计算智能第5章 蚁群优化算法

合集下载

【优秀作业】蚁群优化算法

【优秀作业】蚁群优化算法

【优秀作业】蚁群优化算法蚁群优化算法一.概述生物学家发现,自然界中的蚁群觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。

蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。

信息素浓度的大小表征到食物源路径的远近,信息素浓度越高,表示对应的路径距离越短。

通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。

最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即最短距离。

值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。

20世纪90年代初,意大利学者M.Dorigo等人提出了模拟自然界蚂蚁群体觅食行为的蚁群算法。

其基本思想是:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。

路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径上的蚂蚁个数也越来越多。

最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。

二.蚁群算法解决TSP问题1. 算法原理M.Dorigo等人最早将蚁群算法用于解决旅行商问题(Traveling Salesman Problem,TSP),并取得了较好的实验结果。

设整个蚂蚁群体中蚂蚁的数量为,城市的数量为,城市与城市之间的距离为,时刻城市与城市连接路径上的信息素浓度为。

初始时刻,各个城市间连接路径上的信息素浓度相同,不妨设。

蚂蚁根据各个城市间连接路径上的信息素浓度决定下一个访问城市,设表示时刻蚂蚁从城市转移到城市的转移概率,其公式为:其中:为启发函数,表示蚂蚁从城市转移到城市的期望程度;为蚂蚁待访问城市的集合,开始时,中有个元素,即包括除了蚂蚁出发城市的所有其它城市,随着时间的推进,中的元素不断减少,直至为空,即表示所有的城市均访问完毕;为信息素重要程度因子,其值越大,表示信息素的浓度在转移中起的作用越大;为启发函数重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁会以较大的概率转移到距离短的城市。

蚁群优化算法

蚁群优化算法

段旭良@四川农业大学 5025968@
蚁群算法特点
路径BHD 的长度是路径 的长度是路径BCD的2倍 路径 的 倍 当B点的蚂蚁到达 点后,路径BCD上的外激素是 点的蚂蚁到达D点后,路径 上的外激素是 点的蚂蚁到达 点后 BHD上的 倍。 上的2倍 上的 时刻t 有 只蚂蚁从 到达D。 只蚂蚁从E到达 时刻 =1有30只蚂蚁从 到达 。 因为路径DC上的外激素量是 上的 上的2倍 因为路径 上的外激素量是DH上的 倍,根据蚂 上的外激素量是 蚁选路特点,将会有20只蚂蚁选择 只蚂蚁选择DC,而只有10 蚁选路特点,将会有 只蚂蚁选择 ,而只有 只蚂蚁选择DH。 只蚂蚁选择 。 以此类推, 以此类推,当t = 2 ,3 ,4. . . 时,将会有更多的蚂蚁选 择路径BCD。 择路径 。 经过较长时间运动后, 经过较长时间运动后,蚁群最终会沿着最优路径 ABCDE运动。 运动。 运动
其中 allowed k = {0,1, L n − 1} − tabu k 表示蚂蚁k当前能选择的城市集合 当前能选择的城市集合, 为禁忌表, 表示蚂蚁 当前能选择的城市集合,tabu k 为禁忌表, 它记录蚂蚁k已路过的城市 已路过的城市。 它记录蚂蚁 已路过的城市。
ηij是启发信息。在TSP 问题中 是启发信息。
段旭良@四川农业大学 5025968@
蚁群算法特点
在真实蚁群中, 在真实蚁群中,外激素的数量会随时间的流逝而蒸 发掉一部分,为说明方便,此处假设: 发掉一部分,为说明方便,此处假设:
①所有蚂蚁运动的速度相等; 所有蚂蚁运动的速度相等; ②外激素蒸发量与时间成正比例,即路径上外激素的 外激素蒸发量与时间成正比例, 剩余量与路径的长度成反比; 剩余量与路径的长度成反比; ③蚂蚁选路的概率与所选路上外激素的浓度成正比。 蚂蚁选路的概率与所选路上外激素的浓度成正比。

蚁群优化算法应用研究概述

蚁群优化算法应用研究概述

蚁群优化算法应用研究概述随着科学技术的飞速发展,蚁群优化算法已经成为一种非常流行的应用在多个领域的优化技术。

蚁群优化算法是一种基于自然蚁群行为规律的优化算法,它使用一群虚拟的蚂蚁,根据蚁群的潜伏规律,通过不断的学习来实现全局和局部最优解的搜索。

蚁群优化算法通过借鉴蚂蚁的社会群体搜索行为,进行计算机模拟的多目标优化问题,以求得可行的最优解。

它具有计算简单、收敛快等显著优点,已经被广泛应用于多个领域,如虚拟路网网络拓扑优化、避免碰撞飞行路径规划、卫星轨道规划、天线设计、电路布线优化、机器人移动路径优化等。

蚁群优化算法是一种基于模拟自然蚁群搜索行为的优化技术,它主要包括以下步骤:首先,在空间中放置一群虚拟的蚂蚁,每只蚂蚁都有自己的位置和方向;其次,设计信息素挥发率、路径启发因子和路径旅行因子等其他参数;第三,每只蚂蚁在改变自己的位置和方向时,根据环境信息参数激活蚂蚁的社会行为模型;最后,为了使得搜索准确无误,采用最优解的递减更新算法,调整蚁群的参数,以达到最优化的目的。

蚁群优化算法在科学研究中已经被广泛应用,它能高效地解决复杂的多目标优化问题,如受限的检验任务优化、飞行路径规划、电路布置、汇聚优化等等。

在虚拟路网网络拓扑优化中,蚁群优化算法能有效解决网络节点数量和最短路径距离优化问题,有效抑制网络拓扑中回路及环路产生;在天线设计中,蚁群可以用来优化天线参数,如形状、尺寸及极化方向,以优化天线的发射和接收性能;在机器人移动路径优化中,蚂蚁群可以用来模拟机器人移动的路径,从而实现机器人移动路径的优化。

此外,蚁群优化算法还有很多其他的应用领域,它能帮助人们快速而有效地解决复杂的优化问题,在工业认证、人工智能、机器视觉、搜索引擎、智能控制、模式识别、生物信息处理、多媒体信息处理等领域有着广泛的应用。

研究者们也在不断改进蚁群优化算法,以更好的利用蚁群智能,解决复杂的优化问题。

总之,蚁群优化算法是一种广泛应用的多目标优化技术。

蚁群优化算法课件

蚁群优化算法课件

05
蚁群优化算法的改进与优 化
信息素更新策略的改进
动态更新策略
根据解的质量实时调整信息素浓度,以提高算法的搜 索效率。
自适应更新策略
根据蚂蚁移动过程中信息素挥发的情况,动态调整信 息素更新规则,以保持信息素浓度的平衡。
局部与全局更新结合
在蚂蚁移动过程中,既进行局部更新又进行全局更新 ,以增强算法的全局搜索能力。
该算法利用了蚂蚁之间信息素传递的 机制,通过不断迭代更新,最终找到 最优路径或解决方案。
蚁群优化算法的起源与发展
蚁群优化算法最初起源于对自然界中蚂蚁觅食行为的研究, 发现蚂蚁能够通过信息素传递找到从巢穴到食物源的最短路 径。
随着研究的深入,蚁群优化算法逐渐发展成为一种通用的优 化算法,广泛应用于各种组合优化问题,如旅行商问题、车 辆路径问题等。
任务调度问题
总结词
蚁群优化算法在任务调度问题中能够实现高效的任务调度,提高系统整体性能。
详细描述
任务调度问题是指在一个多任务环境中,根据任务的优先级、资源需求等因素,合理分配任务到不同 的处理单元,以实现系统整体性能的最优。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传递机制 ,能够实现高效的任务调度,提高系统整体性能。
利用已知领域知识
将领域专家的经验或启发式信息融入算法中,以提高算法的搜索 效率和准确性。
利用问题特性
根据问题的特性,引入与问题相关的启发式信息,以引导蚂蚁的移 动方向和选择行为。
自适应调整启发式信息
根据算法的搜索过程和结果,动态调整启发式信息的权重或规则, 以平衡算法的全局搜索和局部搜索能力。
06
蚂蚁行为规则的改进
引入变异行为
01
在蚂蚁移动过程中,随机选择某些蚂蚁进行变异操作,以增强

蚁群优化算法

蚁群优化算法
➢蚂蚁系统中的精英策略
– 每次循环之后给予最优解以额外的信息素量 – 这样的解被称为全局最优解(global-best solution) – 找出这个解的蚂蚁被称为精英蚂蚁(elitist ants)
16 16
带精英策略的蚂蚁系统
➢信息素根据下式进行更新
其中
ij (t 1) ij (t) ij i*j
实现过程
33 33
实现过程
34 34
实现过程
35 35
中国旅行商问题
ACATSP(C,100,10,1,5,0.1,100) 1.5602e+04
36 36
遗传算法和蚁群算法在 求解TSP问题上的对比分析
37 37
开始
细菌觅食机理
i=i+1
趋向性操作
设细菌种群大小为S,一个细菌所处的位 置表示一个问题的候选解,细菌i的信息 用D维向量表示为
➢较强的鲁棒性 ·➢分布式计算
➢易于与其他方法结合
需要较长的搜索时间 容易出现停滞现
15 15
带精英策略的蚂蚁系统
➢带精英策略的蚂蚁系统(Ant System with elitist strategy,
ASelite)是最早的改进蚂蚁系统。
➢遗传算法中的精英策略
– 传统的遗传算法可能会导致最适应个体的遗传信息丢失 – 精英策略的思想是保留住一代中的最适应个体
ij (t n) ij (t) ij
m
ij
k ij
(2)
k 1
其中,ρ为小于1的常数,表示信息的持久性。
Q
k ij
Lk
ij lk
(3)
0 otherwise
其中,Q为常数;Lk 表示第k只蚂蚁在本次迭代中走过 的路径长度。

蚁群优化算法69893

蚁群优化算法69893

Pijk(i,
j)
(i,u)(i,u)
uJki
,
jJk i
0,
其他
其中,J i 表示从城市i可以直接到达的且又不在蚂蚁访问过的城市序列
R
k
k
中的城市集合。
i,
j 是一个启发式信息,通常由i, j=1/d 直接计算。 ij
i , j 表示边 i , j 上的信息量
-
2.3 蚂蚁系统理论

蚁群优化算法相关应用
-
问题简述:
2.1 TSP问题
已知有 n
个城市的集合
Cc,c,L,c
n
12
n
,任意两个城市之间均有路
径连接,dij i,j1,2,L,n表示城市与之间的距离。旅行商问题就是需要 寻找这样的一中周游方案:周游路线从某个城市出发,经过每个城市
一次且仅一次,最终回到出发城市,使得周游的路线总长度最短。
-
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。
2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。
3.实验最终结果:所有的蚂蚁 都会选择同一分支。
自身催化(正反馈)过程
-
双桥实验
1.1 基本原理
1.起初两条分支上不存在信息 素,蚂蚁随机选择一条路径。
2.将ACO纳入了基于模型的搜索框架中。
趋势
1.利用ACO算法去解决更为复杂的优化问题,例如:
动态问题、随机问题、多目标问题。 2、ACO算法的高效并行执行。 3.更理论化的理解和刻画ACO算法在求解问题时的行为。 4.与其他算法结合(粒子群算法)。

蚁群优化算法应用研究概述

蚁群优化算法应用研究概述

蚁群优化算法应用研究概述
蚁群优化算法是一种仿生智能算法,其灵感来源于蚂蚁寻找食物的集
体行为。

该算法具有自适应、自组织、分布式等特点,适用于解决复杂优
化问题。

蚁群优化算法已经在许多领域得到广泛应用,如:
1.工程设计:蚁群优化算法可以用于机器人路径规划、液压系统优化、建筑结构优化等。

2.电力系统:蚁群优化算法可以用于电网运行优化、电力市场运营优
化等。

3.交通运输:蚁群优化算法可以用于交通信号控制、路径规划、车辆
调度等。

4.金融领域:蚁群优化算法可以用于股票价格预测、信用风险评估等。

5.医学领域:蚁群优化算法可以用于分子结构预测、药物设计等。

总之,蚁群优化算法具有很高的应用价值,在科学研究和工程实践中
有着广泛的应用前景。

蚁群优化算法及其应用研究

蚁群优化算法及其应用研究

蚁群优化算法及其应用研究随着计算机技术的不断发展,各种优化算法层出不穷,其中蚁群优化算法作为一种新兴的智能优化算法,已经引起了广泛的关注和研究。

本文主要介绍蚁群优化算法的基本原理、算法流程及其在实际问题中的应用。

一、蚁群优化算法的基本原理蚁群优化算法是一种仿生智能算法,其基本原理是模拟蚂蚁在寻找食物时的行为。

在蚂蚁寻找食物的过程中,蚂蚁会释放一种叫做信息素的物质,用来标记通路的好坏程度。

其他蚂蚁在寻找食物时,会根据信息素的浓度选择走过的路径,从而最终找到食物。

蚁群优化算法的基本思想就是将蚂蚁寻找食物的行为应用到优化问题中。

在算法中,每个解就相当于蚂蚁寻找食物的路径,信息素就相当于解的质量。

当蚂蚁在搜索过程中找到更好的解时,就会释放更多的信息素,从而吸引其他蚂蚁继续探索这个解。

通过不断地迭代,最终找到全局最优解。

二、蚁群优化算法的算法流程蚁群优化算法的算法流程主要包括以下几个步骤:1.初始化信息素和解的质量在算法开始之前,需要对信息素和解的质量进行初始化。

一般情况下,信息素的初始值为一个比较小的正数,解的质量可以通过一个评价函数进行计算。

2.蚂蚁的移动在每一轮迭代中,每个蚂蚁会根据当前信息素的分布和启发式函数选择下一步要走的方向。

启发式函数一般是根据当前解的质量和距离计算的。

3.信息素的更新当每个蚂蚁完成一次搜索后,需要更新信息素的浓度。

一般情况下,信息素的更新公式为:τi,j = (1-ρ)τi,j + Δτi,j其中τi,j表示从城市i到城市j的信息素浓度,ρ表示信息素的挥发因子,Δτi,j表示当前蚂蚁留下的信息素。

4.全局信息素的更新在每一轮迭代中,需要对全局信息素进行更新。

一般情况下,全局信息素的更新公式为:τi,j = (1-α)τi,j + αΔτi,j其中α表示全局信息素的影响因子,Δτi,j表示当前蚂蚁留下的信息素。

5.终止条件的判断当达到预设的迭代次数或者满足一定的停止条件时,算法停止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 算法流程
ACO基本要素
路径构建
每只蚂蚁都随机选择 一个城市作为其出发 城市,并维护一个路 径记忆向量,用来存 放该蚂蚁依次经过的 城市。蚂蚁在构建路 径的每一步中,按照 一个随机比例规则选 择下一个要到达的城 市。
信息素更新
当所有蚂蚁构建完路 径后,算法将会对所 有的路径进行全局信 息素的更新。注意, 我们所描述的是AS 的ant-cycle版本,更 新是在全部蚂蚁均完 成了路径的构造后才 进行的,信息素的浓 度变化与蚂蚁在这一 轮中构建的路径长度 相关。
(i, j ) (1 r ) (i, j ) k (i, j ) eb (i, j ),
(Ck )1 , if (i, j ) R k (Cb )1, if (i, j )在路径Tb 上 k (i, j ) , b (i, j ) 0, otherwise otherwise 0,
5.2 算法流程
解:
步骤3:信息素更新。
Company Logo
计算每只蚂蚁构建的路径长度:C1=3+4+2+1=10, C2=4+2+1+3=10,C3=2+1+5+4=12。更新每条边上的 信息素:
k AB (1 r ) AB AB 0.5 0.3 (1/10 1/10) 0.35 3 k 1 3
4、5:好强的信息素浓度, 跟上跟上
3:(得意„„) 我这么快就到了, 产生多点信息素, 兄弟们不跟我跟谁?
食物
6:我自己走,说不定能探索 出一条更短的路径呢, 到时候你们就都会跟着我了
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度, 并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物 质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素 的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并 倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的 最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径 上行进。
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。和是 两个预先设置的参数,用来控制启发式信息与信息素浓度作用的权 重关系。当=0时,算法演变成传统的随机贪心算法,最邻近城市被 选中的概率最大。当=0时,蚂蚁完全只根据信息素浓度确定路径, 算法将快速收敛,这样构建出的最优路径往往与实际目标有着较大 的差异,算法的性能比较糟糕。
5.3.3 最大最小蚂蚁系统
最大最小蚂蚁系统(MAX-MIN Ant System, MMAS)在基本AS算法的基础上进行了四项改进: (1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的 蚂蚁),或者至今最优蚂蚁释放信息素。(迭代最优 更新规则和至今最优更新规则在MMAS中会被交替使 用。)
第5章 蚁群优化算法
Contents
1 2
基本原理
算法流程 改进版本 相关应用 参数设置
3
4
5
5.1 基本原理
自然界蚂蚁觅食行为
蚁群优化算法
自然界蚂蚁群体在寻找食物的过程中,通过一种被 称为信息素(Pheromone)的物质实现相互的 间接通信,从而能够合作发现从蚁穴到食物源的最 短路径。 通过对这种群体智能行为的抽象建模,研究者提出 了蚁群优化算法(Ant Colony Optimization, ACO),为最优化问题、尤其是组合优化问题的 求解提供了一强有力的手段。
权值(w−k)对不同路径的信息素浓度差异起到了一个放大的作用, ASrank能更有力度地指导蚂蚁搜索。
1 k 1 k
w 1
5.3.3 最大最小蚂蚁系统
最大最小蚂蚁系统(MAX-MIN Ant System, MMAS)在基本AS算法的基础上进行了四项改进: (1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的 蚂蚁),或者至今最优蚂蚁释放信息素。 (2)信息素量大小的取值范围被限制在一个区间内。 (3)信息素初始值为信息素取值区间的上限,并伴随一个 较小的信息素蒸发速率。 (4)每当系统进入停滞状态,问题空间内所有边上的信息 素量都会被重新初始化。
用轮盘赌法则选择下城市。假设产生的随机数 q=random(0,1)=0.67,则蚂蚁1将会选择城市D。 用同样的方法为蚂蚁2和3选择下一访问城市,假设 蚂蚁2选择城市C,蚂蚁3选择城市C。
5.2 算法流程
解:
步骤2.4:实际上此时路径已经构造完毕,蚂蚁1构建 的路径为(ABDCA)。蚂蚁2构建的路径为(BDCAB)。 蚂蚁3构建的路径为(DACBD)。
5.1 基本原理
自然界蚂蚁觅食行为
蚁群优化算法
觅食空间 蚁群 蚁巢到食物的一条路径 找到的最短路径 信息素 蚂蚁间的通信
问题的搜索空间
对 应 关系
搜索空间的一组有效解 一个有效解 问题的最优解 信息素浓度变量 启发式搜索
5.1 基本原理
2:天哪,我一定是走错路了, 好远,得产生少点信息素
1:走哪条路比较好呢? 嗯,先自己瞧瞧, 再感受下兄弟们的气息
Company Logo
5.2 算法流程
解:
步骤2.2:为每只蚂蚁选择下城市。我们仅 以蚂蚁1为例,当前城市i=A,可访问城市集 合J1(i) ={B, C, D}。计算蚂蚁1选择B,C,D作 为下一访问城市的概率:
p( B) 0.033/(0.033 0.3 0.075) 0.081 p(C ) 0.3 /(0.033 0.3 0.075) 0.74 p( D) 0.075 /(0.033 0.3 0.075) 0.18
(i, j ) (1 r ) (i, j ) (w k ) k (i, j ) wb (i, j ),
(Ck ) , if (i, j ) R (Cb )1, if (i, j )在路径Tb 上 k (i, j ) , b (i, j ) otherwise otherwise 0, 0,
蚂蚁系统(Ant System,AS)是最基本的ACO算法, 是以TSP作为应用实例提出的。
5.2 算法流程
路径构建—— 伪随机比例选择规则(random proportional)
(i, j ) (i, j ) , if j J k (i) pk (i, j ) (i, u ) (i, u ) uJ k (i ) 0, otherwise
k AC (1 r ) AC AC 0.5 0.3 (1/12) 0.16 k 1
„„ 如此,根据公式(5.2)依次计算出问题空间内所有边更 新后的信息素量。
5.2 算法流程
解:
步骤4: 如果满足结束条件,则输出全局最优结果并结束 程序,否则,转向步骤2.1继续执行。
5.2 算法流程
信息素更新
(1)在算法初始化时,问题空间中所有的边上的信息素都被初始 化为0。 (2)算法迭代每一轮,问题空间中的所有路径上的信息素都会发 生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素 蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的 无限积累,使得算法可以快速丢弃之前构建过的较差的路径。 (3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。 (4)迭代(2),直至算法终止。
k 1 m
5.2 算法流程
路径构建 信息素更新
5.2 算法流程
例5.1 给出用蚁群算法求解一个四城市的TSP问题的执 行步骤,四个城市A、B、C、D之间的距离矩阵如下
3 1 2 W dij 3 5 4 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数=1,=2,r=0.5。
5.3 改进版本
蚂 蚁 系 统
精 华 蚂 蚁 系 统
基 于 排 列 的 蚂 蚁 系 统
最 大 最 小 蚂 蚁 系 统
蚁 群 系 统
连 续 正 交 蚁 群 系 统
……
5.3.1 精华蚂蚁系统
精华蚂蚁系统(Elitist Ant System,EAS)是对基础 AS的第一次改进,它在原AS信息素更新原则的基础上增加 了一个对至今最优路径的强化手段。
引入这种额外的信息素强化手段有助于更好地引导蚂蚁搜索的偏向, 使算法更快收敛。
k 1 m
5.3.2 基于排列的蚂蚁系统
基于排列的蚂蚁系统(rank-based Ant System,ASrank)在AS 的基础上给蚂蚁要释放的信息素大小加上一个权值,进一步加大各边信 息素量的差异,以指导搜索。在每一轮所有蚂蚁构建完路径后,它们将 按照所得路径的长短进行排名,只有生成了至今最优路径的蚂蚁和排名 在前(w-1)的蚂蚁才被允许释放信息素,蚂蚁在边(i, j)上释放的信息素 的权值由蚂蚁的排名决定。
5.2 算法流程
解: 步骤2.3:当前蚂蚁1所在城市i=B,路径记忆向量
R1=(AB),可访问城市集合J1(i) ={C, D}。计算蚂蚁1选 择C,D作为下一城市的概率:
C : BC BC 0.31 (1/ 5) 2 0.012 B D : BD BD 0.31 (1/ 4) 2 0.019 p(C ) 0.012 /(0.012 0.019) 0.39 p( D) 0.019 /(0.012 0.019) 0.61
对于每只蚂蚁k,路径记忆向量Rk按照访问顺序记录了所有k已经经 过的城市序号。设蚂蚁k当前所在城市为i,则其选择城市j作为下一 个访问对象的概率如上式。Jk(i)表示从城市i可以直接到达的、且又 不在蚂蚁访问过的城市序列Rk中的城市集合。(i, j)是一个启发式信 息,通常由 (i, j)=1/dij直接计算。(i, j)表示边(i, j)上的信息素量。
相关文档
最新文档