八年级数学上册1.1分式第2课时分式的基本性质课件新版湘教版

合集下载

八年级数学上册第1章分式全章教学课件湘教版

八年级数学上册第1章分式全章教学课件湘教版

1
3 4
6
8
9 ;
12
2
6 18
3
9
1.
3
分式的分子、分母都乘同一个 不为0的数,分式的值不变;
分式的分子、分母都除以它们 的公约数,分式的值不变。
对于分式是否也有类似于分数的性质?如 果有,分式的分子、分母应当都乘或除以一个 什么式子?
有类似分数的性质.分式的分子、 分母应当乘同一个非零整式。
2x 3
求下列条件下分式 x 5 的值:
x6
(1)x=3;
(2)x=-0.4.
1.分式也是代数式,求分式的值就是将字母 的值代入分式进行计算求值;
2.求分式的值要注意符号,结果是分式的要 约分化成最简分数 .
解: (1) 当x=3时, x 5 3 5 2 . x6 36 9
(2) 当x=-0.4时, x 5 0.4 5 5.4 27 . x 6 0.4 6 5.6 28
当x取什么值时,分式
x2 2x 3
的值
(1)不存在; (2)等于0?
(1)分式的值不存在,就是分式无意义,此时 分式的分母等于0;
(1)分式的值等于0,必须分子等于0时,同时 满足分母不等于0 .
解: (1) 当分母2x-3=0,即x= 3 时,分子的 2
值不存在.
(2) 当分子x-2=0,即x=2时,分母2x-3≠0, 分式 x 2 的值等于0.
分式的分子、分母都除以它们的一个公因 式,所得分式与原分式相等。
你能用公式表示分式除以分子、分母的一个 公因式的性质吗?
f mk m . g nk n
下列等式是否成立?为什么?
成立.把分式的分子、分母都乘-1, 即可由每个等式的左边得出右边。

八年级上册数学15.1.2 分式的基本性质

八年级上册数学15.1.2 分式的基本性质

(2) x x
y y

(
x2
x


y2 y )2
;
(3) x2 1 x2 x

x (

x
1; )
(4) a2
2a 1 1 a
1 a;
(5) m2 3m 2 ( m 2 ) .
m2 m
m
2.把下列各式通分.
(1) 2 , 1 ;(2) x , 1
;
3a2 6ab2

5abc 5ac2

5ac2 ;
15ab2c
5abc
9 6x
9

(x 3)(x (x 3)2
3)

x 3. x3
(3)6x2 12xy 6 y2 3x 3y

(6 x (3 x

y)2 y)

(2 x
y).
知识点3 通分
15.1 分式
15.1.2 分式的基本性质
R·八年级上册
新课导入
• 你知道分数的基本性质吗?由此你是否能联 想出分式的基本性质呢?
• 学习目标: 1.能说出分式的基本性质. 2.能利用分式的基本性质将分式变形. 3.会用分式的基本性质进行分式的约分和通分.
• 学习重、难点: 重点:分式的基本性质及运用,分式的符号法则. 难点:分式基本性质的运用——约分和通分.
xy y
6x2
2x
(2)1 a ,2a b 2ab b2 .
ab a2b a2
a2b
观察上题中的两个分式在变形前后的分子、
分母有什么变化?类比分数的相应变形,你联
想到什么?

八年级数学分式的基本性质2

八年级数学分式的基本性质2
pp电子游戏技巧论坛
[单选]Inmarsat卫星覆盖范围是()。A.全球海域B.A3海区C.南北纬70º以内D.A和B [单选]下列不属于基金销售机构职责规范的是()。A.严格账户管理B.基金托管人应制定业务规则并监督实施C.签订销售协议,明确权利和义务D.禁止提前发行 [单选]除规范有特殊规定外,人员密集场所一般要求每一个防火分区的安全疏散出口不应少于()个A、1B、2C、3D、4 [单选,A2型题,A1/A2型题]季节性变应性鼻炎常见的变应原是()。A.螨B.真菌C.风媒花粉D.羽毛E.细菌感染 [单选,A1型题]产褥期是指胎盘娩出至产后()A.2周B.4周C.6周D.8周E.12周 [单选]腓肠肌的作用是()A.使踝关节背伸、足内翻B.使踝关节跖屈、足外翻C.使踝关节跖屈、足内翻D.使踝关节跖屈、膝关节屈曲E.使髋关节屈曲、膝关节屈曲 [单选]对按相关规定确定为消防安全重点单位的人员密集场所,公安消防机构除应每半年至少组织一次监督抽查外,必须根据本地区火灾规律、特点以及结合重大节日、()等消防安全需要,组织消防监督检查。A.重大隐患B.重大情况C.重大活动D.重大影响 [单选]当三份铜粉分别与足量的稀硝酸、浓硝酸、热的浓硫酸反应后收集到的气体在相同状况下体积相等时,三份铜粉的质量比为()。A.3:1:2B.3:2:2C.1:1:2D.1:3:2 [单选,A1型题]患者男,50岁。患左下肢静脉曲张20年,行大隐静脉高位结扎,加小腿静脉分段结扎。术后3小时起立行走时,小腿处伤口突然出血不止。紧急处理应()A.就地站立位包扎B.指压止血C.用止血带D.钳央止血E.平卧,抬高患肢,加压包扎 [单选]下列项目中,不属于支付结算的基本原则的是()。A.恪守信用,履约付款B.谁的钱进谁的账,由谁支配C.信息保密D.银行不垫款 [单选]哲学上的第二个伟大时期是()。A、十一世纪起至十四世纪为止B、十世纪起至十三世纪为止C、十二世纪起至十五世纪为止 [多选]急性扁桃体炎的并发症有()A.咽旁脓肿B.颈淋巴结炎C.脓毒血症D.心肌炎E.支气管炎 [填空题]焦炉煤气的硫主要有()、()、()、()、()、()。 [单选]通过观察他人在一定情境的行为,能够有效地促进学习活动的发生。这是()的观点。A.社会学习理论B.行为主义学习理论C.建构主义理论D.情境认知理论 [单选]对于有抗冻、抗渗或其他特殊要求的小于或等于C25混凝土用砂,其贝壳含量不应大于()。A.3%B.4%C.5% [单选,A2型题,A1/A2型题]下列关于臭氧消毒的方法,正确的是()A.适用于Ⅲ类环境的消毒B.消毒时人必须离开房间C.消毒完毕后人即可进入房间D.消毒时间为20分钟E.臭氧消毒与紫外线消毒有拮抗作用,不可同时使用 [单选,A1型题]拔毒去腐力强,常配石膏使用的药是()A.雄黄B.升药C.硼砂D.轻粉E.炉甘石 [填空题]氨合成反应的单程合成率与()()()有关。 [问答题,论述题]试述番茄高密度一穗果栽培要点。 [多选]关于人身权与财产权之间的联系,正确的有()。A.人身权是某些财产权取得的前提B.人身权可以转化为财产权C.可以对受到损害的人身权进行财产性补偿D.人身权属于非财产性权利,没有任何财产权的属性 [问答题,案例分析题]某公司2010年拟在某工业园区内新建年产3万t黏胶纤维生产线,该工业区地处丘陵低山地区,属于环境空气功能二类区,企业污水经厂内污水站处理达标进入长江水体,该段长江水体执行地表水Ⅲ类水体功能。黏胶纤维生产主要是以浆粕为原料经过碱化、黄化(加入CS2)生 [判断题]钻孔孔壁粗糙,主要是由于冷却不好,进给量太小,后角太大。()A.正确B.错误 [单选,A2型题,A1/A2型题]问月经史时以下哪项最重要()A.期、量、色、味B.量、色、质、味C.期、量、色、质D.伴随症状E.初潮或绝经年龄 [单选]()是指企事业单位内从事各种专业技术工作的个人可能因工作上的失误导致的损害赔偿责任。A、AB、BC、CD、D [单选]关于单次颤搐刺激,以下哪种叙述错误()A.频率为0.1~1.0Hz,刺激间隔为0.2msB.用于粗略判断程度较深的神经肌肉阻滞C.能够区分神经,肌肉阻滞的性质D.用于判断呼吸抑制的原因是中枢性或外周性E.敏感性较差 [单选]纵骨架式是()船体骨架型式。A.纵向骨材较稀、尺寸较小,横向骨材较密、尺寸较大B.纵向骨材较密、尺寸较小,横向骨材较稀、尺寸较大C.纵向骨材较密、尺寸较大,横向骨材较稀、尺寸较小D.纵向骨材较稀、尺寸较大,横向骨材较密、尺寸较小 [单选,案例分析题]男,21岁,发现右阴囊内鸡蛋大小肿块半年,不痛,平卧不消失。扪之囊性感,透光试验(+)。最可能诊断为()A.睾丸鞘膜积液B.睾丸肿瘤C.腹股沟斜疝D.精索鞘膜积液E.交通性鞘膜积液 [名词解释]表生环境 [单选]编制电力企业计划的基本方法是()。A、投入产出法B、预测调查法C、综合平衡法D、分析比较法 [单选]设备轻便、操作灵活,可以应用于短缝的焊接,特别是用于难以达到部位的焊接的焊接方法为()。A.手弧焊B.埋弧焊C.闪光焊D.电阻焊 [单选]建筑工程中一般多采用()作细骨料。A.河砂B.湖砂C.山砂D.海砂 [单选]部件类型区分号在零件编码系统中代表纵向布置部件的符号是()。A.VB.PC.L [单选]下列关于冠状动脉瘤的CT表现哪项是正确的()A.多层螺旋CT不能显示动脉瘤全貌B.CT横断面图像不利于观察动脉瘤壁C.多见附壁血栓D.动脉瘤壁无钙化E.CT横断面图像不利于观察动脉瘤壁局限性或弥漫性扩张,形态为囊状、梭形或不规则形 [单选]城乡规划卫生的目的是()。A.预防疾病B.增进人民身心健康C.延长寿命D.提高生活质量E.以上都是 [单选]强调情绪的发生是由外界环境刺激、机体的生理变化和对外界环境刺激的认识过程三者相互作用的结果的情绪理论被称为()A.坎农—巴德学说B.伊扎德的情绪理论C.詹姆斯-兰格理论D.沙赫特-辛格的情绪理论 [填空题]回转窑密封装置的基本型式有()、()、()和()四种。 [单选]90年代涌现了一批漫画领军人物,其中不包括()。A、华君武B、丁聪C、齐白石D、方成 [单选]某市仲裁委员会仲裁某一合同争议案件,首席仲裁员某甲认为应裁决合同无效,仲裁庭组成人员某乙、某丙认为应裁决合同有效,但某乙认为应裁决解除合同,某丙认为应当裁决继续履行合同。本案应当如何作出裁决?()A.按某甲的意见作出B.按某乙或某丙的意见作出C.请示仲裁委员会 [单选]关于全身药物浴,错误的是()A.盐水浴常用于原发性多发性关节炎、肌炎B.松脂浴常用于原发性高血压1级C.苏打浴常用于银屑病、皮肤角质层增厚D.中药浴常用于关节炎、皮肤病E.西药浴(安定)常用于神经衰弱 [单选]在正常情况下,Water位X线片上颌窦密度与眼眶密度相比()A.上颌窦密度高于眼眶密度B.上颌窦密度高于眼眶密度C.上颌窦密度等于眼眶密度D.上颌窦密度低于或等于眼眶密度E.因个体差异,无法相比

湘教版八年级数学上册第2课时分式的基本性质

湘教版八年级数学上册第2课时分式的基本性质

湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
义务教育教科书(湘教版)八年级数学上册
湖北鸿—助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
九牛一毫莫自夸,骄傲自满必翻车。历览古 今多少事,成由谦逊败由奢。
湖北鸿鹄志文化传媒有限公司——助您成功

新湘教版八年级上册初中数学 课时2 分式的基本性质 教学课件

新湘教版八年级上册初中数学 课时2 分式的基本性质 教学课件
第二十一页,共三十六页。
新课讲解
知识点4 分式的通分
确定最简公分母的一般方法: (1)若各分母是单项式,最简公分母是各分母系数的最小公倍数、相同字母的 最高次幂和所有不同字母及其指数的乘积; (2)若各分母中有多项式,一般要先分解因式,再按照分母都是单项式求 最简公分母的方法,从系数、相同因式、不同因式三个方面确定最简公分母.
)C
A. 1 2 x 1 x 1 x2 -1
C.
1 x 1
x 1 (x 1)2
D. 1 -1 x 1 x -1
解析:A选项中分式的分子、分母同时加上1,不符合分式的基本性质,变形不一定成立;B选
项中分式的分子和分母是同时乘以(x-1),但是不能保证 x-1≠0,变形不一定成立;C选项中
(2)(3)中分子、分母都是多项式,应先将分子、分母分别分解因式,再约分.
第三十页,共三十六页。
当堂小练
约分:
(1) 6a2b3c
- 8abc2
(2) mx 2 - my 2
nx + ny
(3)
4- a2 a2b - 4ab+4b
解析:(1)6a 2b3c
- 8abc2
- 2abc 3ab2 2abc 4c
分式的分子、分母同时乘以(x+1),x+1≠0,符合分式的基本性质,变形一定成立;D选项
中不满足分式的符号法则,变形不一定成立.
第二十九页,共三十六页。
当堂小练
约分:
(1) 6a2b3c - 8abc2
(2) mx 2 - my 2 nx + ny
(3)
4- a2 a2b - 4ab+4b
解析:(1)中分子、分母都是单项式,可直接约分(注意:分母中含有负号, 可以将负号提到分式的前面);

湘教版数学八年级上册1.1《分式的基本性质》教学设计

湘教版数学八年级上册1.1《分式的基本性质》教学设计

湘教版数学八年级上册1.1《分式的基本性质》教学设计一. 教材分析湘教版数学八年级上册1.1《分式的基本性质》是本册教材的第一课时,主要介绍了分式的概念和分式的基本性质。

本节课的内容是学生学习分式的基础,对于学生理解分式的本质和后续学习分式的运算具有重要意义。

教材通过例题和练习题引导学生理解和掌握分式的基本性质,为后续的学习打下基础。

二. 学情分析八年级的学生已经学习了实数、代数式等基础知识,具备一定的逻辑思维能力和运算能力。

但是,对于分式的概念和性质可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生在学习过程中可能存在对分式概念理解不深、对分式性质记忆不牢的问题,需要在教学过程中加以引导和纠正。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.能够运用分式的基本性质进行简单的分式运算。

3.培养学生的逻辑思维能力和运算能力。

四. 教学重难点1.分式的概念和基本性质的理解。

2.分式基本性质的运用和分式运算的技巧。

五. 教学方法采用问题驱动法、案例教学法和练习法进行教学。

通过设置问题引导学生思考和探索,通过案例教学使学生理解和掌握分式的基本性质,通过练习巩固所学知识,提高学生的运算能力。

六. 教学准备1.教材和教学参考书。

2.课件和教学素材。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过提问实数、代数式的相关知识,引导学生进入新的学习内容,引出分式的概念。

2.呈现(15分钟)讲解分式的定义,通过实例使学生理解分式的概念。

接着呈现分式的基本性质,引导学生思考和探索,通过讲解和示范使学生理解和掌握分式的基本性质。

3.操练(10分钟)根据分式的基本性质,让学生进行一些简单的分式运算,引导学生运用所学的知识,巩固对分式基本性质的理解。

4.巩固(10分钟)让学生解答一些有关分式的练习题,检验学生对分式基本性质的理解和掌握程度,对学生的错误进行纠正和指导。

5.拓展(10分钟)引导学生思考分式的基本性质在实际问题中的应用,通过实例使学生认识到分式基本性质的重要性,培养学生的应用能力。

八年级上册分式

八年级上册分式一、分式的基本概念与性质1.分式的定义:分式是指形如a/b的表达式,其中a和b都是整式,b不为零。

a称为分子,b称为分母。

2.分式的基本性质:(1)分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。

(2)分式的分子与分母同时加减同一个整式,分式的值不变。

(3)分式的分子与分母同时乘以(或除以)同一个有理数,分式的值不变。

二、分式的运算1.分式加减法:分式加减法是将两个或多个分式的分子进行加减运算,分母保持不变。

需要注意的是,分母必须相同,否则需要先进行通分。

2.分式乘除法:分式乘除法是将两个分式的分子相乘(或相除),分母相乘(或相除)。

同样需要注意,分子和分母的运算结果必须为整式。

3.乘法公式在分式中的应用:乘法公式如平方差公式、完全平方公式等,在分式运算中也同样适用。

三、分式方程及其解法1.分式方程的定义与特点:分式方程是指含有分式的等式,其中未知数的次数不低于1。

分式方程的特点是分母中含有未知数。

2.分式方程的解法:求解分式方程的一般步骤为去分母、移项、合并同类项、化简、求解。

需要注意的是,解分式方程时要防止分母为零的情况。

3.解分式方程的注意事项:在解分式方程时,要遵循分式方程的求解法则,同时注意化简和计算过程中的细节。

四、分式不等式及其解集1.分式不等式的定义与特点:分式不等式是指含有分式的不等式,其中未知数的次数不低于1。

分式不等式的特点是分母中含有未知数。

2.分式不等式的解法:求解分式不等式的一般步骤为去分母、移项、合并同类项、化简、求解。

需要注意的是,解分式不等式时要防止分母为零的情况。

3.分式不等式的应用:分式不等式在实际问题中具有广泛的应用,如不等式的求解、实际问题中的优化问题等。

五、分式在实际问题中的应用1.数学模型建立:分式在数学模型建立中具有重要作用,如波动问题、生长问题等。

2.实际问题分析与解决:分式在实际问题中可以用来表示数量关系、比例关系等,从而帮助分析问题和解决问题。

分式的基本性质

第2课时 分式的基本性质 知识管理
数学
湘教版八年级上册
课件目录
首页
末页
知识管理
1.分式的基本性质
性 质:分式的分子与分母都乘同一个非零整式,所得分




式相


即对于


gf ,
有gf

f·h g·h
(h≠0).
公式解读:对于分式gf ,有gf =gf··hh(h≠0).
数学
湘教版八年级上册
课件目录
数学
湘教版八年级上册
课件目录
首页
末页
【点悟】 分式的符号法则是分式基本性质的应用,解题时要 注意两点:①必须同时改变分式本身、分子、分母中两处的符号 才能使分式的值不变;②明确要求,使分子、分母的符号符合要 求.
数学
湘教版八年级上册
课件目录
首页
末页
1.[2014·)从左到右看表明:分式的分子与分母都同乘以一个 非零整式,所得分式与原分式相等. (2)从右到左看表明:分式的分子与分母都除以它们的 公因式,所得分式与原分式相等. 2.分式的分子、分母及分式本身的符号变化规律
几种情形:(1)gf =--gf;(2)-f g=-g f;(3)-gf =---gf.
数学
湘教版八年级上册
课件目录
首页
末页
3.约分与最简分式 约 分:根据分式的基本性质,把一个分式的分子与分母的
__公__因__式____约去(即分子与分母都除以它们的公因 式),叫作分式的约分. 最简分式:分子与分母没有___公__因__式___的分式叫作最简分式.
数学
湘教版八年级上册
课件目录
首页

新湘教版八年级数学上册第一章分式小结与复习

X+1
X2-2x+3
<-2
≥7
>-1
7.要使分式 的值为正数,则x的取值范围是
x-1
-2
x<1
二、分式的基本性质:
1.分式的基本性质: 分式的分子与分母同乘以(或除以) 分式的值 用式子表示: (其中M为 的整式)
x2+y2
10.已知分式 的值为 5/3, 若a,b的值都扩大到原来的5倍,则扩大后分式的值是
3a
2a+b
C
5/3
二、分式的约分与通分:
1.约分
2.通分 (1) (2)
x
6a2b

y
9ab2c
a-1
a2+2a+1

6
a2-1
(1) (2) (3)
12:15 D x≠-1
THANKS FOR WATCHING
The End
A
B
4.分式 > 0 的条件:
A
B
A
B
形如 ,其中 A ,B 都是整式, 且 B 中含有字母.
1.下列各式(1) (2) (3) (4) (5) 是分式的有( )个。
3
2x
3
2x
x
2x2
x

分式的加减
同分母相加
异分母相加
通分
在分式有关的运算中,一般总是先把分子、分母分解因式; 注意:过程中,分子、分母一般保持分解因式的形式。
(6)计算:
解:
(7)当 x = 200 时,求 的值. 解: 当 x = 200 时,原式=
(8) 已知 求A、B
3-2m
m-4
5.下列各式正确的是( )

湘教版八年级数学上册第一章《分式》教案

第1章分式1.1 分式第1课时分式的概念1.了解分式的概念,明确分式和整式的区别.2.使学生能够求出分式有意义的条件.3.让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.4.培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.【教学重点】理解分式有意义的条件,分式的值为零的条件.【教学难点】能熟练地求出分式有意义的条件,分式的值为零的条件.一、情景导入,初步认知下列式子中哪些是整式?【教学说明】因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得的,所以必须熟练掌握整式的概念.二、思考探究,获取新知1.思考:(1)某长方形画的面积为Sm2,长为8m,则它的宽为____m.(2)某长方形画的面积为Sm2,长为xm,则它的宽为____m.(3)如果两块面积为x公顷,y公顷的稻田,分别产稻谷akg,bkg,那么这两块稻田平均每公顷产稻谷_____kg.【教学说明】要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况,教师可以给予适当的提示和引导.2.讨论内容:前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?【教学说明】让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.【归纳结论】一般地,一个整式f除以一个非零整式g(g中含有字母)所得的商记作fg,那么代数式fg叫做分式.3.当x取什么值时,分式223xx--的值满足下列条件:(1)不存在;(2)等于0.解:(1)当分母2x-3=0时,即x=32时,分子的值为32-2≠0,因此x=32时,分式223xx--的值不存在.(2)当x -2=0,即x=2时,分式223xx--的值等于0.【教学说明】让学生通过观察,归纳、总结出整式与分式的异同,从而得到分式的概念.三、运用新知,深化理解1.下列各式中,哪些是整式?哪些是分式?解:(2)、(4)是整式,(1)、(3)是分式.2.若分式13x-有意义,则x的取值范围是()A.x≠3B.x≠-3C.x>3D.x>-3解:当分母x-3≠0,即x≠3时,分式有意义,故选A.3.x取什么值时,下列分式无意义?解:(1)因为当分母的值为零时,分式没有意义.由2x-3=0,得x =32, 所以当x=32时,分式无意义.(2)因为当分母的值为零时,分式没有意义.由5x+10=0,得x=-2,所以当x=-2 时,分式无意义.4.若分式||11xx-+的值为零,则x的值为 1 .【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解:要使||11xx-+的值为0,则|x|-1=0,即x=±1,且x+1≠0,即x≠-1.故x=1.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第1、2题.在学习分式的概念时,借助整式的概念,用类比的思想进行教学,学生掌握的较好,能够紧抓概念,很容易的区分整式与分式.而在分式的值等于0的教学中,一部分学生都只考虑分式的分子等于0,而没有考虑分式的分母.因此,在后面的教学中对这方面的教学有待加强.第2课时分式的基本性质和约分1.使学生理解并掌握分式的基本性质,并能运用这些性质进行分式约分.2.通过对分式的基本性质的归纳,培养学生观察、类比、推理的能力.3.让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【教学重点】掌握分式的基本性质.【教学难点】运用分式的基本性质来化简分式.一、情景导入,初步认知1.分数的基本性质是什么?2.31=62的依据是什么?【教学说明】通过分数的约分,复习分数的基本性质,通过类比来学习分式的基本性质.二、思考探究,获取新知1.填空,并说一说下列等式从左到右变形的依据是什么?2.思考:34与分式34aa相等吗?分式22a bab与分式ab相等吗?【归纳结论】分式的分子与分母同乘以或除以一个非零整式,所得分式与原分式相等.即:f f gg g h⋅=⋅(h≠0).【教学说明】通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.3.想一想:下列等式成立吗?为什么?;f f f fg g g g--==-- 【教学说明】先让学生讨论,待学生回答后,教师引导学生得出结论:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.4.根据分式的基本性质填空:【教学说明】有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式,有的学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底,所以教师适当引导.【归纳结论】把一个分式的分子和分母的公因式约去,叫作分式的约分. 分子和分母没有公因式的分式叫作最简分式. 三、运用新知,深化理解【教学说明】在教学中让学生将约分的步骤分为这样几步,首先找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式,最后看看结果是否为最简分式或整式.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第5、6题.学生对分式的基本性质,能说能背.从表面上来看,掌握的比较好.但从练习中可以发现很多问题.如:不会找分式的分子、分母的公因式;分子、分母不同时乘或除;约分不彻底等.所以在这些方面要多练习.1.2分式的乘法和除法第1课时分式的乘除法1.理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.2.经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.3.通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.第2课时分式的乘方1.使学生牢记分式乘方的运算法则,并能根据此法则进行熟练无误的运算.2.学生能够熟练进行简单的分式乘除与乘方的混合运算.3.经历分式乘方法则的探究过程,采用自主探索与合作交流的方式,亲历“做数学”的过程,培养探究数学问题的能力.4.体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲.【教学重点】准确熟练地进行分式的乘方运算.【教学难点】准确熟练地进行简单的分式乘除与乘方的混合运算.一、情景导入,初步认知1.分式乘除法则是什么?2.什么叫最简分式?3.分数的乘方法则是什么?让学生举例.【教学说明】复习旧知,为本节新知打基础.二、思考探究,获取新知1.计算:由乘方的意义和分数乘法的法则,可得根据上面的规律,请总结分式乘方的运算法则.【归纳结论】分式的乘方就是把分子、分母各自乘方.即:【教学说明】通过类比分数的乘方运算方法,总结出分式的乘方运算法则.2.做一做:取一条长度为1个单位的线段AB,如图:第一步:把线段AB三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由___条长度相等的线段组成的折线,每一段等于_____,总长度等于_____.第二步:把上述折线中的每一条重复第一步的做法,得到______.继续下去.情况怎么样呢?(1)把结果填入下表:(2)进行到第n步时得到的线段总长度是多少呢?【教学说明】引导学生寻找并总结规律.三、运用新知,深化理解1.教材P10例3、例4.6.计算:【教学说明】培养运用新知识解决问题的能力.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第2 题.在分式的乘方运算这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘方的运算方法,提示学生分式的乘方法则与分数的乘方法法则类似,要求他们用语言描述分式的乘方法则.学生反应较好,能基本上完整地讲出分式的乘方法则.本节课存在的不足:学生主动性还不够强,教师对学生自学能力估计不足,舍不得放手,抑制部分学生的思维发展.1.3整数指数幂1.3.1同底数幂的除法1.了解同底数幂的除法的运算性质,并能解决一些实际问题.2.经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义.3.发展推理能力和有条理的表达能力.【教学重点】同底数幂的除法法则以及利用该法则进行计算.【教学难点】同底数幂的除法法则的应用.一、情景导入,初步认知【教学说明】复习分式的约分,为本节课的学习作铺垫.二、思考探究,获取新知1.计算机硬盘的容量最小单位为字节(B),千字节记作(KB),兆字节(MB),吉字节(GB)它们的换算单位如下:1GB=210MB=1024MB;1MB=210KB;1KB=210B .一张普通的CD光盘的存储容量约为640MB,请问一个320GB的移动硬盘的存储容量相当于多少张光盘容量?因为320GB=320×210MB因此一个320GB的移动硬盘的存储容量相当于512张光盘容量.2、如果把数字改为字母:一般地,设a≠0,m,n是正整数,且m>n,则mnaa等于多少?这是什么运算呢?通过上面的计算,归纳同底数幂除法的法则.【归纳结论】同底数幂相除,底数不变,指数相减.即:·m n m nm n n na a aaa a--==【教学说明】让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则,再运用幂的意义加以说明.在此过程中,发展学生类比、归纳、符号演算、推理能力和有条理的表达能力.三、运用新知,深化理解1.教材P15例1、例2.4.已知a x=2,a y=3,求a3x-2y的值.5.计算:6.计算机硬盘的容量单位KB,MB,GB的换算关系,近视地表示成:1KB≈1000B,1MB≈1000KB,1GB≈1000MB(1)硬盘总容量为40GB的计算机,大约能容纳多少字节?(2)1个汉字占2个字节,一本10万字的书占多少字节?(3)硬盘总容量为40GB的计算机,能容纳多少本10万字的书?一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高?解:略.【教学说明】让学生通过上述题的训练,以达到巩固提高的效果.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第1 题.在同底数幂的除法这节教学活动中,通过让学生从特殊到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好地完善新的教学模式.1.3.2 零次幂和负整数指数幂1.通过探索掌握零次幂和负整数指数幂的意义.2.会熟练进行零次幂和负整数指数幂的运算.3.会用科学记数法表示绝对值较少的数.4.通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.5.通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.【教学重点】零次幂和负整数指数幂的公式推导和应用,科学记数法表示绝对值较小的数.【教学难点】零次幂和负整数指数幂的理解.一、情景导入,初步认知1.同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?a m÷a n=m na (a≠0,m、n是正整数,且m>n)2.这个公式中,要求m>n,如果m=n,m<n,就会出现零次幂和负指数幂,如:有没有意义?这节课我们来学习这个问题.【教学说明】通过复习让学生更好的用旧知识迁移推导出新的知识:零指数幂、负整数指数幂的计算.二、思考探究,获取新知1.探究:mmaa等于多少?【分析】根据分式的基本性质.可以得到mmaa=11·mmaa=11=1.根据同底数幂的除法,可以得到a m÷a m=11·mm a a=0a (a ≠0)由此,你能得到什么结论?【归纳结论】任何不等于零的数的零次幂等于1.即:0a =1(a ≠0) 【教学说明】通过引导学生进行计算,合理推导出零指数幂等于1. 2.试试看:填空:3.探究:负整数指数幂的意义. (1)填空:(2)思考:2333与23÷33的意义相同吗?因此他们的结果应该有什么关系呢?【归纳结论】n a =1na (a ≠0) 【教学说明】通过计算让学生推导出负指数幂计算公式(法则).3.做一做:(1)用小数表示下列各数:110-,210-,310-,410-.你发现了什么?(10n -= )(2)用小数表示下列各数:1.08×210-,2.4×310-,3.6×410-思考:1.08×10-2,2.4×10-3,3.6×10-4这些数的表示形式有什么特点?(a ×10n (a 是只有一位整数,n 是整数))叫什么记数法?(科学记数法)当一个数的绝对值很小的时候,如:0.00036怎样用科学记数法表示呢?你能从上面问题中找到规律吗?【归纳结论】我们可以用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤|a|≤10,其公式为00.0001n ⋯个=10n -.三、运用新知,深化理解 1.教材P17例3 ,P18例4、例6. 2.-2.040×510表示的原数为( A ) A .-204000 B .-0.000204 C .-204.000 D .-20400 3.用科学记数法表示下列各数. (1)30920000 (2)0.00003092 (3)-309200 (4)-0.000003092【分析】用科学记数法表示数时,关键是确定a 和n 的值. 解:(1)30920000=3.092×710 (2)0.00003092=3.092×510- (3)-309200=-3.092×510 (4)-0.000003092=-3.092×610-6.已知9m ÷223m +=13n(),求n 的值8.把下列各式写成分式形式:2x -,32xy - 解:2x -=21x;32xy -=32x y . 9.(1)原子弹的原料——铀,每克含有2.56×2110个原子核,一个原子核裂变时能放出3.2×1110-J 的热量,那么每克铀全部裂变时能放出多少热量?(2)1块900mm 2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm 2?约多少m 2?(用科学计数法表示)【分析】第(1)题直接列式计算;第(2)题要弄清m 2和mm 2之间的换算关系,即1m=1000mm=103mm ,1m 2=106mm 2,再根据题意计算.解:(1)由题意得2.56×2110×3.2×1110-=8.192×1010(J)答:每克铀全部裂变时能放出的热量8.192×1010J.答:每一个这样的元件约占9×10-7平方毫米;约9×1310-平方米. 【教学说明】通过练习,牢固掌握本节课所学知识,并能运用知识计算. 四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第2、3、4 题.1.进行有关0次幂和负整数幂的运算要注意底数一定不能为0,特别是当底数是代数式时,要使底数的整体不能为0;2.在正整数幂的基础上,我们又学习了零次幂和负整数幂的概念,使指数概念推广到整数的范围;3.对0指数幂、负整数指数幂的规定的合理性有充分理解,才能明了正整数指数幂的运算性质对整数指数幂都是适用的.1.3.3整数指数幂的运算法则1.会用整数指数幂的运算法则熟练进行计算.2.通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则.3.发展推理能力和计算能力. 【教学重点】用整数指数幂的运算法则进行计算. 【教学难点】整数指数幂的运算法则的理解.一、情景导入,初步认知 正整数指数幂有哪些运算法则? (1)a m ·a n =m n a +(m 、n 都是正整数) (2)()nm mn aa =(m 、n 都是正整数)(3))··(n n n a b a b =(n 是正整数) (4)a m a n =m n a -(m 、n 都是正整数,a ≠0且m>n )(5) (nn n a a b b=)(b ≠0,n 是正整数)这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.【教学说明】复习正整数指数幂的运算法则,为本节课的教学作准备. 二、思考探究,获取新知1.幂的指数从正整数推广到了整数.可以说明:当a ≠0、b ≠0时,正整数指数幂的上述运算法则对于整数指数幂也成立,即:(1)a m ·a n =m n a +(a ≠0,m 、n 都是正整数) (2)()nm mn aa =(a ≠0,m 、n 都是正整数)(3))(a≠0,n是整数)a b a b(n n n··2.思考:(1)同底数幂的除法法则可以转换成什么运算法则?(2)分式的乘方法则可以转换成什么运算法则?【归纳结论】幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算.【教学说明】鼓励学生相互交流讨论.三、运用新知,深化理解1.教材P20例7、例8.3.计算:5.计算下列各式,并把结果化为只含有正整数指数幂的形式:6.当x=14,y=8时,求式子2522?x yx y----的值.解:2522?x yx y----=-2x33y当x=14,y=8时,上式=-16.7.计算下列各式,并把结果化为只含有正整数指数幂的形式.【分析】正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算.【教学说明】通过练习,巩固本节课所学内容.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.作以补充.布置作业:教材“习题1.3”中第6、7 题.课堂的有效性是当下教学的瞩目点,一堂高效的课,不仅仅是要让学生获得知识与技能,更多的是学习动机被唤醒、学习习惯的养成和思维方式的提升.本节课不足之处是学生容易把原有的5条性质混淆,导致指数幂范围扩大,就更混了,单独做做还可以过关,一旦混合运算,就基本上搞不清楚是哪一条了.总之,课堂还是要放手让给学生.1.4分式的加法和减法第1课时同分母分式的加减1.理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算.2.类比同分母分数加减法的法则归纳出同分母分式的加减法法则.3.通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想.【教学重点】同分母的分式加减法的运算.【教学难点】同分母的分式加减法的运算.一、情景导入,初步认知做一做:【教学说明】通过“做一做”的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性.从而抛出同分母分式加减法的运算法则,点明本节课的主要内容.二、思考探究,获取新知1.你能根据分数的加减法运算法则,总结出当分母相同时,分式的加减法运算法则吗?【归纳结论】同分母的分式相加减,分母不变,把分子相加减.【教学说明】类比时注意引导学生正确猜想,使法则的提出顺理成章,也为后面的学习做好铺垫.三、运用新知,深化理解1.教材P23例1、P24例2.计算:4.计算:【教学说明】通过演练巩固,让学生对同分母分式的加减法有更好的认识与掌握.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1题.本节课的关键是法则的探究,重点是法则的应用.易错点是分母互为相反数,要化为同分母.在这个过程中要注意变号,学生先独立自学,完成不了的再小组内讨论交流.充分发挥学生自主、合作的意识.第2课时 通分、最简公分母的概念1.会找最简公分母,能进行分式的通分.2.认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.3.通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富教学情感与思想.【教学重点】 分式的通分. 【教学难点】 找最简公分母.一、创设情境,导入新课 分式2214a b 与36xab c的最简公分母是_________,通分后的结果分别是_________.二、思考探究,获取新知 1.什么是分式的通分呢?【归纳结论】根据分式的基本性质,把几个异分母的分式化成同分母的分式的过程,叫作分式的通分.2.如何把分式12x 、13y通分呢? 【归纳结论】通分时,关键是确定公分母.一般取各分母的所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.上面的两个分式的分母中,有哪些因式呢?所有因式的最高次幂的积是多少?最简公分母是什么?三、示例讲解,掌握新知1.见教材P26例3、例4.2.把下列各式通分.3.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.4”中第1 、2 题.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,确保能达到一定的练习量.第3课时异分母分式的加减1.理解并掌握异分母分式加减法的法则.2.经历异分母分式的加减运算的探讨过程,训练学生的分式运算能力.3.培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识.【教学重点】异分母分式加减法的计算.【教学难点】异分母分式加减法的计算.一、创设情境,导入新课1.同分母分式是怎样进行加减运算的?2.异分母分数又是如何进行加减?3.那么314a a+=?你是怎么做的?【教学说明】通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时对问题3运用类比的思想方法,使进入新知识的学习顺理成章.二、思考探究,获取新知1.类比异分母的分数相加减的法则,异分母的分式如何进行加减呢?【归纳结论】异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.2.思考:从甲地到乙地依次经过1千米的上坡路和2千米的下坡路.已知小明骑车在上坡路上的速度为vkm/h,在下坡路上的速度为3vkm/h,则他骑车从甲地到乙地需要多长时间?【分析】他骑车从甲地到乙地的时间分为2段,即,走上坡路所用时间、走下坡路所用时间.解:根据题意可得,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档