变分法的应用

合集下载

泛函分析中的变分法应用实例

泛函分析中的变分法应用实例

泛函分析中的变分法应用实例泛函分析是数学中研究无限维空间上函数的一种方法。

变分法是泛函分析的重要工具之一,可以用于求解最值问题和微分方程等。

在实际应用中,泛函分析的变分法有着广泛的应用。

本文将通过几个实例介绍泛函分析中的变分法在不同领域的应用。

一、弦的振动考虑一根固定在两端的弦的振动问题。

假设弦的形状可以用一个实数函数表示,记为y(x),其中x表示弦上的位置。

变分法可以用来求解弦的振动形态。

首先,我们需要定义一个能量泛函来描述弦的振动状态。

一个自然的选择是弦的动能和势能的和。

弦的动能正比于线密度,速度的平方和长度元素之积的积分。

弦的势能正比于势能密度和长度元素之积的积分。

因此,我们可以定义弦的能量泛函为:E[y] = ∫(1/2)(ρy'^2 - T y'^2)dx其中,ρ表示线密度,T表示张力,y'表示y关于x的导数。

接下来,我们要求解使得能量泛函E[y]取得最值的函数y(x)。

为了求解这个问题,我们可以考虑函数y(x)的变分δy(x)。

利用变分的概念,我们可以得到能量泛函的变分表示为:δE[y] = dE[y+εδy]/dε其中,ε是一个任意小的实数。

利用分部积分的方法,我们可以将能量泛函的变分表示为:δE[y] = ∫(ρy'δy' - T y''δy)dx由于δy(x)是一个任意的函数,我们可以得到导数的变分表示为:δy' = d(δy)/dx将上述结果带入能量泛函的变分表示中,可以得到:δE[y] = ∫(ρy'δy' - T y''δy)dx = 0由于δy(x)的任意性,我们可以得到使得能量泛函最值的条件为:ρy'' - T y' = 0这就是弦的振动方程,利用这个方程可以求解弦的振动形态。

二、量子力学中的变分法在量子力学中,变分法可以用来求解波函数的本征值和本征函数。

变分法理论与应用

变分法理论与应用

变分法理论与应用变分法是数学中的一个重要分支,通过对函数的变分求解,可以求出其最值或最优解,应用广泛,例如在物理学中经常用于研究粒子的运动,友情学中应用于最小能量曲线的求解,化学中应用于量子化学中分子的电子结构计算等等。

本篇文章将着重介绍变分法的理论基础以及其在各个领域中的应用。

一、变分法理论1.1 变分基本概念在介绍变分法之前,我们先来了解一下变分中的一些基本概念。

函数是指把数域上的任意数 $x$ 映射到数域上的一个确定数$y$ 的规则,而变分则是指沿着某个函数进行微小的变化,并据此研究该函数的性质变化。

我们将一个函数 $y=f(x)$ 的变分记作$y=f(x)+\varepsilon g(x)$,其中 $\varepsilon$ 是一个无穷小量,$g(x)$ 是一个任意函数。

1.2 欧拉-拉格朗日方程欧拉-拉格朗日方程是变分法中的一种重要方程,它的本质是通过对泛函进行变分求解,求出泛函的最值或最优化解。

泛函是一类函数,它映射函数到实数集合,例如以 $y=f(x)$ 表示的函数 $f$,它的变分为 $y=f(x)+\varepsilon g(x)$,其泛函表示为:$$J[f]=\int_{a}^{b}L(x,y,y')dx$$其中 $L(x,y,y')$ 是 Lagrange 函数,$y'=\frac{dy}{dx}$。

对该泛函进行变分:$$\delta J=\delta\int_{a}^{b}L(x,y,y')dx=\int_{a}^{b}\frac{\partialL}{\partial y}\delta y+\frac{\partial L}{\partial y'}\delta y'dx $$用分部积分法将第二项转换为:$$\delta J=\int_{a}^{b}\left(\frac{\partial L}{\partial y}-\frac{d}{dx}\frac{\partial L}{\partial y'}\right)\deltaydx+\left(\frac{\partial L}{\partial y'}\delta y\right)\biggr|_{a}^{b} $$由于 $\delta y(x)$ 在 $x\in[a,b]$ 的端点 $a$ 和 $b$ 处任意,因此求解泛函的变分问题可以转化为求解边界条件。

泛函分析中的变分法应用实例

泛函分析中的变分法应用实例

泛函分析中的变分法应用实例泛函分析是数学中的一个重要分支,研究的是函数的空间和变量的关系。

其中,变分法是泛函分析中的一种重要方法,用于求解极值问题。

变分法广泛应用于物理学、工程学等领域,本文将介绍一些泛函分析中变分法的应用实例。

一、最小曲率问题最小曲率问题是变分法应用的一个经典问题,用于求解平面曲线问题中的最小曲率曲线。

假设有一条曲线C,其自变量为弧长s,函数表达式为y=f(x)。

我们的目标是寻找一个函数f(x),使得曲线C的曲率最小。

为了求解最小曲率问题,我们需要构建一个能量泛函,定义如下:J(f)=∫√(1+(f'(x))^2)dx其中,f'(x)表示函数f(x)的导数。

我们的目标是求解泛函J(f)的极小值。

通过变分法,我们可以得到极值条件:- d/dx[(f'(x))/√(1+(f'(x))^2)]=0求解上述方程,可得最小曲率曲线。

二、最小作用量问题最小作用量问题是经典力学领域中的一个重要问题,用于描述物体在给定条件下的最优运动轨迹。

假设物体的运动轨迹为函数y=f(x),我们的目标是找到一个函数f(x),使得物体的作用量最小。

为了求解最小作用量问题,我们需要构建一个作用量泛函,定义如下:S(f)=∫(L-f'(x))dx其中,L是拉格朗日函数,f'(x)表示函数f(x)的导数。

我们的目标是求解泛函S(f)的极小值。

通过变分法,我们可以得到欧拉-拉格朗日方程:- d/dx(dL/df'(x))+dL/df(x)=0求解上述方程,可得物体的最优运动轨迹。

三、最小表面积问题最小表面积问题是几何学中的一个经典问题,用于寻找能够连接给定边界条件的曲面中面积最小的曲面。

假设曲面的参数方程为S(u,v),我们的目标是找到一个曲面S(u,v),使得其表面积最小。

为了求解最小表面积问题,我们需要构建一个表面积泛函,定义如下:A(S)=∬√((S_u)^2+(S_v)^2+1)dudv其中,S_u和S_v是曲面S(u,v)的偏导数。

变分法和加权余量法

变分法和加权余量法

变分法和加权余量法是两种在数学和工程领域中常用的方法,它们主要用于解决微分方程和积分方程的近似解问题。

变分法是一种寻找函数最优解的方法,通常用于解决泛函的最小值问题。

它通过选取适当的函数,使得泛函取得极小值,从而得到原方程的近似解。

变分法广泛应用于物理学、工程学和经济学等领域,如最小势能原理、最小作用量原理等都是变分法的应用实例。

加权余量法是一种直接从微分方程或积分方程出发,通过选取适当的试探解,使余量在某种平均意义上为零的方法。

这种方法通过引入权函数来控制余量的分布,从而得到原方程的近似解。

加权余量法在计算力学、流体力学、固体力学等领域有广泛的应用,如有限元法、边界元法、无网格法等都是基于加权余量法的思想发展而来的。

总之,变分法和加权余量法都是重要的数学和工程方法,它们在不同的领域有着广泛的应用,是研究和解决微分方程和积分方程的有力工具。

如需了解更多相关信息,建议咨询数学或物理专业人士。

变分法在物理和数学中的应用

变分法在物理和数学中的应用

变分法在物理和数学中的应用变分法是数学和物理学中的一个重要理论工具,它的应用范围广泛,包含了各个领域。

变分法本身是一种优化方法,它通过寻找某个函数的最值来解决问题。

在数学中,变分法主要是在微积分和函数分析中应用,而在物理学中,变分法在最小作用量原理和哈密顿原理中有着广泛的应用。

本文将介绍变分法在物理和数学中的应用,以及它们的实际意义。

一、变分法在微积分中的应用在微积分中,变分法通常被用来求极值问题。

变分法首先会定义一个特定的函数,例如,f(x)=x²,然后找到它的变分,即f(x+ε),ε为无穷小量。

如果函数的变分小于等于0,说明它是一个函数的极小值,反之则是函数的极大值。

例如,在计算微积分中的斯蒂尔切斯积分时,就需要使用变分法。

二、变分法在函数分析中的应用在函数分析中,变分法通常被用来计算最小化问题。

最小化问题主要是指将一个函数的值尽可能地减小到一个最小值,而变分法可以帮助我们找到函数的最小值。

例如,在偏微分方程和泛函分析中,变分法都有着广泛的应用。

三、变分法在物理学中的应用在物理学中,变分法的应用主要体现在最小作用量原理和哈密顿原理中。

最小作用量原理是物理学中的一个基本原理,它通过寻找某个力学系统的动力学路径来找到力学系统的实际路径。

而哈密顿原理则是描述力学系统中能量守恒的基本原理。

最小作用量原理最小作用量原理是物理学中的一个基本原理,它指出,在一个力学系统中,它的实际动力学路径是一条使作用量最小的路径。

那么,什么是作用量呢?简单地说,作用量就是系统在某个时间段内所采取的路径对系统的影响。

作用量通常用S来表示,即S=∫Ldt,其中L表示系统的拉格朗日量。

因此,最小作用量原理的本质就是通过寻找拉格朗日量中的最小值来寻找系统的实际动力学路径。

哈密顿原理哈密顿原理是物理学中另一个重要的原理,它描述了力学系统中能量守恒的基本原理。

哈密顿原理通常是以哈密顿量的形式表示,即H=p·v-L,其中p是系统的动量,v是系统的速度,L是系统的拉格朗日量。

变分法的应用

变分法的应用

变分法的应用在物理、工程、数学等领域中,变分法是一种非常重要的工具。

变分法可以被用来解决各种数学问题,如微积分、偏微分方程、力学问题和最优化问题等等。

本文将介绍变分法的定义、基本原理、应用以及其在实践中的意义。

一、什么是变分法?变分法是一种数学方法,它通过不断调整函数的形式来寻找一个极值问题的解。

变分法可以用来解决一系列的优化问题,如最优控制问题和最小能量问题等等。

在它最简单的形式中,变分法是一个求解“泛函”的问题:“找到一个函数使得某个固定泛函取得最小值”。

例如,我们想要找到长度为 L 的钢条上的最小弯曲量。

这个问题可以表示成一个泛函:J(y) = ∫[0,L] (y''(x))^2 dx,其中y表示弯曲的函数。

这个泛函是一个带有一个未知函数y的函数J。

我们的任务是找到一个函数y,使得J(y)的值最小。

二、变分法的基本原理变分法的基本原理可以归结为“求解一系列微积分变分问题”。

根据变分法的基本原理,我们可以从微积分和函数分析的角度来理解它。

变分法的原理是基于函数的连续性和光滑性的,即给定一个函数的任意两个点之间的连续性和可微性。

在求解变分问题时,我们首先需要找到一个函数,这个函数满足一些预定的条件。

然后,我们可以对这个函数进行微小的变化,来看看这个函数如何改变。

最后,我们可以通过对这个函数进行积分来得到一个新的函数值。

然后我们可以对这个函数进行微小的变化,得到y(x) → y(x) + εφ(x) (其中,ε很小,φ是一个任意函数)。

在这个情况下,我们可以用函数y(x)的一个小变化y(x) + εφ(x)来重新计算泛函J的值。

这个新的泛函的值可以表示为J(y + εφ) = ∫[0,L] F(x,y,y',y'') φ(x)dx,其中F(x,y,y',y'')为J(y)的一类一阶偏导数,我们需要将其解释为x和y的函数。

然后,通过对泛函J(y+εφ)中的项进行扩展,我们得到:J(y+εφ) = J(y) + ε∫[0,L] (F_yφ + F_{y'}φ' + F_{y''}φ'') dx。

数学物理中的变分方法

数学物理中的变分方法

数学物理中的变分方法在数学和物理学中,变分方法是一种重要的数学工具,用于研究函数的极值问题。

它的基本思想是将问题转化为求解某个泛函的极值,通过变分运算来找到泛函的极值条件。

变分方法在许多领域中都具有广泛的应用,包括优化问题、微分方程、力学以及最优控制等。

本文将介绍数学物理中的变分方法的基本原理和应用。

1. 变分运算的基本概念变分运算是对函数进行微小改变,并计算这种改变对泛函的变化量。

我们考虑一个函数f(x),其中x是自变量。

对函数f进行微小变化,可以表示为f(x+δx),其中δx是一个无穷小量。

定义变分算子为∂/∂x,它表示对函数f进行微小的变化。

通过计算变分算子作用在函数f上的结果,可以得到泛函的变化量。

2. 泛函的极值条件对于一个泛函J[f],我们希望找到函数f的一个极值,使得J[f]取得最小或最大值。

为了得到这个极值条件,我们需要求解变分方程。

变分方程的一般形式为:δJ[f] = 0如果函数f满足这个方程,那么它就是泛函J的一个极值。

3. 单变量变分法单变量变分法是变分方法中最简单的一种形式。

它适用于只有一个自变量的函数。

假设我们有一个泛函J[f],其中f=f(x),x是自变量。

首先,我们引入辅助函数g(x),其中g(x)在与f(x)相等的区域内任意变化,在其他区域内为零。

然后,考虑泛函J的一个线性组合:J[f+εg] = J[f] + εJ[g] + O(ε^2)其中ε是一个无穷小量。

通过计算这个线性组合的变化量,并忽略高阶无穷小量,我们可以得到泛函J的变分:δJ = J[f+εg] - J[f] = εJ[g]现在,我们需要将这个变分等于零,得到一个变分方程:δJ = εJ[g] = 0通过求解这个变分方程,我们可以得到使得泛函J取得极值的函数f(x)。

4. 多变量变分法多变量变分法适用于有多个自变量的函数。

假设我们有一个函数f=f(x1,x2,...,xn),其中xi是自变量。

类似于单变量情况,我们引入辅助函数g(xi),并考虑泛函J的线性组合:J[f+εg] = J[f] + εJ[g] + O(ε^2)同样地,通过计算这个线性组合的变化量,并忽略高阶无穷小量,我们可以得到泛函J的变分:δJ = J[f+εg] - J[f] = εJ[g]类似于单变量情况,我们将这个变分等于零,得到一个变分方程:δJ = εJ[g] = 0通过求解这个变分方程,我们可以得到使得泛函J取得极值的函数f(x1,x2,...,xn)。

数学的变分法

数学的变分法

数学的变分法数学的变分方法是一种研究函数变化的数学工具,被广泛应用于数学分析、物理学等领域。

它通过寻找函数的变化率最小值或最大值,揭示了许多自然界和社会现象的规律。

本文将介绍变分法的基本原理和主要应用,以及一些经典的变分问题。

一、变分法的基本原理在介绍变分法之前,我们需要先了解变分和变分算子的概念。

变分是指通过微小的函数偏移来研究一个函数的性质。

而变分算子是对这种微小的函数偏移进行数学上的描述。

变分法的基本思想是通过对一个函数进行变分,得到它的一阶变分和二阶变分,然后利用边界条件和变分的性质,求解出变分方程的解。

具体步骤如下:1. 假设函数的解是一个特定形式的函数表达式,其中包含一个或多个未知的参数。

2. 对这个函数进行变分,得到函数的一阶变分和二阶变分。

3. 将变分代入原方程,得到一个含有未知参数的函数方程。

4. 利用边界条件,求解出未知参数的值。

5. 将参数代入原方程,得到函数的解。

二、变分法的主要应用变分法具有非常广泛的应用领域,下面将介绍其中的几个重要应用。

1. 物理学中的作用量原理作用量原理是变分法在物理学中的重要应用之一。

它通过对作用量进行变分,得到物理系统的基本方程。

作用量原理在经典力学、电磁学、量子力学等领域均有广泛应用,是研究物理系统的基本工具。

2. 凸优化问题凸优化是变分法在应用数学领域的典型应用之一。

它研究如何寻找一个凸函数的最小值或最大值。

变分法可以帮助我们建立凸函数的变分问题,并通过求解变分问题来解决凸优化问题。

3. 经典的变分问题变分法在数学中的一个重要应用是解决一些经典的变分问题,比如著名的布拉赫罗恩极小曲面问题。

这个问题是在确定一个特定边界条件下,找到曲面的形状使其表面积最小。

三、经典的变分问题经典的变分问题是对变分法应用的经典案例,下面将介绍其中的两个。

1. 薛定谔方程薛定谔方程是量子力学中的一个基本方程,描述了微观粒子的运动行为。

通过对薛定谔方程进行变分,可以得到微观粒子的能量本征值和能量本征态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S. Luan, A. Mao / Nonlinear Analysis 61 (2005) 1413 – asily give an example which satisfies (H3 ) but not (H4 ), see [5]. It should be pointed out that (H3 )–(H4 ) implies (H3 ). (H3 )—(1) is apparent. To check ˜ (t, u) c2 |u|q , where q = p/(p − 1) ∈ (2, ∞), (H3 )—(2), we note that (H3 ) implies H ˜ (t, u) −1 /|u|2 c3 |u|(q −2) −q c3 . By (H4 ), one can take 1 < < q/(q − 2) such that H ˜ (t, u), hence |∇ H (t, u)||u| 2 /( − 2)H |∇ H (t, u)| |u| 2 −2 ˜ (t, u) H |u|2
1414
S. Luan, A. Mao / Nonlinear Analysis 61 (2005) 1413 – 1426
1. Introduction This paper deals with the existence of periodic solutions of Hamiltonian system: ( H)
MSC: 58E05; 58E50 Keywords: Hamiltonian system; Periodic solutions; Cerami condition; Local linking

Supported by NSFC (10471075) and NSFSP(Y2003A01) and NSFQN(xj0503).
(H3 ) There are constants a1 , a2 > 0, p ∈ (1, 2) such that |∇ H (t, u)|p 0 < H (t, u) a1 + a2 u · ∇ H (t, u). 0 such that, for |u| R u · ∇ H (t, u). (H4 ) There are constants > 2 and R
Kc = {u ∈ X, I (u) = c, I (u) = 0}. Theorem 2.1. Let I be a functional of class C1 defined on a real Banach space X. Nr ={u ∈ X : u − Kc < r }, r > 0. Let ε > 0, 1 > 0, c ∈ R be such that (1 + u ) I (u) then exists
a Department of Mathematics, Qufu Normal University, Shandong 273165, PR China b Institute of Mathematics, Academy of Math and System Sciences, Chinese Academy of Sciences, Beijing
1 2
∇ H (t, u) · u − H (t, u) satisfying
˜ a3 |u|2 if |u| R . (1) H ˜ (t, u) if |u| R , (2) |∇ H (t, u)| /|u| a4 H where a3 , a4 > 0 and 1 < < q/(q − 2), q ∈ (2, ∞). We have the main existence result. Theorem 1.1. Suppose that H satisfies (H1 ), (H2 ) and (H3 ). If 0 is an eigenvalue of L (with period boundary conditions). Then (H) has at least one nontrivial 2 -period solutions.
Ju ˙ − A(t)u + ∇ H (t, u) = 0,
u ∈ R2 N , t ∈ R.
We prove an abstract result on the existence of a critical point for a real-valued functional on a Hilbert space via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under the Cerami-type condition instead of Palais–Smale-type condition. In addition, the main assumption here is weaker than the usual Ambrosetti–Rabinowitz-type condition: 0 < H (t, u) u · ∇ H (t, u), > 2, |u| R > 0.
∗ Corresponding author. Institute of Mathematics, Academy of Math and System Sciences, Chinese Academy
of Sciences, Beijing 100080, PR China. E-mail address: luanshx@ (S. Luan). 0362-546X/$ - see front matter ᭧ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2005.01.108
They establish the existence of nontrivial solution of (H) via a new linking theorem and variational argument. We emphasize that the results in the papers mentioned above were obtained under the Ambrosetti–Rabinowitz-type condition (H4 ), which implies that H (t, u) grows at a superquadratic rate as |u| → ∞. This kind of technical condition often appears as necessary to use variational methods when solving super-linear differential equations such as elliptic problems, Dirac equations, Hamiltonian systems, wave equations and Schrödinger equations. See also [1–4,6–8,11,12]. In the present paper, a new deformation theorem is given under the (C)∗ condition instead of (P S)∗ condition. Following the deformation theorem, a linking result is established. So we only need the following conditions instead of (H3 )(H4 ): ˜= (H3 ) H (t, u)/|u|2 → ∞ as |u| → ∞, and H
Nonlinear Analysis 61 (2005) 1413 – 1426 /locate/na
Periodic solutions for a class of non-autonomous Hamiltonian systemsଁ
Shixia Luana, b , ∗ , Anmin Maoa, b
Ju ˙ − A(t)u + ∇ H (t, u) = 0,
u ∈ R2N , t ∈ R,
where A(t) is a symmetric 2N × 2N matrix continuous and 2 -period in t, H ∈ C1 (R2N +1 , R) is 2 -period in t, ∇ H := ∇u H ∈ C(R2N +1 , R2N ) and J is standard symplectic matrix. In their paper [9,10], the authors deal with the situation where H satisfies the following assumptions: (H1 ) H (t, u) = o(|u|2 ), |u| → 0 uniformly on R. (H2 ) For some > 0, either H (t, u) or H (t, u) 0 for |u| , t ∈ R. 0 for |u| , t ∈R
−1
˜ (t, u) H
˜ (t, u). c4 H
The rest of the paper is organized as follows. In Section 2 we give the proof of deformation theorem and the existence theorem of critical points. In Section 3, the abstract results are applied to first-order non-autonomous Hamiltonian system. 2. Abstract results Let us recall some standard notions: BR = {u ∈ X : u < R }, I c = {u ∈ X : I (u) Ic = {u ∈ X : I (u) c}, c},
相关文档
最新文档