,他落在坡面时的动能最小?动能的最小值为多少? 答案 (1)12m (v 2+4g 2h 2v 20+gh) (2)gh 32mgh 解析 (1)设该队员在空中运动的时间为t ,在坡面上落点的横坐标为x ,纵坐标为y .由运动学公式和已知条件得 x =v 0t① 2h -y =12gt 2②根据题意有y =x 22h③根据机械能守恒,此人落到坡面时的动能为 12m v 2=12m v 20+mg (2h -y ) ④联立①②③④式得 12m v 2=12m (v 20+4g 2h 2v 20+gh ) ⑤(2)⑤式可以改写为v 2=(v 20+gh -2ghv 20+gh)2+3gh ⑥v 2取极小值的条件为⑥式中的平方项等于0,由此得 v 0=gh此时v 2=3gh ,则最小动能为(12m v 2)min =32mgh .21、如图所示是为了检验某种防护罩承受冲击力的装置,M 是半径为R =1.0 m 的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N 为待检验的固定曲面,该曲面在竖直面内的截面为半 径r =0.69 m 的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M 的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m =0.01 kg 的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到曲面N 的某一点上,取g =10 m/s 2.问: (1)发射该钢珠前,弹簧的弹性势能E p 多大?(2)钢珠落到圆弧N 上时的动能E k 多大?(结果保留两位有效数字) 答案 (1)1.5×10-1 J (2)8.0×10-2 J解析 (1)设钢珠运动到轨道M 最高点的速度为v ,在M 的最低点的速度为v 0,则在最高点,由题意得mg =m v 2R从最低点到最高点,由机械能守恒定律得: 12m v 20=mgR +12m v 2解得:v 0=3gR 由机械能守恒定律得: E p =12m v 20=32mgR =1.5×10-1 J. (2)钢珠从最高点飞出后,做平抛运动,x =v t ,y =12gt 2由几何关系知x 2+y 2=r 2,联立解得t 2=350s 2所以,钢珠从最高点飞出后落到圆弧N 上下落的高度为y =0.3 m 由机械能守恒定律得,钢珠落到圆弧N 上时的动能E k 为 E k =12m v 2+mgy =8.0×10-2 J22、如图甲所示,圆形玻璃平板半径为r ,离水平地面的高度为h ,一质量为m 的小木块放置在玻璃板的边缘,随玻璃板一起绕圆心O 在水平面内做匀速圆周运动. (1)若匀速圆周运动的周期为T ,求木块的线速度和所受摩擦力的大小;(2)缓慢增大玻璃板的转速,最后木块沿玻璃板边缘的切线方向水平飞出,落地点与通过圆心O 的竖直线间的距离为s ,俯视图如图乙.不计空气阻力,重力加速度为g ,试求木块落地前瞬间的动能E k t .答案 (1)2πr T m (2πT )2r (2)mg (s 2-r 24h+h )解析 (1)根据匀速圆周运动的规律可得木块的线速度大小为:v =2πrT木块所受摩擦力提供木块做匀速圆周运动的向心力,有 F f =m (2πT)2r(2)木块脱离玻璃板后在竖直方向上做自由落体运动,有 h =12gt 2 在水平方向上做匀速直线运动,水平位移 x =v tx 与距离s 、半径r 的关系为s 2=r 2+x 2 木块从抛出到落地前机械能守恒,得E k t =12m v 2+mgh由以上各式解得木块落地前瞬间的动能 E k t =mg (s 2-r 24h+h )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
(5)由以上分析可知,结论 3 是对的。 3、一个内壁光滑的圆形细管,正绕竖直光滑固定轴 OO 自由转动。管是刚性的,转动惯量为 J。环的
半径为 R,初角速度为 0 ,一个质量为 m 的小球静止于管内最高点 A 处,如图所
示,由于微扰,小球向下滑动。试判断小球在管内下滑过程中:
(1)地球,环与小球系统的机械能是否守恒?
以 N 和 N 作功为零,满足机械能守恒。
(2)不守恒。小球在下落过程中,受到重力和管壁的作用力,这两个力的合力不为零,所以小球的动 量会不断变化。
(3)守恒。小球与环组成的系统,受到的外力为重力和通过轴的支持力,这两个力的方向都与 OO 轴 的方向平行,因此对 OO 轴力矩为零。因此整个系统角动量守恒。
答:(1)错。砖块要在皮带上滑动一段距离才能最终获得与皮带相同速度,两者之间有相对位移,所 以摩擦力做功代数和不为零。 (2)错。驱动力只对皮带做功,不能改变砖块的动能; (3)对。因皮带匀速运动,根据动能定理,驱动力的功与摩擦力对皮带的功之和为零; (4)错。砖块的动能是摩擦力做功的结果。摩擦力对砖块作功数值上要大于摩擦力对皮带做的功,因 此也不等于驱动力对皮带做的功。
2(F mg)2

)。(以原点 O 为势能零点,弹簧伸长都在弹性限度内考虑)
k
解:设物体到达的最远距离为 x, 根据动能定理: x (F kx mg) d x 0 , 0
填空题 8 图
即:
Fx

1 2
kx 2

mgx

0,
x

2(F
mg) k
,此时弹性势能为:
Ek max
1、理解质点、质点系的动能概念,会计算定轴转动刚体的转动动能; 2、理解功的概念,熟练掌握变力作功的计算; 3、理解保守力作功的特点,掌握保守系统的势能计算方法,掌握保守力与势能的关系; 4、掌握质点、质点系、定轴转动刚体的动能定理和功能原理,并且熟练进行有关计算; 5、掌握机械能守恒条件,熟练应用机械能守恒定律求解有关问题; 6、能联合运用动量守恒、角动量守恒、机械能守恒定律求解力学综合性问题,掌握分析求解力学综合 问题的基本方法。
0t5 5 t 10
0 ~ 5
秒内应用动量定理
5
8tdt
0
mv5
0
得 v5

4 52 5
20 (m s1 )
5 ~ 10
秒内再应用动量定理
10
20dt
5
mv10 mv5
v10

20
(10 5

5)

v5

20

20

40
(m s1)
根据质点的动能定理,10 秒内变力的功为
-------------------------------------------------------------------------------------------------------------------一、填空题
1.根据质点、质点系、定轴转动刚体的动能定义及其与动量或角动量的关系填写下表:
答:(1)不正确。不受外作力的系统,它的动量守恒,但机械能并不一定守恒,比如存在非保守内力 作功时系统的机械能就不守恒;(2)不正确。合外力为零,但合外力作功不一定为零,所以机械能不 一定守恒;(3)正确。因为同时满足动量守恒和机械能守恒的条件。
2.一水平传送带受电动机驱动,保持匀速运动。现在传送带上轻轻放置一砖块,则在砖块刚被放上到与 传送带共同运动的过程中,下列说法哪一个是正确的?并说明理由(包括你认为不正确的也说明理由)。 (1)摩擦力对皮带做的功与摩擦力对砖块做的功等值反号; (2)驱动力的功与摩擦力对砖块做的功之和等于砖块获得的动能; (3)驱动力的功与摩擦力对皮带做的功之和为零。 (4)驱动力的功等于砖块获得的动能; (5)以上结论都不对。
(2)小球的动量是否守恒?
(3)小球与环组成的系统对 OO 轴的角动量是否守恒?
回答让述问题,并说明理由。
简答题 3 图
答:(1)守恒。因为整个系统,外力的功为零,非保守内力是小球与管壁的作用力与反作用力 N 和 N 。
在小球下滑过程中,小球受壁的压力 N 始终与管壁垂直,也始终与小球相对管壁的速度方向垂直,所
(2)小球与杆碰撞的过程中满足角动量守恒
mv球l J ,
J

J杆

J
球=
1 3
ml
2

ml 2

4 3
ml 2
= 3 4l
2 gl (1
cos 1 )

3 4
2g(1 cos1) l
(3)小球与杆整体从 B 摆到 C 的过程中满足机械能守恒,仍假设 B 所在处为重力势能零点,则可得:
A

1 2
mv120

0

1 2
5 402

4000 (J)
8.如图所示,倔强系数为 k 的弹簧,一端固定在墙壁上,另一端连一质量为 m 的物
体,物体与桌面间的摩擦系数为

。物体静止在坐标原点
O,此时弹簧长度为原长。
若物体在不变的外力 F 作用下向右移动,则物体到达最远位置时系统的弹性势能 E p
《大学物理 AI》作业 No.04 机械能 机械能守恒定律
班级 ________ 学号 ________ 姓名 _________ 成绩 ______
-------------------------------------------------------------------------------------------------------------------****************************本章教学要求****************************
三、计算题
1、一链条总长为 l ,质量为 m,放在桌面上,并使其一端下垂,下垂一端的长度为 a。设链条与桌面之
间的滑动摩擦系数为 ,令链条由静止开始运动,则
(1) 到链条离开桌面的过程中,摩擦力对链条作了多少功?
la
o
a
(2) 链条离开桌面时的速度是多少?
x
计算题 1 图
解:(1) 以桌面为坐标原点,竖直向下为 x 轴正方向。在某一时刻,竖直下垂的长度为 x ,桌面对链条

1 2
kx 2

2(F
mg)2 k
9.如图所示,静止在光滑水平面上的一质量为 M 的车上悬挂一长为 l、质量为 m 的小球。开始时,摆线 水平,摆球静止于 A 点。突然放手,当摆球运动到摆线呈铅直位置的瞬间,摆球相对于地面的速率为
2gl

)。
1 m / M
解设摆:线以在m铅和直M位为置研时究球对对象地,速在度水为平v方,向车上对不地受速外度力为作V用, ,方系向统如水图平所方示向, 动则量有守恒。 0 mv MV (1)
A C
B
(2)小球与杆下端发生完全非弹性碰撞后拥有的共同角速度的大小; (3)二者最后能摆动的最大角度2。
计算题 2 图
解:(1)小球从初态 A 摆到最低点 B 满足机械能守恒,假设 B 所在处为重力势能零点,则可得
mgl(1
cos1)

1 2
mv球2
v球= 2gl(1 cos1)
mv 2

1 2
mv02
式中 v0 0, Ap 为重力作的功,
Ap

m xg d x 1 mg(l 2 a 2 )
al
2l
由 m (l a)2 1 mg(l 2 a 2 ) 1 mv 2 得:
2l
2l
2
链条离开桌面时的速率为 v g [(l 2 a2 ) (l a)2 l
4.对质点系来说,其动能的增量等于(质点系内所受外力和内力作功的代数和),其机械能的增量等于 (质点系外力作功和非保守内力作功的代数和)。
5.对于一个系统来说,其动量守恒的条件是(合外力为零),角动量守恒的条件是(外力矩之和为零), 机械能守恒的条件是(外力作功与非保守内力作功之和为零)。
6.有一劲度系数为 k 的轻弹簧,竖直放置,下端悬一质量为 m 的小球。先使弹簧为原长,而小球恰好
研究对象
质点 (质量 m)
质点系
(质量 M,质心速度 vc ,各质 点相对质心速度为 vi )
定轴刚体
(转动惯量 J )
动能表达式
( Ek

1 2
mv 2

( Ek

1 2
Mvc 2

i
1 2
mvi2


Ek

1 2
J 2

与动量(p)或角动量(L) 的关系
( Ek

p2 2m

( Ek
解:(1)由于线的张力过轴,小球受的合外力矩为 0,角动量守恒。
J00 J mr020 mr 2 , r r0 / 2
J00J
40
计算题 3 图
(2)由动能定理W

Ek
Ek0 ,W

1 2
J2

1 2
J
2
00

1 2
m(
r0 2
)2
(40
)2

1 2
mr0202

p2 2M

i
1 2
mvi2

质点系内力的冲量之和为(零)、质点系内力的角冲量之和为(零)、质点系内力的作功之和(不能 确定)。(选填项:零,不为零,不能确定)
相关文档
最新文档