Hermite插值

合集下载

hermitage插值法

hermitage插值法

hermitage插值法【实用版】目录1.概述 Hermite 插值法2.Hermite 插值法的基本原理3.Hermite 插值法的应用实例4.Hermite 插值法的优点与局限性正文1.概述 Hermite 插值法Hermite 插值法是一种基于分段多项式的插值方法,用于在给定区间内对已知数据点进行插值。

它是一种三次样条插值法,可以提供比其他低阶插值方法更精确的结果。

Hermite 插值法的名称来自于法国数学家Charles Hermite,他在 19 世纪末开发了这种方法。

2.Hermite 插值法的基本原理Hermite 插值法的基本思想是使用一个三次多项式来表示给定数据点之间的函数。

该多项式可以写成:f(x) = a0 + a1x + a2x^2 + a3x^3其中,a0、a1、a2 和 a3 是待定系数,需要通过给定的数据点来确定。

为了找到这些系数,Hermite 插值法使用了三个约束条件:(1)插值多项式在区间的端点处取到给定的函数值,即:f(x0) = a0 + a1x0 + a2x0^2 + a3x0^3 = y0f(x1) = a0 + a1x1 + a2x1^2 + a3x1^3 = y1(2)插值多项式在区间的中点处取到区间的平均值,即:f((x0 + x1) / 2) = (f(x0) + f(x1)) / 2(3)插值多项式的一阶导数在区间的中点处等于给定函数在该点的导数值,即:f"(((x0 + x1) / 2)) = (f"(x1) - f"(x0)) / (x1 - x0)通过解这组线性方程组,可以得到插值多项式的系数 a0、a1、a2 和a3。

一旦得到这些系数,就可以用插值多项式来近似表示给定函数在给定区间内的行为。

3.Hermite 插值法的应用实例Hermite 插值法广泛应用于数值分析、工程计算和计算机图形学等领域。

例如,在计算机图形学中,Hermite 插值法可以用来在给定控制点之间生成平滑的贝塞尔曲线。

埃尔米特插值

埃尔米特插值

0,则可以设:
0(x) (x 1)(ax b)
将:
0 (0) 1
0
(0)
0
带入0(x) (x 1)(ax b),则:
a 1 b 1
则:0 (x) 1 x2
同理: 1( x)为二次项式
又:
1(0) 0
1
(0)
0
则:x 0为1(x)的二重根
则:1(x) cx2 又:1(1) 1
xi
01
f(xi) 0
1
f (xi )
0
1
解: 本题利用承袭性的思想 首先利用:
xi
0
1
f(xi) 0
1
求出: L1(x)
L1 ( x)
x x1 x0 x1
y0
x x0 x1 x0
y1
x
增加:
xi 0
yi 0
求:H2 ( x), 其中H2 ( x)满足:
xi
01
f(xi) 0
1
f (xi )
则:c 1
则:1(x) x2 同理:0 (x) x(1 x)
插值余项为:
R(x)
f (x) H2(x)
f
(
3!
)
(
x
x0
)2
(
x
x1 )
仿Lagrange 或 Newton 证明
情形2. 已知: 4个条件
xi
x0 x1
yi = f(xi) y0 y1
yi f (xi ) y0 y1
一、 Hermite插值多项式的定义
插值条件中除函数值外, 还有导数值(回顾 Taylor展开式, 是某点的导数值), 如
已知: 2n+2个条件

数值分析(13)Hermite插值

数值分析(13)Hermite插值
Hermite插值中,最基本而重要的情形是只要求 一阶导数的条件。给出n 1个互异节点x0 , x1 , xn上 的函数值和导数值 yi f ( xi )和y 'i f '( xi ) ( i 0,1, 2, , n) 构造不低于2n 1次插值多项式H 2 n 1 ( x ),要求满足 插值条件 H 2 n 1 ( x i ) yi i 0, 1, 2, n H '2 n1 ( xi ) y 'ii 0 i 源自0 i 0 n i 0 nn
n
利用Lagrange插值基函数li ( x ) (
j 0 ( ji )
1)构造hi ( x )( i 0,1, 2, , n) hi ( x )应满足条件: (1)hi ( x )应是 2n 1次多项式; 1 i j (2)hi ( x j ) ij i j 0 h 'i ( x j ) 0 ( i,j 0, 1, 2, ,n)
由条件(2)可列出方程组 2 h ( x ) ( ax b ) l i i i i ( xi ) 1 h' ( x ) al 2 ( x ) 2(ax b)l ( x )l ' ( x ) 0 i i i i i i i i i
li ( xi ) 1, axi b 1, a 2l ( xi ) 0
二、Hermite插值多项式的构造
1、Lagrange型插值基函数法 设Hermite插值多项式为 H 2 n1 ( x ) hi ( x ) yi hi ( x ) y 'i
i 0 i 0 n n
使其满足插值条件 H 2 n 1 ( x i ) yi H '2 n1 ( xi ) y 'i

第三章(二) 埃尔米特-样条插值法

第三章(二) 埃尔米特-样条插值法

2
x x1 x x 0 h1 ( x ) 1 2 x x . x1 x 0 1 0
2

x x1 g 0 (x) a(x x0 ) , x 0 x1
2
∵g0(x0)=g0(x1)=0, g'0(x1)=0
例1 给定 f (− 1)=0, f (1)=4, f '(− 1)=2, f '(1)=0, 求H3(x), 并计算 f (0.5).

x0 = − 1, x1 = 1,
H 3 ( x ) h 0 ( x ) 0 h1 ( x ) 4 g 0 ( x ) 2 g 1 ( x ) 0
y0 y1 m0 m1
其解存在唯一, 解 出 a0, a1, a 2, a3, 代 入即得 H3(x).
1 1 0 0
x0 x1 1 1
x0 x1
2 2
x0 x1
3 3 2 2
2 x0 2 x1
3x0 3 x1
( x 0 x1 ) 0 .
4
基函数法
类似于拉格朗日插值多项式的构造手法,我们可以通 过插值基函数作出 。
对给定区间[a,b]作划分
a x 0 x1 x n b
给定 n +1个插值点:(xi , f (xi)), i = 0,1,2,„,n, 在每个小 区间[xi, xi+1]上作线性插值,节点 xi, xi+1上的基函数分别为:
li ( x ) x x i 1 x i x i 1 , 1 ( x ) li x xi x i 1 x i ,
在某些问题中,为了保证插值函数能更好地逼近原函数 ,不仅要求两者在节点上有相同的函数值,而且要求在节点 上有相同的导数值。这类插值称为Hermite插值。 ★ Hermite插值描述:

Hermite_插值法

Hermite_插值法

, x0]
lim
xi x0
f [x0, x1,
,
xn ]
1 n!
f
(n) ( x0 )
重节点Newton插值
在 Newton 插值公式中,令 xi x0 , i = 1, … , n, 则
Nn( x) f ( x0 ) f [ x0 , x1]( x x0 )
f ( x0 ) f '( x0 )( x x0 )
( x1 x0 )( x1 x2 )
三点三次Hermite 插值
余项公式
由于 x0 , x1 , x2 是 R(x) 的零点,且 x1 是二重零点,故可设 R( x) f ( x) P( x) k( x)( x x0 )( x x1 )2 ( x x2 )
与 Lagrange 插值余项公式的推导过程类似,可得
x
x0
)
x x0
x1 x1
2
1(
x)
(
x
x1
)
x x1
x0 x0
两点三次Hermite 插值
满足插值条件
P(x0) = f(x0) = y0,P’(x0) = f’(x0) = m0 P(x1) = f(x1) = y1,P’(x1) = f’(x1) = m1
的三次 Hermite 插值多项式为
三点三次Hermite 插值
三点三次 Hermite 插值
插值节点:x0 , x1 , x2
插值条件:P(xi) = f(xi),i = 0, 1, 2,P’(x1) = f’(x1) 设 P( x) f ( x0 ) f [x0, x1]( x x0 )
f [ x0, x1, x2]( x x0 )( x x1) A( x x0 )( x x1 )( x x2 ) 将 P’(x1) = f’(x1) 代入可得 A f '( x1 ) f [ x0 , x1] f [ x0, x1, x2]( x1 x0 )

5.2Hermite插值

5.2Hermite插值

六、分段Hermite插值 (与学生一起看书学习) 6.6 分段Hermite插值(任玉杰) 1、分段Hermite插值函数(408页) (1)定义6.4(分段三次Hermite插值函数)
分段三次Hermite插值函数与一般的Hermite插值的区别:
设在节点 a x0 x1 xn b 上,
r ( xi ) 0, i 0,1,2,, n r ( xik ) 0, k 0,1,2,, m
r ( x) 的零点个数m+n+2个.
r ( x) 0
四、Hermite插值多项式的构造 设在节点 a x0 x1 xn b 上,
yi f xi , yi f xi i 0,1, n
0 ( x) y1 1 ( x) H3 ( x) y00 ( x) y11 ( x) y0
H 2 n1 x y j j x yj j x .
j 0 n
n 1 2 j x 1 2 x x j l j x. k 0 x j xk k j
提示:令
j ( x) (ax b)l 2 j ( x), j ( x) (cx d )l 2 j ( x),
例:求满足条件:
f x0 , y1 f x1 , y1 f x1 y0 f x0 , y0
的三次Hermite插值多项式 H 3 ( x) 。
要求插值多项式 H x ,满足条件
① H xi yi , H xi yi i 0,1, n .
1 H x C [a, b] ②
③在每个子区间 [ xi 1 , xi ] 上为三次多项式。 (2)分段三次Hermite插值多项式的形式

埃尔米特hermite插值

埃尔米特插值5.4.1 问题的提出面讨论的拉格朗日和牛顿插值多项式的插值条件只要求在插值节点上,插 值函数与被插值函数的函数值相等,即)(i n x L =f(i x )和n N (i x )=f(i x ),有时 不仅要求插值多项式在插值节点上与被插值函数的函数值相等,还要插值多项式的导数在这些 点上被插函数的导数值相等,即要求满足插值条件:n i x f x H x f x H i i n i i n ,...,1,0,(')('),()()1212===++ (5.4.1)的次数不超过 2n+1的插值多项式12+n H ,这就是埃尔米特 (Hermite) 插值问题。

定义:假设在区间【α,b 】上给定了n 个互不相同的点x 1,x 2,…,x n 以及一张数表(*)记m=α1+α2+…+αn 。

早在 1878年C.埃尔米特就证明:存在惟一的次数不高于m-1的代数多项式H n (x ),使得,H n (x )为表(*)的以为结点组的埃尔米特插值多项式。

如果定义在【α,b 】上的函数ƒ(x )在x k (k =1,2,…,n )处有αk-1阶导数,并取,则称相应的H n (x )为ƒ(x )的以为结点组的(α1,α2,…,αn )阶埃尔米特插值多项式。

作为特殊情况,若诸αk 都为1,则H n (x )就是ƒ(x )的拉格朗日插值多项式;若n =1,则H n (x )为ƒ(x )的α1-1阶泰勒多项式。

最使人们注意的是诸αk 都为2的情况,这时H n (x )为次数不高于2n -1的代数多项式。

如果写H n (x )可表示为在这种情况下,常取,而给以适当的限制。

5.4.2三次埃尔米特插值我们考虑只有两个节点的三次埃尔米特插值。

设插值点为(0x ,0y ),(1x ,1y ),要求一次数不超过3的多项式)(3x H ,满足下列条件:i i i i m x H y x H ==)(',)(33 i=0,1(5.4.2) 式中i m =f ′(i x ),i=01。

插值法-Hermite插值专业知识


共有m+1个条件
其中 xi (i 0,1,, n) 互异,mi为正整数,记 mi m 1,
谋求m次多项式P(x)使满足插值条件:
i0
P(k)( xi ) f (k)( xi ), (i 0,1,, n;k 0,1,, mi 1) (5.1)
埃尔米特Hermite插值问题
我们只讨论 P( xi ) f ( xi ), P( xi ) f ( xi ) 旳情形。
(5.5)
其中
j
(
x),
j
(
j0
x),( j
0,1,,
n)为Hermite插值基函数,即
j(x)
(1
2( x
n
xj)
i0
xj
1
xi
)l
2 j
(
x
);
i j
j
(
x)
(
x
x
j
)l
2 j
(
x);
n
l
j
(x)
n
i0 i j
x xi x j xi
实际上,有 H 2n1 ( xi ) ( j ( xi ) yi j ( xi ) y' j ) yi
j
(
x)
(1
c(
x
x
j
))
(((xxxxx000))222((xx xx11))222(((xxxxxjjj11))22((xx xxjj11))22((xx xxnn))22
((xxjj
xx00))22((xxjj
xx11))22((xxjj
xxjj11))22((xx
jj
xx
))22
jj11

三次Hermite插值

检查插值多项式是否满足Hermite插 值的约束条件,即插值多项式和原函 数在节点处有相同的函数值和导数值 。
04 实例分析
CHAPTER
实例一:已知数据点的插值
总结词
利用已知数据点进行插值,可三次Hermite插值方法,利用已知的数据点来估计未知点的值。这 种方法能够更好地处理数据点的变化,并提高插值的精度。
CHAPTER
插值多项式的构造
定义
Hermite插值法是一种通过已知的离散数据点来构造一个多 项式,使其能够准确地经过这些数据点,并尽可能地平滑地 连接这些点的方法。
构造方法
Hermite插值多项式由两个部分组成,一个是线性函数,另 一个是二次函数。线性函数部分用于确保插值多项式能够准 确地经过数据点,而二次函数部分则用于保证插值多项式的 平滑性。
实例二:未知数据点的插值
总结词
在未知数据点的情况下,可以通过三次 Hermite插值方法,预测并估计未知点的值。
详细描述
在数据点未知的情况下,可以利用三次 Hermite插值方法,根据已知的数据点来预 测和估计未知点的值。这种方法能够为后续 的数据分析和处理提供重要的参考依据。
实例三:复杂函数的插值
三次Hermite插值能够提供高精度的插值结果,特别是在处理
复杂函数时。
稳定性好
02
该方法在处理大数据集时表现出良好的稳定性,不易受到噪声
和异常值的影响。
易于实现
03
三次Hermite插值的算法相对简单,易于在计算机上实现和优
化。
三次Hermite插值的局限性
对初始数据敏感
三次Hermite插值的结果对初始数据的选择 较为敏感,不同的初始数据可能导致不同的 插值结果。

第2章-插值法(Hermite插值,样条插值)

§
2.5 埃尔米特插值法
Newton插值和Lagrange插值虽然构造比较简单,但都存 在插值曲线在节点处有尖点,不光滑,插值多项式在节 点处不可导等缺点
问题的提出: 不少实际问题不但要求在节点上函数值相等,而且还要 求它的导数值也相等(即要求在节点上具有一阶光滑度), 甚至要求高阶导数也相等,满足这种要求的插值多项式就是 埃尔米特(Hermite)插值多项式。下面只讨论函数值与导数 值个数相等的情况。
由 j ( x j ) 1 ,可得
Cj
1 ( x j x0 ) 2 ( x j x1 ) 2 ( x j x j 1 ) 2 ( x j x j 1 ) 2 ( x j xn ) 2

j ( x) ( x x j )
( x x0 ) 2 ( x x1 ) 2 ( x x j 1 ) 2 ( x x j 1 ) 2 ( x xn ) 2 ( x j x0 ) 2 ( x j x1 ) 2 ( x j x j 1 ) 2 ( x j x j 1 ) 2 ( x j xn ) 2
( x x j )l j 2 ( x)
2016/8/14 6
(ii)由条件(1)可知,x0 , x1,, x j 1, x j 1,, xn都是 j ( x)的二重根,令
j ( x) C j (ax b)( x x0 ) 2 ( x x1 ) 2 ( x x j 1 ) 2 ( x x j 1 ) 2 ( x xn ) 2
17

x x1 x x0 2 0 ( x) (1 2l1 ( x)) l0 ( x) 1 2 x x x0 x1 1 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时比较麻烦。
又 ’i (xi) = 1 Ci = 1
设 a x0 x1 ... xn b,
i ( x) ( x xi ) li2(x)
2
f ( 2 n 2 ) ( x ) n 2n f C [a, b] 则 Rn ( x ) ( x x ) i ( 2n 2)! i 0
i 0


h1(x) 有根 x0, x2 h1 ( x ) ( Ax B )( x x0 )( x x 2 )
f ( 4 ) ( x ) R3 ( x) f ( x) P3 ( x) K ( x)( x x0 )( x x1 ) ( x x2 ), K ( x ) 4!
0
1
2
3
4
5
6
x
求Hermite多项式的基本步骤: 写出相应于条件的i(x)、 i(x) 的组合形式; 对每一个i(x)、 i(x)找出尽可能多的条件给出的根; 根据多项式的总阶数和根的个数写出表达式; 根据尚未利用的条件解出表达式中的待定系数; 最后完整写出H2n+1(x)。 注:待定系数法仍适用,但插值节点多
§5.2 厄米插值
/* Hermite Interpolation */
厄米插值
不仅要求函数值重合,而且要求若干阶导数也重合。 即:要求插值函数 (x) 满足 (xi) = f (xi), ’ (xi) = f ’ (xi),
…, (mi) (xi) = f (mi) (xi).
注: N 个条件可以确定 N 1 阶多项式。
要求在1个节点 x0 处直到m0 阶导数都重合的插
值多项式即为Taylor多项式
f ( m0 ) ( x0 ) ( x ) f ( x0 ) f ( x0 )( x x0 ) ... ( x x0 ) m0 m0 ! f ( m 1) ( ) 其余项为 R( x ) f ( x ) ( x ) ( x x0 )( m 1)
i 0 i 0
n
n
(x xj ) li ( x ) ( xi x j ) ji
其中 i(xj) = ij , i’(xj) = 0,
( i xj) = 0, i’(xj) = ij
2 i(x) 有根 x0 , …, x , …, x 且都是 2 重根 ( x ) ( A x B ) l i n i i i ( x) i
P3 ( x ) f ( x i ) hi ( x ) f ’( x1) h1 ( x )
2

其中 hi(xj) = ij , hi’(x1) = 0, h1 (xi) = 0, h1 ’(x 1) = 1
2 h0(x) 有根 x1, x2,且 h0’(x1) = 0 x1 是重根。h0 ( x ) C 0 ( x x1 ) ( x x2 ) 2 ( x x ) ( x x2 ) 1 又: h0(x0) = 1 C0 h0 ( x ) ( x0 x1 )2 ( x0 x2 ) h2(x) 与h0(x) 完全类似。
2
与 Lagrange 分析完全类 由余下条件 h1(x1) = 1 和 h1’(x1) = 0 可解。 似 (x) 有根 x0, x1, x2 h h1 1( x ) C 1 ( x x 0 )( x x 1 )( x x 2 ) 又: h1’(x1) = 1 C1 可解。
由余下条件 i (xi) = 1 和 i’(xi) = 0 可解Ai 和 Bi
i ( x) [1 2li( xi )( x xi )]li2 ( x)
i(x) 有根 x0 , …, xn, 除了xi 外都是2重根 i ( x) Ci ( x xi ) li2(x)
§5.2 Hermite Interpolation
一般地,已知 x0 , …, xn 处有 y0 , …, yn 和 y0’ , …, yn’ ,求 H2n+1(x) 满足 H2n+1(xi) = yi , H’2n+1(xi) = yi’。
这样的Hermite 插值唯一
解:设 H2n+1( x ) yi i( x ) yi’ i ( x )

类似的,
Th. 设f(x)C 2n+2[a,b],则 [a,b], s.t. 满足下面插值条件
Quiz: 给定 xi = i +1, i = 0, 1, 2, 3, 4, 5. 下面哪个是 i(x)的图像?
y
110.5 0.50 1 2 3 4 5 6
y
斜率=1

x
0 0
(m0 1)!
一般只考虑 f 与f ' 的值。
例:设 x0 x1 x2, 已知 f(x0)、 f(x1)、 f(x2) 和 f ’(x1), 求多项式 P(x) 满足 P(xi) = f (xi),i = 0, 1, 2,且 P’(x1) = f ’(x1), 并估计误差。 解:首先,P 的阶数 = 3 模仿 Lagrange 多项式的思想,设
相关文档
最新文档