中考数学易错

合集下载

中考数学易错题系列解决二次函数与一元二次方程中的常见错误

中考数学易错题系列解决二次函数与一元二次方程中的常见错误

中考数学易错题系列解决二次函数与一元二次方程中的常见错误在中考数学考试中,二次函数与一元二次方程是一个重要的知识点,也是学生易犯错误的地方。

为了帮助同学们更好地掌握这部分内容并避免错误,本文将针对二次函数与一元二次方程的常见错误进行解析和解决方案,希望能为同学们在中考数学中的备考提供帮助。

一、二次函数中的常见错误及解决方法1.错误:对二次函数的顶点和轴线的理解不准确。

二次函数的一般形式为f(x)=ax²+bx+c,其中二次项的系数a不为零。

顶点坐标为(-b/2a,f(-b/2a)),轴线方程为x=-b/2a。

很多同学在计算顶点时,容易弄错符号或漏掉除以2a的步骤,导致计算结果出现错误。

解决方法:在计算顶点坐标时,要注意对符号和运算的准确性。

如此题f(x)=2x²+4x+3,则计算顶点坐标的步骤为:x=-4/(2×2)=-1,代入函数得f(-1)=2×(-1)²+4×(-1)+3=1-4+3=0,所以顶点坐标为(-1,0)。

2.错误:对二次函数的图像特征理解不准确,如开口朝上还是朝下、图像与x轴的交点等。

二次函数的开口方向由二次项的系数a的正负确定,开口朝上(a>0)或朝下(a<0);图像与x轴的交点对应于方程f(x)=0的解,即求解一元二次方程的根。

解决方法:首先要理解二次函数图像的开口方向是由二次项的系数决定的。

例如f(x)=3x²-2x+1,由于a=3>0,所以图像开口朝上。

其次,在求解交点时,要将二次函数转化为一元二次方程,并应用求根公式或配方法求解。

典型案例:已知二次函数f(x)=x²-4x+3,求解方程f(x)=0的解。

解:将f(x)=0代入二次函数得x²-4x+3=0,该方程为一元二次方程,可以使用因式分解或求根公式求解。

方法一:因式分解法根据观察,可以将方程对应的二次函数写成(x-3)(x-1)=0的形式,再分别令两个因式为零,即得到方程的解为x=3和x=1。

易错点03 函数-中考数学考试易错题(解析版)

易错点03 函数-中考数学考试易错题(解析版)

易错点03 函数1.平面直角坐标系与函数2.一次函数的图像与性质3.一次函数的应用4.反比例函数5.二次函数的图像性质与性质6.二次函数的应用01各个待定系数表示的意义。

1.一次函数y=﹣3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】解答:解:∵一次函数y=﹣3x﹣4,k=﹣3,b=﹣4,∵该函数经过第二、三、四象限,不经过第一象限,故选:A.1.已知反比例函数y=bx的图象如图所示,则一次函数y=cx+a和二次函数y=ax2﹣bx+c在同一直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】∵反比例函数的图象在一、三象限,∵0b>,A.∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,a>,∵0b>不相符,故A错误;∵0b<,与0B. ∵二次函数的开口向下,对称轴在y轴右侧,∵a、b异号,∵0a<,b->,∵0与已知b>0矛盾故B错误;C.∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,∵0a<,b>,∵0∵二次函数图象与y轴交于负半轴,c<,∵0∵一次函数y=cx+a的图象过二、三、四象限,故C错误;D. ∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,a>,c<0∵0b-<,则b>0,∵0所以一次函数图象经过第一、二、四象限故D 正确;故选D .20(1)k -有意义,则一次函数(1)1y k x k =-+-的图象可能是( ) A . B .C .D .【答案】A【解析】解:∵0(1)k -有意义,∵10,10k k -≥-≠,∵k -1>0,∵一次函数(1)1y k x k =-+-的图象可能是A ,故选:A .3.已知抛物线2(1)y m x x =++的开口向上,则m 的取值范围是( ).A .1m >B .1m <C .1m >-D .1m <-【答案】C【解析】解:根据题意,∵抛物线2(1)y m x x =++的开口向上,∵10m +>,∵1m >-;故选:C .02 各种函数解析式的求法以及函数与几何图形的关系应用。

中考数学常考易错点-平面直角坐标系及函数的图象

中考数学常考易错点-平面直角坐标系及函数的图象

平面直角坐标系及函数的图象易错清单1.能确定较复杂函数的自变量取值范围吗?【例1】(山东济宁)函数中的自变量x的取值范围是().A. x≥0B. x≠-1C. x>0D. x≥0且x≠-1【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【答案】根据题意,得x≥0且x+1≠0,解得x≥0.故选A.【误区纠错】本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2.能利用直角坐标系探讨点的坐标的变化规律.【例2】(山东泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点,B(0,4),则点B2014的横坐标为.【解析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【答案】∵,BO=4,故答案为10070.【误区纠错】此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.由特殊总结一般性.3.借助函数图象描述问题中两个变量之间的关系.【例3】(山东烟台)如图,点P是ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是().【解析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【答案】点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.【误区纠错】本题主要考查了动点问题的函数图象.注意分段考虑.名师点拨1.会画出直角坐标系,能标识点在平面直角坐标系的位置.2.能根据点的坐标的正、负性确定点的对称性及所在象限.3.理解函数的意义,会解释并区分常量与变量,能列简单的函数关系,会进行描点法画函数的图象.4.能列举函数的三种表示方法.5.会求出函数中自变量的取值范围,如保证分母不为零,使二次根式有意义等.6.能利用代入法求函数的值.7.能利用函数变化规律进行准确猜想、判断.提分策略1.函数的概念及函数自变量的取值范围.函数自变量的取值范围一般从三个方面考虑:(1)当函数关系式是整式时,自变量可取全体实数;(2)当函数关系式是分式时,考虑分式的分母不能为0;(3)当函数关系式是二次根式时,被开方数为非负数.此题就是第三种情形,考虑被开方数必须大于等于0.【解析】根据二次根式的意义,被开方数不能为负数,据此求解.【答案】 C2.函数解析式的求法.具体地说求函数的解析式和列一元一次方程解实际问题基本相似,即弄清题意和题目中的数量关系,找到能够表示所求问题含义的一个相等的关系,根据这个相等的数量关系,列出所需的代数式,从而列出两个变量之间的关系式.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【答案】(1)从纸箱厂定制购买纸箱费用y1=4x.蔬菜加工厂自己加工纸箱费用y2=2.4x+16000.(2)y2-y1=(2.4x+16000)-4x=16000-1.6x,由y1=y2,得16 000-1.6x=0,解得x=10000.∴当x<10000时,y1<y2.选择方案一,从纸箱厂定制购买纸箱所需的费用低.∴当x>10000时,y1>y2.选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.∴当x=10000时,y1=y2.两种方案都可以,两种方案所需的费用相同.3.坐标系中的图形的平移与旋转.求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质,二是利用图形的全等关系;三是确定变换前后点所在的象限.【例3】在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1次变换.如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续9次这样的变换得到△A'B'C',则点A的对应点A'的坐标是.4.运用函数的图象特征解决问题.(1)由函数图象的定义可知图象上任意一点P(x,y)中的坐标值x,y是解析式方程的一个解,反之,以解析式方程的任意一解为坐标的点一定在函数的图形上.(2)注意方程与函数的结合,抓住“方程(方程的解)——点的坐标——函数图象与性质”这个网,结合数学知识,用数形结合法来解题.【例4】小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.②小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时分,此时小刚离家1100米,所以点B的坐标是(20,1100).点C的坐标是(50,1100),点D的坐标是(60,0),设线段CD所在直线的函数解析式是s=kt+b,将点C,D的坐标代入,得所以线段CD所在直线的函数解析式是s=-110t+6600.5.分段函数的应用自变量在不同的范围内取值时,函数y和x有不同的对应关系,这种函数称为分段函数,解决分段函数的有关问题时,关键是弄清自变量的取值范围,选择适合的解析式解决问题.【例5】如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是().【答案】 B专项训练一、选择题1.(四川中江县一模)已知点A(a,1)与点A'(-5,b)是关于原点O的对称点,则a+b的值为().A. 1B. 5C. 6D. 42. (深圳模拟)已知点A(a+2,a-1)在平面直角坐标系的第四象限内,则α的取值范围为().A. -2<a<1B. -2≤a≤1C. -1<a<1D. -1≤a≤23.(宁夏银川外国语学校模拟)已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是().4. (内蒙古赤峰模拟)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步回到家里.下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的函数关系的大致图象是().5.(2013·广东佛山模拟)在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y的值是().A. 2B. 8C. -2D. -86.(2013·湖北宜昌调研)在正方形ABCD中,点P从点C出发沿着正方形的边依次经过点D,A向终点B运动,运动的路程为x(cm),△PBC的面积为y(cm2),y随x变化的图象可能是().7. (2013·河南南阳模拟)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为().(第7题)A. m+2n=1B. m-2n=1C. 2n-m=1D. n-2m=1二、填空题8. (广西玉林模拟)在平面直角坐标系中,点(0,2)到x轴的距离是.9. (甘肃天水模拟)函数中,自变量x的取值范围10.(四川达州模拟)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).(第10题)11.(2013·北京房山区一模)如图,在平面直角坐标系中,以原点O为圆心的同心圆半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A1,A2,A3,A4,…,则点A31的坐标是.(第11题)三、解答题12. (四川峨眉山二模)如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC 先向右平移4个单位,再向下平移2个单位,得到△A'B'C'.在坐标系中画出△A'B'C',并写出△A'B'C'各顶点的坐标.(第12题)13.(2013·辽宁葫芦岛一模)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A,B的坐标分别为(3,2),(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为的长为.(第13题)参考答案与解析1. D[解析]a=5,b=-1.2. A[解析]由a+2>0,a-1<0,得-2<a<1.4. C[解析]先慢步行走,再打了一会儿太极拳,最后原路跑步回到家里.只有C图能反映爷爷离家的距离y(米)与时间x(分钟)之间的函数关系6.A[解析]利用图象可以发现△PBC的面积,从增大到不变,再到不断减小,结合图象可选出答案.7. B[解析]根据题意可知OC为∠AOB的平分线,点C的坐标为(m-1,2n)且在第一象限,点C到x轴、y轴距离为m-1,2n,根据角平分线上的点到角两边距离相等,可知m-1=2n,所以m-2n=1.8. 2[解析]点p(a,b)到x轴的距离是|b|,到y轴的距离是|a|.9.x≥0且x≠1[解析]根据被开方数具有非负性且分母不等于零,得x≥0且x≠1.10. (2n,1)[解析]A4 (2,0),A8(4,0),A12(6,0),∴A4n (2n,0).11.[解析]根据31÷4=7……3,得出A31在直线y=x上,在第三象限,且在第8个圆上,求出OA31=8,通过解直角三角形即可求出答案.12.图略; 各顶点坐标为A'(2,2),B'(3,-2),C'(0,-6).。

中考数学易错题系列之代数运算解析式运算常见错误

中考数学易错题系列之代数运算解析式运算常见错误

中考数学易错题系列之代数运算解析式运算常见错误代数运算是中考数学中的一大重点考点,也是容易出错的部分。

在解析式运算中,同学们经常会犯一些常见的错误。

本文将针对这些常见错误进行分析和解决,帮助同学们在中考数学中避免这些错误。

一、符号的使用错误在解析式运算中,同学们常常会犯到符号的使用错误,如混淆加法和乘法的符号,或者忽略括号的作用。

这些错误会导致最终答案出错。

在解析式运算中,加法的符号是"+",乘法的符号是"×",并且乘法在运算优先级中大于加法。

因此,同学们在运算时要注意区分加法和乘法的符号,不要混淆使用。

同时,在运算中,使用括号可以改变运算的优先次序,从而避免错误。

同学们要养成使用括号的习惯,根据运算顺序正确地使用括号,确保运算的准确性。

二、未化简算式在解析式运算中,同学们有时候会在得到结果后未进行进一步的化简,从而导致答案出错。

化简算式是指将算式中的项合并简化,去除冗余部分。

同学们要在得到结果后,仔细检查算式中是否还有合并简化的余地,并及时进行化简。

这样可以避免答案冗杂,提高解答的准确性。

三、代数式求值错误在解析式运算中,同学们有时候会在代数式求值的过程中出错,导致最终结果错误。

代数式求值是指根据给定的数值,将代数式中的未知数替换为具体的数值,计算得出结果。

在进行代数式求值时,同学们要仔细阅读题目,正确把握数值的取值范围,准确替换未知数,并进行正确的计算。

只有在求值上下文下,代数式才能得到准确的结果。

四、未列清楚步骤在解析式运算中,同学们有时候会在列式子的过程中步骤不清晰,从而导致结果错误。

在进行解析式运算时,同学们要养成规范列式子的习惯,确保每一步都清晰可读。

可以使用等号对齐、竖式计算等方式,使得列式子过程清晰明了。

这样不仅可以减少错误的发生,还有助于提高解答的整体逻辑性和可读性。

五、对常见公式理解不深在解析式运算中,同学们应掌握一些常见的代数运算公式,如乘法分配律、加法结合律等。

中考数学易错题解析解方程的常见错误及纠正方法

中考数学易错题解析解方程的常见错误及纠正方法

中考数学易错题解析解方程的常见错误及纠正方法解方程是中学数学中的重要内容,也是容易出错的一个知识点。

在中考数学中,解方程题经常会出现,并且常常成为学生们易错的地方。

本文将从解方程的常见错误入手,探讨解方程题的正确解法和纠正方法,帮助同学们在中考数学中避免这些错误。

一、常见错误1. 忽略分配律:在解方程问题中,常常会有分配律的运算。

例如:2(x + 1) = 3(x - 2)。

有些同学会漏掉分配律,直接将2乘以x和1,3乘以x和2,导致最后得到的方程错误。

2. 步骤混乱:解方程是一个需要有条不紊进行的过程,但有些同学容易在解题过程中步骤混乱。

例如:直接代入计算,没有按照顺序进行合并同类项、消元等步骤,导致最后答案错误。

3. 求解范围错误:解方程的过程中,有时会得到可行解和不可行解。

但有些同学没有注意到这一点,将不可行解作为最后的解答,造成错误。

二、纠正方法1. 仔细阅读题目:解方程题在中考中常常伴随着实际问题。

在解答问题之前,要仔细阅读题目,理解问题的要求和条件。

只有明确了方程的意义和所求的未知数,才能正确解题。

2. 列方程时注重细节:在列方程时,要注意各项系数的符号、操作的顺序等细节。

特别是运用分配律时,要确保每项都正确进行了乘法运算。

3. 使用合适的解法:解方程可以采用多种方法,如消元法、配方法、因式分解等。

不同方程适用不同的方法,需要根据具体情况灵活选择。

在解题过程中,同学们可以多进行练习,熟悉各种解法的应用场景。

4. 检验答案的可行性:在解得方程的根之后,需要进行合理性检验。

将解代入原方程,看是否符合题目条件和要求。

如果不符合,则需要回顾解题过程,找出可能出错的地方。

5. 多进行归纳总结:经常遇到的错误,需要进行归纳总结,并进行自我纠正。

同学们可以将错题整理出来,反复分析错误的原因,并总结出解题的经验和技巧。

三、解方程题的练习方法为了提高解方程的能力,同学们可以进行以下练习:1. 多做基础题:基础题目是掌握解方程的关键。

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理《二次函数》是中考数学中的重要知识点之一,也是考试中容易出错的部分。

为了帮助同学们复习和避免常见错误,下面将对《二次函数》的知识点进行梳理,详细介绍其中的易错点。

《二次函数》是形如y = ax² + bx + c的函数,其中a、b和c是常数,并且a ≠。

它的图像是一个开口向上或向下的抛物线。

下面我们来逐个讲解常见易错点。

1.函数的定义域和值域:在解析式中,x可以取任意实数值,所以函数的定义域是全体实数集R。

而在图像上,如果a>,则函数的值域是[,+∞);如果a<,则函数的值域是(-∞,]。

错误经常出在对值域的判断上,容易忽略函数的开口方向。

2.抛物线的开口和对称轴:当a>时,抛物线开口向上,对称轴是x=-b/2a;当a<时,抛物线开口向下,对称轴是x=-b/2a。

易错点在于判断抛物线的开口方向和对称轴的判断。

3.抛物线的顶点和轴对称性:顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax² + bx + c。

抛物线与对称轴关于顶点具有轴对称性,即对称轴上的点到顶点的距离与对称轴上的点到抛物线的距离相等。

4.求解方程和不等式:与二次函数相关的方程和不等式是中考数学考试中的常见题型。

对于二次方程ax² + bx + c = ,可以使用因式分解、配方法和求根公式等方法求解。

对于二次不等式ax² + bx + c > 或ax² + bx + c < ,可以通过画图法或求解方程法来确定解集。

5.函数的增减性和极值:二次函数的增减性与a的正负有关,当a>时,函数递增;当a<时,函数递减。

相应地,函数的极值与抛物线的开口方向相反,开口向上时有最小值,开口向下时有最大值。

6.函数与坐标轴的交点:函数与x轴的交点称为零点,可以通过求解方程ax² + bx + c = 来求得。

中考数学易错题专题复习 数与式

中考数学易错题专题复习 数与式

数与式易错点1:有理数、无理数与实数的有关概念理解错误;对于相反数、倒数、绝对值的意义分不清.例:在实数2π,0.3&,,0,tan 60︒,227,,0.01001001……,0.010010001……(相邻两个1之间依次多一个0)中,无理数有……( )A.2个B. 3个C. 4个D.5个 错解:D 正解:B赏析:错误的主要原因是没有真正理解无理数的概念,只看形式,而没有化简后再判断,无理数的常见类型有:①根号型(开方开不尽),如,等;②定义型,如1.010010001……(相邻两个1之间依次多一个0)等;“π”型,如﹣π等;③三角函数型,如tan 60︒,sin45°等.易错点2:在实数的有关运算中,由于对运算顺序理解不清,不正确使用运算律或没有把握好符号的处理从而出现计算错误.例:计算:2tan 60︒221()2-.错解:原式=22+4=6-正解:原式=22+4=2.赏析:错误的主要原因是把绝对值化简后没有处理好前面的负号.正确的解法应是先化简:tan 60︒2=2,21()2-=211()2=4,再算乘法:2tan 60︒=,然后进行加减混合运算.其中关于负整数指数幂的计算也易出错,其计算公式是1p p a a -=(a ≠0,p 为正整数),如21()2-=211()2=4,易错误地计算为21()2-=14.易错点3:平方根、算术平方根、立方根的意义与区别.例:将7的平方根和立方根按从小到大的顺序排列为_____________________. 错解正解赏析:本题主要从“同一个正数(除1外)的平方比立方要小”而得出 “同一个正数的平方根也比立方根要小”的错误结论,应是“同一个正数(除1外)的平方根比立方根要大”.其方法是:2,2,又∵2,,易错点4:求分式的值时易忽略分母不为零的条件.例:分式22x x -+的值为零,则x 的值为………………………………………………( )A.2B.﹣2C.±2D.任意实数 错解:C 正解:A赏析:本题错解考虑到了分子x -2为零,而忽视了分式有意义的条件——分母x +2不为零.分式的值为零的条件应是分子为零且分母不为零,∴由x -2=0,解得x =±2,又由x +2≠0,得x ≠﹣2,∴x =2.还有分式无意义的条件是分母为零.易错点5:分式的运算:①运算法则和符号的变化;②分子或分母是多项式时要分解因式且要分解到不能分解为止;③结果应化为最简分式.例:先化简,再求值:(2241x x x -+-+2-x )÷2441x x x++-,其中x 满足x 2-4x +3=0.错解:原式=[2241x x x -+--(2)(1)1x x x ---]·21(2)xx -+=2224321x x x x x -+--+-·21(2)x x -+ =(56)1x x ---·2(1)(2)x x --+ =256(2)x x -+.∵x 2-4x +3=0,∴(x -1)(x -3)=0, ∴x 1=1,x 2=3.又∵x -1≠0, ∴x ≠1.∴当x =3时,原式=2536(32)⨯-+=925. 正解:原式=[2241x x x -+--(2)(1)1x x x ---]·21(2)xx -+ =2224321x x x x x -+-+--·21(2)x x -+=21x x +-·2(1)(2)x x --+ =12x -+. ∵x 2-4x +3=0,∴(x -1)(x -3)=0, ∴x 1=1,x 2=3.又∵x -1≠0,x 2+4x +4≠0, ∴x ≠1,x ≠﹣2. ∴当x =3时,原式=12x -+=﹣132+=15-. 赏析:本题一处错误是在去括号时,符号出现了错误,括号前面是“﹣”,去掉括号和它前面的“﹣”号,括号里面的每一项都要改变符号,二处错误是原式有意义的条件只考虑了分母不为零,即x -1≠0,而忽视了除数不能为零的条件,即x 2+4x +4≠0.易错点6:非负数的性质:几个非负数的和为零,则每个非负数都为零;整体代入;完全平方式.例:若(x 2+y 2)2+2(x 2+y 2)-8=0,则x 2+y 2=__________. 错解:2或﹣4 正解:2赏析:本题错误的主要原因是没有注意到题中隐含的条件x 2+y 2≥0,同时把x 2+y 2整体运用也很重要.本题可以用因式分解法来解:(x 2+y 2)2+2(x 2+y 2)-8=0,(x 2+y 2+4)( x 2+y 2-2)=0,∴x 2+y 2+4=0或x 2+y 2-2=0,∴x 2+y 2=﹣4或x 2+y 2=2,∵x 2+y 2≥0,∴x 2+y 2=2.或者用换元法来解:设x 2+y 2=a ,则原方程化为a 2+2a -8=0,∴(a +4)(a -2)=0,∴(a +4)=0或(a -2)=0,∴a =﹣4,a =2,即x 2+y 2=﹣4或x 2+y 2=2,∵x 2+y 2≥0,∴x 2+y 2=2.易错点7:五类计算:绝对值;零指数幂;负整数指数幂;二次根式的化简计算;锐角三角函数.sin 60︒错解1-2+4=2-1+2=1+2.正解22=12+2=2-12=32.赏析:分母有理化时,分母是+-1)=2-1=2,而不是1,错误地理解为分母有理化时分母就是1.同时,逆用二次根式性质3计算=2更简便.二次根式的计算通常先化简,不是最简二次根式化成最简二次根式,分母中有根号时要分母有理化,这一步中熟练掌握二次根式的四条性质和分母有理化的方法很重要,同时还要理解最简二次根式的概念,然后按运算顺序计算,遇有除法时通常先化为乘法再计算,能约分的尽量先约分,在加减计算中要掌握同类二次根式的概念,其合并方法与合并同类项的方法相似.还有,特殊角的三角函数值也易弄错,如sin30°与sin60°,应牢记30°,45°,60°角的三角函数值.特殊角的三角函数值如下表:易错练1.有意义,则x 的取值范围是………………………………………………( ) A.x ≥-1且x ≠2 B.x ≠2 C.x ≥2且x ≠-2 D.x ≥22.下列四个多项式中,能因式分解的是…………………………………………………( )A.a 2+b 2B.a 2-a +0.25C.x 2+4yD.x 2-4y3.已知点A 、B 、C 在同一条数轴上,点A 表示的数是﹣2,点B 表示的数是1,若AC =1,则BC =……………………………………………………………………………………( ) A .3或4 B.1或4 C.2或3 D.2或44.已知(a +b)2=1,(a -b)2=5,则ab 的值为…………………………………………( ) A.﹣4 B.4 C.﹣1 D.15.化简22ab ba a b--的结果为…………………………………………………………………( )A. a 2-b 2B.b 2-a 2C.abD.﹣ab6.据报载,2014年我国发展固定宽带接入新用户250000000户,其中250000000用科学记数法表示为______________________.7.若112x y-=,则分式2272x xy y y xy x --+-=____________.8.n 的最小值为_____________.9.-3--0()π-+2014.10.化简求值:(x +1)2+(x +1)(x -1)-3x (x -1),其中x 1.11.先化简,再求值:221()111a a a a a -÷+--,其中a -1.12.参考答案易错练1.A 解析:由题意,得x +1≥0且x -2≠0,解得x ≥-1且x ≠22.B 解析:a 2-a +0.25=a 2-2×a ×12+(12)2 =(a -12)23.D 解析:∵点A 表示的数是﹣2,AC =1,∴C 点表示的数是﹣1或﹣3,又∵点B 表示的数是1,∴BC =2或4.7. ﹣411解析:由112x y-=,得x-y=﹣2xy,∴原式=()2442()71111x y xy xyx y xy xy---==---+.8.6 解析:∵24n=46n⨯⨯且位整数,∴最小正整数n=6.9. 解:原式=5-3-1+2014=201510.解:原式=x2+2x+1+x2-1-3x2+3x=﹣x2+5x,当x=3-1时,原式=﹣(3-1)2+5(3-1)=23-4+53-5=73-9.11. 解:原式=﹣223(1)(1)3(1)(1)a aa a a aa a-•+-=-+-.当a=2-1时,原式=3(2-1)-(2-1)2=32-3-3+22=52-6.。

中考数学易错题集锦及答案 [整理版]

中考数学易错题集锦及答案 [整理版]

初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O G FB DACE中考数学易错题1.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .2 .5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )3 如图,将沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠;③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .44 如图,在四边形ABCD 中,动点P 从点A 开始沿A B C D 的路径匀速前进到D 为止。

在这个过程中,△APD 的面积S 随时间t 的变 化关系用图象表示正确的是( )5如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G.连接GF.下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG.其中正确结论的序号是 .6 福娃们在一起探讨研究下面的题目:参考下面福娃们的讨论,请你解该题,你选择的答案是( )贝贝:我注意到当 0x =时,0y m =>. 晶晶:我发现图象的对 称轴为12x =. 欢欢:我判断出12x a x <<.迎迎:我认为关键要判断1a -的符号. 妮妮:m 可以取一个特殊的值.stO AstO BstO CstODA D CE F G B s 80 O vt 80 O v 80 O t v O A . B. C . D .80 A D BF E第20题图DCBP A函数2y x x m =-+(m 为常数)的图象如左图, 如果x a =时,0y <;那么1x a =-时,函数值( )A .0y <B .0y m <<C .y m >D .y m =x y O x 1x 27 正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为( ) A .43B .34 C .45D .358 一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0. 其中正确的结论是( )A .①②B .①③C .②③D .①②③9.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )10 如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A 、20cm B 、24cm C 、10cm π D 、30cm π11 在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac =C 、222b ac =+ D 、22b a c ==12 古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( )A .2π(6010)2π(6010)68x +++=B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯13 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2, 则该半圆的半径为( ).A . (45)+ cmB . 9 cmC . 45cmD . 62cm14 如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )15 如图,边长为a 的正ABC △内有一边长为b 的内接正DEF △,则AEF △的内切圆半径为.16 如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线, B 为切点.则B 点的坐标为A .⎪⎪⎭⎫ ⎝⎛-5823, B .()13,- C .⎪⎭⎫ ⎝⎛-5954, D .()31,-17 如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,,,的位置,则点2008P 的横坐标为 .18 如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .19 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A .第3天 B .第4天 C .第5天 D .第6天A B C DOP B .ty 045 90 D .t y 045 90 A .ty45 90 C .ty 045 90 (第12题) x y O 1 1 BA1P A O yx (第19题) P 1o 2o 3o 4o CB D A 第(18)题图① 第(18)题图② 1o 2o 3o 4o 5oA B C E D 112 111021 2019 1817161514 13 5498 7 6 2 3(第19题)20如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有 A .2个 B .3个 C .4个 D .5 个21.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升.A.15 B.16 C.17 D.1821.如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= .A.1B.2C.21 D.41 22.已知:如图所示,抛物线y=ax 2+bx+c 的对称轴为x=-1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB=OC ,则下列结论正确的个数是 . ①b=2a ②a-b+c>-1 ③0<b 2-4ac<4 ④ac+1=bA.1个B.2个C.3个D.4个23.已知:如图,∠ACB=90º,以AC 为直径的⊙O 交AB 于D 点,过D 作⊙O 的切线交BC 于E 点,EF ⊥AB 于F 点, 连OE 交DC 于P ,则下列结论:其中正确的有 .①BC=2DE ; ②OE ∥AB; ③DE=2PD ; ④AC•DF =DE•CD .A.①②③B.①③④C.①②④D.①②③④24 已知:如图,直线MN 切⊙O 于点C ,AB 为⊙O 的直径,延长BA 交直线MN 于M 点,AE ⊥MN ,BF ⊥MN ,E 、F 分别为垂足,BF 交⊙O 于G ,连结AC 、BC ,过点C 作 CD ⊥AB ,D 为垂足,连结OC 、CG. 下列结论:其中正确的有 . ①CD=CF=CE ; ②EF 2=4AE •BF; ③AD •DB=FG •FB ; ④MC •CF=MA •BF. A.①②③ B.②③④ C.①③④ D.①②③④25 如图,M 为⊙O 上的一点,⊙M 与⊙O 相交于A 、 B 两点,P 为⊙O 上任意一点,直线PA 、PB 分别交 ⊙M 于C 、D 两点,直线CD 交⊙O 于E 、F 两点,连结PE 、PF 、BC ,下列结论:其中正确的有 .①PE=PF ; ②PE 2=PA ·PC; ③EA ·EB=EC ·ED ;④rRBC PB (其中R 、r 分别为⊙O 、⊙M 的半径). A.①②③ B.①②④ C.②④ D.①②③④• •DPO 1O 2A BC)•ACDFBP O E•MABF OGCDEN··BAD PO FM E CB EDA CO1 如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB围成的阴影部分的面积是 .1 9 2D 3B 4B 5(1,4,5) 6 C 7D 8 C 9 C 10 C 11 A 12 A 13C 14 C 15)a b - 16D 17 2008 18 18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).19 C20 D 252π3第(18)题图②'(第18题)。

相关文档
最新文档