2015年北京课改版八年级下期末数学试题及答案

合集下载

2015八年级(下)期末数学试卷附答案

2015八年级(下)期末数学试卷附答案

八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠02.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=43.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<26.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣67.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣18.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣210.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,1511.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.2612.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=.(提示:方差公式为s2=.)18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开小时.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;2.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4考点:解分式方程.分析:首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.解答:解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.点评:此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.3.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得△ABC的周长等于三条中位线围成的三角形的周长的2倍,然后代入数据计算即可得解.解答:解:∵△ABC的周长是12cm,∴△ABC三条中位线围成的三角形的周长=×12=6(cm).故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.解答:解:由矩形的面积16=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选C.点评:本题考查了反比例函数的应用,注意反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<2考点:反比例函数的图象;反比例函数图象上点的坐标特征.专题:压轴题;数形结合.分析:先根据反比例函数的图象过点A(﹣1,﹣2),利用数形结合求出x<﹣1时y的取值范围,再由反比例函数的图象关于原点对称的特点即可求出答案.解答:解:∵反比例函数的图象过点A(﹣1,﹣2),∴由函数图象可知,x<﹣1时,﹣2<y<0,∴当x>1时,0<y<2.故选:D.点评:本题考查的是反比例函数的性质及其图象,能利用数形结合求出x<﹣1时y的取值范围是解答此题的关键.6.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣6考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△AOB=|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.故选:C.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣1考点:解分式方程.分析:去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.解答:解:方程的两边同乘(x﹣1),得2﹣x=x﹣1.故选D.点评:本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项.8.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个考点:平行四边形的判定.专题:几何图形问题.分析:根据平面的性质和平行四边形的判定求解.解答:解:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选:C.点评:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系.注意图形结合的解题思想.9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣2考点:反比例函数图象上点的坐标特征;菱形的性质.专题:计算题.分析:根据菱形的性质,点A与点C关于OB对称,而OB在y轴上,则可得到A(2,1),然后根据反比例函数图象上点的坐标特征求k的值.解答:解:∵菱形OABC的顶点B在y轴上,∴点A和点C关于y轴对称,∴A(2,1),∴k=2×1=2.故选A.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.10.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,15考点:众数;中位数.专题:常规题型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:根据图表数据,同一年龄人数最多的是15岁,共6人,所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是=15.5.故选B.点评:本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.26考点:直角三角形斜边上的中线;等腰三角形的性质.分析:根据等腰三角形三线合一的性质可得AD⊥BC,DC=,再根据直角三角形的性质可得DE=EC==6.5,然后可得答案.解答:解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC==6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故选:B.点评:此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6考点:翻折变换(折叠问题);勾股定理.专题:压轴题;探究型.分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解答:解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=1.考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0.解答:解:∵x﹣1=0,∴x=1,当x=1,时x+3≠0,∴当x=1时,分式的值是0.故答案为1.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为 2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:反比例函数的性质;反比例函数的定义.专题:计算题.分析:根据反比例函数的定义可知m2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.解答:解:∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣2.点评:本题考查了反比例函数的定义及图象性质.反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,注意自变量x的次数是﹣1;当k>0时,反比例函数图象在一、三象限,当k<0时,反比例函数图象在第二、四象限内.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为4.考点:菱形的判定与性质;勾股定理的逆定理.分析:根据勾股定理的逆定理可得对角线互相垂直,然后根据菱形性质可求出面积.解答:解:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=6.(提示:方差公式为s2=.)考点:方差.分析:先由平均数公式求得x的值,再由方差公式求解.解答:解:∵平均数=(﹣1+2+3+x+0)÷5=2∴﹣1+2+3+x+0=10,x=6∴方差S2=[(﹣1﹣2)2+(0﹣2)2+(2﹣2)2+(6﹣2)2+(3﹣2)2]÷5=6.故答案为6.点评:本题考查方差的定义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开15小时.考点:分式方程的应用.分析:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,根据题意可得,一个进水管(x+5)小时进的水量=两个出水管5个小时的出水量,一个进水管(x+3)小时进的水量=三个出水管3个小时的出水量,据此列方程组求解.解答:解:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,由题意得,,两式相除,得:,解得:x=15,经检验,x=15是原分式方程的解.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,第四项利用负整数指数幂法则计算,最后一项利用立方根定义计算即可得到结果.解答:解:原式=﹣1+3﹣2+1﹣3+4=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.考点:平行四边形的判定与性质.专题:探究型.分析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE 是平行四边形,即可得出结论.解答:解:猜想线段CD与线段AE的大小关系和位置关系是:相等且平行.理由:∵CE∥AB,∴∠DAO=∠ECO,∵在△ADO和△ECO中∴△ADO≌△ECO(ASA),∴AD=CE,∴四边形ADCE是平行四边形,∴CD AE.点评:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=[﹣]•=•=•=.当x=2时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?考点:分式方程的应用.分析:根据:原计划完成任务的天数﹣实际完成任务的天数=4,列方程即可.解答:解:设原计划每天种x棵树,据题意得,,解得x=30,经检验得出:x=30是原方程的解.答:原计划每天种30棵树.点评:此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)考点:全等三角形的判定与性质;矩形的判定与性质.专题:证明题.分析:作CF⊥BE,垂足为F,得出矩形CFED,求出∠CBF=∠A,根据AAS证△BAE≌△CBF,推出BF=AE即可.解答:证明:作CF⊥BE,垂足为F,∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∴四边形EFCD为矩形,∴CD=EF,∵∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,在△BAE和△CBF中,,∴△BAE≌△CBF(AAS),∴BF=AE,∴BE=BF+FE=AE+CD.点评:本题考查了全等三角形的性质和判定,矩形的判定和性质的应用,关键是求出△BAE≌△CBF,主要考查学生运用性质进行推理的能力.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题.专题:数形结合.分析:(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;(2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.解答:解:(1)由题意知,OA=3,OB=4在Rt△AOB中,AB=∵四边形ABCD为菱形∴AD=BC=AB=5,∴C(﹣4,﹣5).设经过点C的反比例函数的解析式为(k≠0),则=﹣5,解得k=20.故所求的反比例函数的解析式为.(2)设P(x,y)∵AD=AB=5,OA=3,∴OD=2,S△COD=即,∴|x|=,∴当x=时,y==,当x=﹣时,y==﹣∴P()或().点评:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.考点:一次函数综合题.分析:(1)根据平行四边形PQAB的对边相等的性质得到关于t的方程,通过解方程求得t的值;(2)由题意得到:OC=4cm,OA=16cm.利用梯形的面积公式求得S梯形OABC=62(cm2),S四边形PQOC=,结合限制性条件“PQ所在直线将四边形OABC分成左右两部分的面积比为1:2”列出关于t的方程,通过解方程来求t的值;(3)根据(2)中求得的t的值可以得到点P、Q的坐标,则利用待定系数法来求直线PQ的解析式.解答:解:(1)ts后,BP=(15﹣2t)cm,AQ=4t cm.由BP=AQ,得15﹣2t=4t,t=2.5(s).又∵OA∥BC,∴当t=2.5s时,四边形PQAB为平行四边形.(2)∵点C坐标为(0,4),点A坐标为(16,0),∴OC=4cm,OA=16cm.∴S梯形OABC=(OA+BC)•OC=×(16+15)×4=62(cm2).∵t秒后,PC=2tcm,OQ=(16﹣4t)cm,∴S四边形PQOC=,又∵PQ所在直线将四边形OABC分成左右两部分的面积比为1:2,∴,解得(s).当(s)时,直线PQ将四边形OABC分成左右两部分的面积比为1:2.(3)当s时,P(,4),Q(,0).设直线PQ的解析式为:y=kx+b(k≠0),则,解得所以,此时直线PQ的函数关系式为.点评:本题考查了一次函数综合题,解题时,利用了梯形的面积公式、待定系数法求一次函数的解析式、平行四边形的判定定理等知识点,题中运用动点的运动速度与运动时间求出相关线段的长是解题的关键.。

初二下册数学 北京市朝阳区2015-2016学年八年级下期末数学试卷含答案解析

初二下册数学 北京市朝阳区2015-2016学年八年级下期末数学试卷含答案解析

2015-2016学年北京市朝阳区八年级(下)期末数学试卷一、选择题(共30分,每小题3分)以下每个题中,只有一个选项是符合题意的.1.如图图形中,是中心对称图形的是( )A. B.C.D.2.下列二次根式中,最简二次根式是( )A.B.C. D.3.以下列各组数为边长,能构成直角三角形的是( )A.2,3,4 B.3,4,6 C.5,12,13 D.6,7,114.已知关于x的一元二次方程x2+3x+k=0有实数根,则下列四个数中,满足条件的k值为( )A.2 B.3 C.4 D.55.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为( )A.1 B.2 C.3 D.46.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是( )A.25 B.26 C.27 D.287.用配方法解方程x2+6x+1=0时,原方程应变形为( )A.(x+3)2=2 B.(x﹣3)2=2 C.(x+3)2=8 D.(x﹣3)2=88.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD 的周长为( )A.5 cm B.10 cm C.20 cm D.40 cm9.已知关于x的一元二次方程x2+x+m2﹣1=0的一个根是0,则m的值为( )A.1 B.0 C.﹣1 D.1或﹣110.一个寻宝游戏的寻宝通道由正方形ABCD的边组成,如图1所示.为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )A.A→B B.B→C C.C→D D.D→A二、填空题(共18分,每小题3分)11.函数中,自变量x的取值范围是 .12.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x= .13.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)375350375350方差s212.513.5 2.4 5.4根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择 .14.已知P1(﹣3,y1)、P2(2,y2)是一次函数y=2x+1图象上的两个点,则y1 y2(填“>”、“<”或“=”).15.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长一十二步,问阔及长各几步?”译文:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽各是多少步?”若设矩形田地的长为x步,则可列方程为 .16.阅读下面材料:在数学课上,老师提出如下问题:已知:如图1,△ABC及AC边的中点O.求作:平行四边形ABCD.小敏的作法如下:①连接BO并延长,在延长线上截取OD=BO;②连接DA、DC.所以四边形ABCD就是所求作的平行四边形.老师说:“小敏的作法正确.”请回答:小敏的作法正确的理由是 .三、解答题(共52分,第17-21题每题4分,第22-25题每题5分,第26-27题每题6分)17.计算:.18.解方程:x2﹣4x+3=0.19.已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.20.如图,在平面直角坐标系xOy中,已知点B(3,4),BA⊥x轴于A.(1)画出将△OAB绕原点O逆时针旋转90°后所得的△OA1B1,并写出点B的对应点B1的坐标为 ;(2)在(1)的条件下,连接BB1,则线段BB1的长度为 .21.直线y=2x﹣2与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)点C在x轴上,且S△ABC=3S△AOB,直接写出点C坐标.22.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:读书册数45678人数(人)6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.23.世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应:摄氏温度x(℃)…0510152025…华氏温度y(℉)…324150596877…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.24.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.25.问题:探究函数y=|x|﹣2的图象与性质.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|﹣2中,自变量x可以是任意实数;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…10﹣1﹣2﹣10m…①m= ;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n= ;(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:①该函数的最小值为 ;②已知直线与函数y=|x|﹣2的图象交于C、D两点,当y1≥y时x的取值范围是 .26.定义:对于线段MN和点P,当PM=PN,且∠MPN≤120°时,称点P为线段MN的“等距点”.特别地,当PM=PN,且∠MPN=120°时,称点P为线段MN的“强等距点”.如图1,在平面直角坐标系xOy中,点A的坐标为.(1)若点B是线段OA的“强等距点”,且在第一象限,则点B的坐标为( , );(2)若点C是线段OA的“等距点”,则点C的纵坐标t的取值范围是 ;(3)将射线OA绕点O顺时针旋转30°得到射线l,如图2所示.已知点D在射线l上,点E在第四象限内,且点E既是线段OA的“等距点”,又是线段OD的“强等距点”,求点D坐标.27.在等腰直角三角形ABC中,∠ACB=90°,AC=BC,直线l过点C且与AB平行.点D在直线l上(不与点C重合),作射线DA.将射线DA绕点D顺时针旋转90°,与直线BC交于点E.(1)如图1,若点E在BC的延长线上,请直接写出线段AD、DE 之间的数量关系;(2)依题意补全图2,并证明此时(1)中的结论仍然成立;(3)若AC=3,CD=,请直接写出CE的长.2015-2016学年北京市朝阳区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共30分,每小题3分)以下每个题中,只有一个选项是符合题意的.1.如图图形中,是中心对称图形的是( )A. B.C.D.【考点】中心对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:B.2.下列二次根式中,最简二次根式是( )A.B.C. D.【考点】最简二次根式.【分析】化简得到结果,即可做出判断.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项不合题意;D、不能化简,符号题意;故选D3.以下列各组数为边长,能构成直角三角形的是( )A.2,3,4 B.3,4,6 C.5,12,13 D.6,7,11【考点】勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、32+42≠62,不能构成直角三角形,故选项错误;C、52+122=132,能构成直角三角形,故选项正确;D、62+72≠112,不能构成直角三角形,故选项错误.故选C.4.已知关于x的一元二次方程x2+3x+k=0有实数根,则下列四个数中,满足条件的k值为( )A.2 B.3 C.4 D.5【考点】根的判别式.【分析】根据方程有实数根结合根的判别式可得出关于k的一元一次不等式9﹣4k ≥0,解不等式得出k的取值范围,再结合四个选项即可得出结论.【解答】解:∵方程x2+3x+k=0有实数根,∴△=32﹣4×1×k=9﹣4k≥0,解得:k≤.在A、B、C、D选项中只有A中的2符合条件.故选A.5.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为( )A.1 B.2 C.3 D.4【考点】平行四边形的性质.【分析】由平行四边形的性质得出BC=AD=5,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC﹣BE=5﹣3=2,故选:B.6.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是( )A.25 B.26 C.27 D.28【考点】众数;折线统计图.【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图形可知,25出现了3次,次数最多,所以众数是25.故选A.7.用配方法解方程x2+6x+1=0时,原方程应变形为( )A.(x+3)2=2 B.(x﹣3)2=2 C.(x+3)2=8 D.(x﹣3)2=8【考点】解一元二次方程-配方法.【分析】根据配方法的步骤先把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,配成完全平方的形式,从而得出答案.【解答】解:∵x2+6x+1=0∴x2+6x=﹣1,∴x2+6x+9=﹣1+9,∴(x+3)2=8;故选C.8.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD 的周长为( )A.5 cm B.10 cm C.20 cm D.40 cm【考点】菱形的性质.【分析】根据已知可得菱形性质和直角三角形斜边上的中线等于斜边的一半,可以求得菱形的边长即BC=2OM,从而不难求得其周长.【解答】解:∵菱形的对角线互相垂直平分,又直角三角形斜边上的中线等于斜边的一半,∴根据三角形中位线定理可得:BC=2OM=10,则菱形ABCD的周长为40cm.故选D.9.已知关于x的一元二次方程x2+x+m2﹣1=0的一个根是0,则m的值为( )A.1 B.0 C.﹣1 D.1或﹣1【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x=0代入方程求解可得m的值.【解答】解:把x=0代入方程程x2+x+m2﹣1=0,得m2﹣1=0,解得:m=±1,故选D.10.一个寻宝游戏的寻宝通道由正方形ABCD的边组成,如图1所示.为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )A.A→B B.B→C C.C→D D.D→A【考点】动点问题的函数图象.【分析】观察图形,发现寻宝者与定位仪器之间的距离先越来越近到0,再先近后远,确定出寻宝者的行进路线即可.【解答】解:观察图2得:寻宝者与定位仪器之间的距离先越来越近到距离为0,再由0到远距离与前段距离相等,结合图1得:寻宝者的行进路线可能为A→B,故选A.二、填空题(共18分,每小题3分)11.函数中,自变量x的取值范围是 x≥3 .【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件是a≥0,即可求解.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.12.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x= ﹣4 .【考点】一次函数与一元一次方程.【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣413.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)375350375350方差s212.513.5 2.4 5.4根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择 丙 .【考点】方差;加权平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛,∵丙的方差最小,∴选择丙参赛,故答案为:丙14.已知P1(﹣3,y1)、P2(2,y2)是一次函数y=2x+1图象上的两个点,则y1 < y2(填“>”、“<”或“=”).【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据﹣3<2进行解答即可.【解答】解:∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵﹣3<2,∴y1<y2.故答案为<.15.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长一十二步,问阔及长各几步?”译文:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽各是多少步?”若设矩形田地的长为x步,则可列方程为 x(x﹣12)=864 .【考点】由实际问题抽象出一元二次方程.【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为864,即可得出方程.【解答】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故答案为:x(x﹣12)=864.16.阅读下面材料:在数学课上,老师提出如下问题:已知:如图1,△ABC及AC边的中点O.求作:平行四边形ABCD.小敏的作法如下:①连接BO并延长,在延长线上截取OD=BO;②连接DA、DC.所以四边形ABCD就是所求作的平行四边形.老师说:“小敏的作法正确.”请回答:小敏的作法正确的理由是 对角线互相平分的四边形是平行四边形 .【考点】平行四边形的性质;作图—复杂作图.【分析】由题意可得OA=OC,OB=OD,然后由对角线互相平分的四边形是平行四边形,证得结论.【解答】解:∵O是AC边的中点,∴OA=OC,∵OD=OB,∴四边形ABCD是平行四边形.依据:对角线互相平分的四边形是平行四边形.故答案为:对角线互相平分的四边形是平行四边形.三、解答题(共52分,第17-21题每题4分,第22-25题每题5分,第26-27题每题6分)17.计算:.【考点】二次根式的混合运算.【分析】先计算乘法,然后计算加减.【解答】解:原式=3+2﹣2=5﹣2.18.解方程:x2﹣4x+3=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】此题可以采用配方法:首先将常数项3移到方程的左边,然后再在方程两边同时加上4,即可达到配方的目的,继而求得答案;此题也可采用公式法:注意求根公式为把x=,解题时首先要找准a,b,c;此题可以采用因式分解法,利用十字相乘法分解因式即可达到降幂的目的.【解答】解法一:移项得x2﹣4x=﹣3,配方得x2﹣4x+4=﹣3+4(x﹣2)2=1,即x﹣2=1或x﹣2=﹣1,∴x1=3,x2=1;解法二:∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴,∴x1=3,x2=1;解法三:原方程可化为(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3.19.已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.【考点】平行四边形的性质.【分析】先由平行四边形的对边平行得出AD∥BC,再根据平行线的性质得到∠DAE=∠1,而∠1=∠2,于是∠DAE=∠2,根据平行线的判定得到AE∥CF,由两组对边分别平行的四边形是平行四边形得到四边形AECF是平行四边形,从而根据平行四边形的对边相等得到AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠1,∵∠1=∠2,∴∠DAE=∠2,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.20.如图,在平面直角坐标系xOy中,已知点B(3,4),BA⊥x轴于A.(1)画出将△OAB绕原点O逆时针旋转90°后所得的△OA1B1,并写出点B的对应点B1的坐标为 (﹣4,3) ;(2)在(1)的条件下,连接BB1,则线段BB1的长度为 5 .【考点】作图-旋转变换.【分析】(1)根据网格结构找出点A1、B1的位置,然后与点O顺次连接即可,再根据平面直角坐标系写出点B1的坐标;(2)利用勾股定理列式计算即可得解.【解答】解:(1)如图.点B1(﹣4,3);(2)由勾股定理得,BB1==5.故答案为:(﹣4,3);5.21.直线y=2x﹣2与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)点C在x轴上,且S△ABC=3S△AOB,直接写出点C坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)分别令y=2x﹣2中x=0、y=0求出与之对应的y、x值,由此即可得出点A、B的坐标;(2)设点C的坐标为(m,0),根据三角形的面积公式结合两三角形面积间的关系即可得出关于m含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:(1)令y=2x﹣2中y=0,则2x﹣2=0,解得:x=1,∴A(1,0).令y=2x﹣2中x=0,则y=﹣2,∴B(0,﹣2).(2)依照题意画出图形,如图所示.设点C的坐标为(m,0),S△AOB=OA•OB=×1×2=1,S△ABC=AC•OB=|m﹣1|×2=|m﹣1|,∵S△ABC=3S△AOB,∴|m﹣1|=3,解得:m=4或m=﹣2,即点C的坐标为(4,0)或(﹣2,0).22.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:读书册数45678人数(人)6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.【考点】中位数;加权平均数.【分析】(1)根据平均数=,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.【解答】解:(1)该班学生读书册数的平均数为:=6.3(册),答:该班学生读书册数的平均数为6.3册.(2)将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为:=6.5(册).答:该班学生读书册数的中位数为6.5册.23.世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应:摄氏温度x(℃)…0510152025…华氏温度y(℉)…324150596877…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.【考点】一次函数的应用.【分析】(1)设y=kx+b,利用图中的两个点,建立方程组,解之即可;(2)令y=﹣4,求出x的值,再比较即可.【解答】解:(1)设一次函数表达式为y=kx+b(k≠0).由题意,得解得∴一次函数的表达式为y=1.8x+32.(2)当y=﹣4时,代入得﹣4=1.8x+32,解得x=﹣20.∴华氏温度﹣4℉所对应的摄氏温度是﹣20℃.24.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.【考点】矩形的性质;菱形的判定与性质.【分析】(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.AB=DC=2,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=2OF=2,求出菱形的面积即可.【解答】(1)证明:∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,∵矩形ABCD,∴AC=BD,OC=AC,OB=BD,∴OC=OD,∴平行四边形OCED是菱形;(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,∴BC=2,∴AB=DC=2,连接OE,交CD于点F,∵四边形ABCD为菱形,∴F为CD中点,∵O为BD中点,∴OF=BC=1,∴OE=2OF=2,∴S菱形OCED=×OE×CD=×2×2=2.25.问题:探究函数y=|x|﹣2的图象与性质.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|﹣2中,自变量x可以是任意实数;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…10﹣1﹣2﹣10m…①m= 1 ;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n= ﹣10 ;(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:①该函数的最小值为 ﹣2 ;②已知直线与函数y=|x|﹣2的图象交于C、D两点,当y1≥y时x的取值范围是 ﹣1≤x≤3 .【考点】一次函数的性质;一次函数的图象.【分析】(2)①把x=3代入y=|x|﹣2,即可求出m;②把y=8代入y=|x|﹣2,即可求出n;(3)①画出该函数的图象即可求解;②在同一平面直角坐标系中画出函数与函数y=|x|﹣2的图象,根据图象即可求出y1≥y时x的取值范围.【解答】解:(2)①把x=3代入y=|x|﹣2,得m=3﹣2=1.故答案为1;②把y=8代入y=|x|﹣2,得8=|x|﹣2,解得x=﹣10或10,∵A(n,8),B(10,8)为该函数图象上不同的两点,∴n=﹣10.故答案为﹣10;(3)该函数的图象如图,①该函数的最小值为﹣2;故答案为﹣2;②在同一平面直角坐标系中画出函数与函数y=|x|﹣2的图象,由图形可知,当y1≥y时x的取值范围是﹣1≤x≤3.故答案为﹣1≤x≤3.26.定义:对于线段MN和点P,当PM=PN,且∠MPN≤120°时,称点P为线段MN的“等距点”.特别地,当PM=PN,且∠MPN=120°时,称点P为线段MN的“强等距点”.如图1,在平面直角坐标系xOy中,点A的坐标为.(1)若点B是线段OA的“强等距点”,且在第一象限,则点B的坐标为( , 1 );(2)若点C是线段OA的“等距点”,则点C的纵坐标t的取值范围是 t≥1或t ≤﹣1 ;(3)将射线OA绕点O顺时针旋转30°得到射线l,如图2所示.已知点D在射线l上,点E在第四象限内,且点E既是线段OA的“等距点”,又是线段OD的“强等距点”,求点D坐标.【考点】几何变换综合题.【分析】(1)过点B作BM⊥x轴于点M,根据“强等距点”的定义可得出∠ABO=120°,BO=BA,根据等腰三角形的性质以及特殊角的三角函数值即可求出线段OM、BM 的长度,再由点B在第一象限即可得出结论;(2)结合(1)的结论以及“等距点”的定义,即可得出t的取值范围;(3)根据“等距点”和“强等距点”的定义可得出相等的线段和角,在直角三角形中利用特殊角的三角函数值即可求出点E的坐标,再通过平行线的性质找出点D 的坐标即可.【解答】解:(1)过点B作BM⊥x轴于点M,如图1所示.∵点B是线段OA的“强等距点”,∴∠ABO=120°,BO=BA,∵BM⊥x轴于点M,∴OM=AM=OA=,∠OBM=∠ABO=60°.在Rt△OBM中,OM=,∠OBM=60°,∴BM==1.∴点B的坐标为(,1)或(,﹣1),∵点B在第一象限,∴B(,1).故答案为:(,1).(2)由(1)可知:线段OA的“强等距点”坐标为(,﹣1)或(,1).∵C是线段OA的“等距点”,∴点C在点(,1)的上方或点(,﹣1)下方,∴t≥1或t≤﹣1.故答案为:t≥1或t≤﹣1.(3)根据题意画出图形,如图2所示.∵点E是线段OA的“等距点”,∴EO=EA,∴点E在线段OA的垂直平分线上.设线段OA的垂直平分线交x轴于点F.∵A(2,0),∴F(,0).∵点E是线段OD的“强等距点”,∴EO=ED,且∠OED=120°,∴∠EOD=∠EDO=30°.∵点E在第四象限,∴∠EOA=60°.∴在Rt△OEF中,EF=OF•tan∠EOA=3,OE==2.∴E(,﹣3).∴DE=OE=2.∵∠AOD=∠EOD=30°,∴ED∥OA.∴D(3,﹣3).27.在等腰直角三角形ABC中,∠ACB=90°,AC=BC,直线l过点C且与AB平行.点D在直线l上(不与点C重合),作射线DA.将射线DA绕点D顺时针旋转90°,与直线BC交于点E.(1)如图1,若点E在BC的延长线上,请直接写出线段AD、DE 之间的数量关系;(2)依题意补全图2,并证明此时(1)中的结论仍然成立;(3)若AC=3,CD=,请直接写出CE的长.【考点】几何变换综合题.【分析】(1)过点D作DM⊥直线l交CA的延长线于点M,根据平行线的性质结合等腰直角三角形的性质可得出∠AMD=45°=∠ECD,CD=MD.再通过角的计算得出∠EDC=∠ADM,由此即可证出△ADM≌△EDC,从而得出DA=DE;(2)过点D直线l的垂线,交AC于点F,通过角的计算以及等腰直角三角形的性质即可证得△CDE≌△FDA,由此即可得出结论DA=DE;(3)分两种情况考虑:①点D在点C的右侧时,如同(1)过点A作AN⊥DM 于点N,通过解直角三角形即可求出AM的长度,根据全等三角形的性质即可得出结论;②当点D在C点的右侧时,过点A作AN⊥DM于点N,结合(1)(2)的结论以及等腰直角三角形的性质即可求出线段CN个NE的长度,二者相加即可得出结论.【解答】解:(1)过点D作DM⊥直线l交CA的延长线于点M,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC,∴∠ABC=∠BAC=45°.∵直线l∥AB,∴∠ECD=∠ABC=45°,∠ACD=∠BAC=45°,∵DM⊥直线l,∴∠CDM=90°,∴∠AMD=45°=∠ECD,CD=MD.∵∠EDC+∠CDA=90°,∠CDA+∠ADM=90°,∴∠EDC=∠ADM.在△ADM和△EDC中,有,∴△ADM≌△EDC(ASA),∴DA=DE.(2)证明:过点D直线l的垂线,交AC于点F,如图2所示.∵△ABC中,∠BCA=90°,AC=BC,∴∠CAB=∠B=45°.∵直线l∥AB,∴∠DCF=∠CAB=45°.∵FD⊥直线l,∴∠DCF=∠DFC=45°.∴CD=FD.∵∠DFA=180°﹣∠DFC=135°,∠DCE=∠DCA+∠BCA=135°,∴∠DCE=∠DFA.∵∠CDE+∠EDF=90°,∠EDF+∠FDA=90°,∴∠CDE=∠FDA.在△CDE和△FDA中,有,∴△CDE≌△FDA(ASA),∴DE=DA.(3)CD=分两种情况:①当点D在C点的右侧时,过点A作AN⊥DM于点N,如图3所示.∵△ADM≌△EDC,∴DM=DC=,CE=AM,∵AC=3,∴DN=AC=,∴NM=DM﹣DN=,∴AM=CE=NM=1;②当点D在C点的左侧时,过点A作AA′⊥直线l于点A′,过点D作DN⊥直线L 交CB的延长线与点N,过点E作EM⊥DM于点M,如图4所示.∵∠A′DA+∠ADM=90°,∠ADM+∠MDE=90°,∴∠A′DA=∠MDE,在△A′DA和△MDE中,有,∴△A′DA≌△MDE(SAS),∴AA′=EM.∵∠CAA′=45°,AC=3,∴AA′=.∵∠DCN=45°,CD=2,∴CN=4.∵∠NEM=45°,EM=AA′=,∴NE=3.∴CE=CN+NE=4+3=7,综上可知:CE的长为1或7.2017年2月23日第31页(共31页)。

北京市丰台区2015_2016学年八年级数学下学期期末考试试题京改版含答案

北京市丰台区2015_2016学年八年级数学下学期期末考试试题京改版含答案

北京市丰台区2015-2016学年八年级数学下学期期末考试试题一、选择题(共30分,每小题3分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1. 在平面直角坐标系中,点P (2,-3)关于y 轴对称的点的坐标是 A.(-2,-3) B .(-2,3) C .(2,3) D .(2,-3)2. 中国古代建筑的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是A .B .C .D . 3. 一个多边形的内角和是900°,这个多边形是A. 五边形B. 六边形C. 七边形D. 八边形 4. 下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2S :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A. 甲 B. 乙 C. 丙 D. 丁5. 如图,在一次实践活动课上,小明为了测量池塘B 、C 两点间的距离,他先在池塘的一侧选定一点A ,然后测量出AB 、AC 的中点D 、E ,且DE =10m ,于是可以计算出池塘B 、C 两点间的距离是 A. 5m B. 10mC. 15mD. 20m6. 将直线47+-=x y 向下平移3个单位长度后得到的直线的表达式是A. 77+-=x yB.17+-=x yC. 177--=x yD. 257+-=x y7. 用配方法解方程542=-x x 时,原方程应变形为A. ()122=+xB. ()122=-xC. ()922=+xD. ()922=-xAE D B C A 8. 设正比例函数mx y =的图象经过点)4,(m A ,且y 随x 增大而减小,则m 的值是A.-2或2B. 2C.-2D.-49. 如图,在ABCD 中,AB =4,AD =7,∠ABC 的平分线BE 交AD 于点E ,则DE 的长是A. 4B. 3C. 3.5D. 2 10. 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论错.误.的是 A. 货车的速度是60千米/小时B. 离开出发地后,两车第一次相遇时,距离出发地150千米C. 货车从出发地到终点共用时7小时D. 客车到达终点时,两车相距180千米 二、填空题(共18分,每小题3分)11. 函数162+-=x x y 的自变量x 的取值范围是.12. 一组数据-1,0,1,2,3的方差是 .13. 关于x 的一元二次方程0232=-++m x x 有一个根为1,则m 的值等于__________. 14. 已知菱形的两条对角线长分别是6和8,则这个菱形的面积是 .15. 在学习了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 是平行四边形,请添加一个条件,使得ABCD 是矩形.”经过思考,小明说:“添加AC =BD . ”小红说:“添加AC ⊥BD . ”你同意 的观点,理由是 .16. 将一张长与宽之比为2的矩形纸片ABCD 进行如下操作:对折并沿折痕剪开,发现每一次所得到的两个矩形纸片长与宽之比都是2(每一次的折痕如下图中的虚线所示).已知AB =1,则第3次操作后所得到的其中一个矩形纸片的周长是 ;第2016次操作后所得到的其中一个矩形纸片的周长是 .三、解答题(共25分,每小题5分)17. 解方程:0662=+-x x .t (小时)A B C D…第1次 第2次 第3次18. 如图,直线x y l 21-=:与直线b kx y l +=:2在同一平面直角坐标系内交于点P . (1)直接写出不等式b kx x +>-2的解集 ;(2)设直线2l 与x 轴交于点A ,△OAP 的面积为12,求2l 的表达式.19. 已知关于x 的一元二次方程01632=-+-k x x 有实数根,k 为负整数.(1)求k 的值;(2)如果这个方程有两个整数根,求出它的根.20. 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .已知AB =3, 求BC 的长.A B CD21. 现代互联网技术的广泛应用,催生了快递行业的高速发展. 据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.四、解答题(共15分,每小题5分)22. 为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初(1)表中的a = ,b = ,c = ;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.23.如图,在△ABC 中,AB =BC ,BD 平分∠ABC .四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE . 求证:四边形BECD 是矩形.24. 某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为200元/米2,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过20米2,每平方米都按九折计费,超过20米2,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x 米2.(1)请分别写出甲、乙两厂家收取的总费用y (元)与x (米2)之间的函数关系式; (2)请你结合函数图象的知识.........帮助学校在甲、乙两厂家中,选择一家收取总费用较少的. /分O F A BC D Ey五、解答题(共12分,每小题6分)25. 如图,点O 为正方形ABCD 的对角线交点,将线段OE 绕点O 逆时针方向旋转 90,点E 的对应点为点F ,连接EF ,AE ,BF . (1)请依题意补全图形;(2)根据补全的图形,猜想并证明直线AE 与BF 的位置关系.ABCDEO26.如图,在平面直角坐标系中,已知点A (2,3)、B (6,3),连接AB .如果对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,那么称点P 是线段AB 的“附近点”. (1)请判断点D (4.5,2.5)是否是线段AB 的“附近点”; (2)如果点H (m ,n )在一次函数256-=x y 的图象上,且是线段AB 的“附近点”,求m 的取值范围; (3)如果一次函数b x y +=的图象上至少..存在一个“附近点”,请直接写出b 的取值范围.丰台区2015—2016学年度第二学期期末练习 数学参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11.1-≠x 12. 2 13. -2 14. 24 15. 小明,对角线相等的平行四边形是矩形 1007221+ 三、解答题(本题共25分,每题5分)17. 解:∵a =1,b = -6,c =6,…………………1分∴△=b 2-4ac =12,…………………2分 2326±=x ,…………………3分 ∴331+=x ,332-=x .……5分18. 解:(1)x <3.………………………………………………………………1分 (2)∵点P 在l 1上,∴y = -2x = -6,∴P (3,-6).………………2分 ∵12621=⨯⨯=∆OA S OAP ,∴OA =4,A (4,0).…………3分∵点P 和点A 在l 2上,∴⎩⎨⎧+=-+=.36,40b k b k ……………………4分∴⎩⎨⎧-==.24,6b k ∴l 2:y = 6x -24.……………………………………5分19. 解:(1)根据题意,得Δ=(-6)2-4×3(1-k )≥0.…………………1分 解得 k ≥-2.…………………………………………2分 ∵k 为负整数,∴k =-1,-2.………………………………3分 (2)当k =-1时,不符合题意,舍去; …………………………4分 当k =-2时,符合题意,此时方程的根为x 1=x 2=1.………5分20. 解:由折叠可得,△EOC ≌△EBC ,∴CB =CO .……………1分 ∵四边形ABED 是菱形,∴AO =CO . …………………2分 ∵四边形ABCD 是矩形,∴∠B =90°.…………………3分 设BC =x ,则AC =2x ,∵在Rt △ABC 中,AC 2=BC 2+AB 2,∴(2x )2=x 2+32,……4分 解得x =3±,即BC =3.……………………………5分21.解:设投递快递总件数的月平均增长率是x ,…………………1分 依题意,得:()3.361302=+x ,………………………3分解得: 1.11±=+x∴1.2,1.021-==x x (舍).……………………………4分答:投递快递总件数的月平均增长率是10%.…………………5分 四、解答题(本题共15分,每题5分)22. 解:(1)a =14,b =0.08,c =4. …………………2分(2)频数分布直方图、折线图如图……4分(3)1000×(4÷50)=80(人). ……5分23.证明:∵AB =BC ,BD 平分∠ABC ,∴BD ⊥AC ,AD =CD .…………………2分∵四边形ABED 是平行四边形,∴BE ∥AD ,BE =AD .……………………3分 ∴BE ∥DC ,BE =DC ,∴四边形BECD 是平行四边形.………4分∵BD ⊥AC ,∴∠BDC =90°,∴平行四边形BECD 是矩形.…………5分24. 解:(1)甲厂家的总费用:y 甲=200×0.7x =140x ;……1分乙厂家的总费用:当0<x ≤20时,y 乙=200×0.9x =180x , 当x >20时,y 乙=200×0.9×20+200×0.6(x ﹣20)/分y x (米2)=120x +1200;……………………3分(2)画出图象; ………………………………4分 若y 甲=y 乙,140x =120x +1200,x =60,根据图象,当0<x <60时,选择甲厂家;当x =60时,选择甲、乙厂家都一样; 当x >60时,选择乙厂家.……………………………………5分五、解答题(本题共12分,每题6分)25. (1)正确画出图形;(画对OF 给1分)…………2分(2)猜想:AE ⊥BF .…………………………………3分证明:延长EA 交OF 于点H ,交BF 于点G∵O 为正方形ABCD 对角线的交点, ∴OB OA =,∠AOB =90°.∵OE 绕点O 逆时针旋转90°得到OF ,∴OF OE =,∠AOB =∠EOF =90°.∴∠EOA =∠FOB .∴△EOA ≌△FOB ,………………………4分 ∴∠OEA =∠OFB .…………………………5分 ∵∠OEA +∠OHA =90°,∠FHG =∠OHA , ∴∠OFB +∠FHG =90°,∴AE ⊥BF .…………………………………6分 26.解:(1)是; ………………………………………1分(2)∵点H (m ,n )是线段AB 的“附近点”,点H (m ,n )在直线256-=x y 上, ∴256-=m n ; 方法一: 直线256-=x y 与线段AB 交于⎪⎭⎫ ⎝⎛3,625. 当625≥m 时,有256-=m n ≥3, 又AB ∥x 轴,∴ 此时点H (m ,n )到线段AB 的距离是n -3,∴0≤n -3≤1,∴5625≤≤m .…………………2分 当625≤m 时,有256-=m n ≤3,又AB ∥x 轴,∴ 此时点H (m ,n )到线段AB 的距离是3-n ,∴0≤3-n ≤1,∴ 625310≤≤m ,……………3分 综上所述,5310≤≤m .…………………………4分 方法二:线段AB 的“附近点”所在的区域是图中虚线及其内部,F OEDCB A GHABCDEOF由图可知,当2256=-=m n 时,310=m ,即M ⎪⎭⎫⎝⎛2,310;…………………2分当4256=-=m n 时,5=m ,即N (5,4).………………………3分 ∴5310≤≤m .…………………………4分(3)2123+≤≤--b . …………………6分。

2015年八年级数学(下)期末试卷带答案

2015年八年级数学(下)期末试卷带答案

2015年八年级数学(下)期末考试卷考试时间:120分钟 总分:120分 命题:Mr. Xiong 一、选择题 (10×3′=30分)1、已知a<b 且ab ≠0,化简二次根式b a 3-的正确结果是( ) A. -a ab - B.-a ab C.a ab D.a ab -2、三角形的三边长a 、b 、c ,由下列条件不能判断它是直角三角形的是( ) A. a:b:c=7:16:14 B.222c b a =-C.2a =(b+c)(b-c)D.a:b:c=15:9:123、如图,在矩形纸片ABCD 中,AB=5CM ,BC=10CM ,CD 上有一点E ,ED=2cm ,AD 上有一点P ,PD=3cm ,过点P 作PF ⊥AD ,交BC 于点F ,将纸片折叠,使点P 与点E 重合,折痕与PF 交于点Q ,则PQ 的长是( ). A.413 cm B.3cm C.2cm D.27cm 4、5、已知a-b=2+3,b-c=3-2,则ac bc ab c b a ---++222的值为( ) A 、310 B 、123 C 、10 D 、156、数据10,10,x ,8的众数与平均数相同,那么这组数的中位数是()A .10 B .8C .12D .47、已知每一个小时有一列速度相同的动车从甲地开往乙地,图中OA 、MN 分别是第一列动车和第二列动车离甲地的路程S (km )与运行时间t (h )的函数图象,折线DB ﹣BC是一列从乙地开往甲地速度为100km/h 的普通快车距甲地的路程S (km )与运行时间t (h )的函数图象.以下说法错误的是( )第3题8、已知一次函数y=(2k-1)x-k 的图像不经过第一象限,则k 的取值范围是( )A. 21 kB. 0<k<21C. 0≤k<21D. 0≤k ≤219、如图所示,一个圆柱高为8cm ,底面圆的半径为5cm ,则从圆柱左下角A 点出发.沿圆柱体表面到右上角B 点的最短路程为( )A .B.C.D .以上都不对10、如图所示.直线y=x+2与y 轴相交于点A ,OB 1=OA ,以OB 1为底边作等腰三角形A 1OB 1,顶点A 1在直线y=x+2上,△A 1OB 1记作第一个等腰三角形;然后过B 1作平行于OA 1的直线B 1A 2与直线y=x+2相交于点A 2,再以B 1A 2为腰作等腰三角形A 2B 1B 2,记作第二个等腰三角形;同样过B 2作平行于OA 1的直线B 2A 3与直钱y=x+2相交于点A 3,再以B 2A 3为腰作等腰三角形A 3B 2B 3,记作第三个等腰三角形;依此类推,则等腰三角形A 10B 9B 10的面积为( )A .3•48 B .3•49 C .3•410 D .3•411 二、填空题(每小题3分,共24分)11、已知2753n 是整数,则正整数n 的最小值是_____________.12、如图,正方形ABCD 的边长为4,点P 在DC 边上且DP=1,点Q 是AC 上一动点,则DQ+PQ 的最小值为______.A . 普通快车比第一列动车晚发车0.5hB . 普通快车比第一列动车晚到达终点1.5hC . 第二列动车出发后1h 与普通快车相遇D .普通快车与迎面的相邻两动车相遇的时间间隔为0.7h第7题第十题图13、如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴,y 轴上,顶点O 与原点O 重合连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在D 的位置,若B (1, 2)则点D 的坐标为_____________.14、如图,直线y=kx+b 经过A (-1,2)、B (-2, 0)两点,则0≤kx+b ≤-2x 的解集是____________.15、若a ,b ,c ,是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:(1)以a 2,b 2,c 2的长为边的三条线段能组成一个三角形;(2)以,,的长为边的三条线段能组成一个三角形; (3)以a +b ,c +h ,h 的长为边的三条线段能组成直角三角形;(4)以,,的长为边的三条线段能组成直角三角形;(5)以,,的长为边的三条线段能组成直角三角形.其中正确结论的序号为________.16、甲、乙、丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.设甲丙交手a 局,乙丙交手b 局,甲乙交手c 局,则4a ﹣1+b ﹣2c 0=________,a-2, b-15, c-5三数的方差为________.17、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC=8米.当正方形DEFH 运动到什么位置,即当AE=________米时,有222BC AE DC +=.18、小王、小阳两人同时从甲、乙两地出发相向而行,小王先到达乙地后原地休息,她们二人的距离y (km )与步行的时间x (h )之间的函数关系的图像如图所示,则直线AB 的解析式为______________________. 三、解答题(共66分) 19、(6分)计算x x xx x 23)3221286÷+-(20、如图,三角形ABC 为等边三角形,D 、F 分别为BC 、AC 上的一点,且CD=BF,以AD 为边作等边三角形ADE 。

北京市大兴区2015-2016学年八年级数学下学期期末考试试题 京改版

北京市大兴区2015-2016学年八年级数学下学期期末考试试题 京改版

北京市大兴区2015-2016学年八年级数学下学期期末考试试题考生须知1.本试卷共4页,共三道大题,29道小题,满分100分.考试时间120分钟. 2.在试卷和答题卡上准确填写班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共10道小题,每题3分,共30分) 在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求涂在答题纸第1-10题的相应位置上.1.在平面直角坐标系中,点M (-4,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 2.我国一些银行的行标设计都融入了中国古代钱币的图案.下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是A. B. C. D.3.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是4.若一个多边形的内角和为540°,则这个多边形的边数为A .4 B. 5 C. 6 D.7 5.在下列图形性质中,平行四边形不一定具备的是A .两组对边分别相等 B.两组对边分别平行 C.对角线相等 D.对角线互相平分 6.下列关于正比例函数y = 3x 的说法中,正确的是A .当x =3时,y =1 B.它的图象是一条过原点的直线 C. y 随x 的增大而减小 D.它的图象经过第二、四象限 7.为了备战2016年里约奥运会,中国射击队正在积极训练.甲、乙两名运动员在相同的条件下,各射击10次.经过计算,甲、乙两人成绩的平均数均是9.5环,甲的成绩方差是0.125,乙的成绩的方差是0.85,那么这10次射击中,甲、乙成绩的稳定情况是A .甲较为稳定B .乙较为稳定C .两个人成绩一样稳定D .不能确定8.用两个全等的直角三角形纸板拼图,不一定能拼出的图形是A .菱形 B. 平行四边形 C. 等腰三角形 D.矩形9.已知,在平面直角坐标系xOy 中,点A ( -4,0 ),点B 在直线y = x +2上.当A ,B 两点间的距离最小时,点B 的坐标是A .(2-2- , 2- ) B.(2-2-, 2 ) C.( -3,-1 ) D.(-3,)10. 设max {m ,n }表示m ,n (m ≠ n )两个数中的最大值.例如max {-1,2}=2,max {12,8}=12,则max {2x ,x 2+2}的结果为A .222x x -- B .222x x ++C .2xD .22x +二、填空题(本题共8道小题,每题2分,共16分) 11.点P (-3,1)到y 轴的距离是______. 12.函数11y x =-中,自变量x 的取值范围是______.13.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时的绿化面积为______平方米.14.点111()P x y ,,点222()P x y ,是一次函数y = 4x +2图象上的两个点. 若12x x <,则1y ______2y (填“>”或“<”)15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是AB 的中点,连结EO .若EO =2,则CD 的长为______ .16.若m 是方程240x x +-=的根,则代数式3255m m +-的值是______ .17.写出一个同时满足下列两个条件的一元二次方程______ . (1)二次项系数是1 (2)方程的两个实数根异号18.印度数学家什迦罗(1141年-1225年)曾提出过“荷花问题”:平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边; 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅? 如图所示:荷花茎与湖面的交点为O ,点O 距荷花的底端A 的距离为0.5尺; 被强风吹一边后,荷花底端与湖面交于点B ,点B 到点O 的距离为2尺,则湖水深度OC 的长是 尺.三、解答题(本题共11道小题,第19小题4分,其余各题每小题5分,共54分) 19. 已知一次函数的图象与直线y =-3x +1平行,且经过点A (1,2),求这个一次函数的表达式.20.解方程:2410x x +-=.21.某年级进行“成语大会”模拟测试,并对测试成绩(x 分)进行了分组整理,各分数段填空:(1)这个年级共有 名学生;(2)成绩在 分数段的人数最多,占全年级总人数的比值是 ; (3)成绩在60分以上(含60分)为及格,这次测试全年级的及格率是 .22.已知关于x 的一元二次方程mx 2-(2m +1)x +(m +2)=0有两个不相等的实数根,求m 的取值范围.23.已知一次函数的图象经过点(-1, -5),且与正比例函数y= 12 x 的图象相交于点(2,a ).求这个一次函数的图象与y 轴的交点坐标.24.已知:如图,在□ABCD 中,点E ,F 分别在BC ,AD 上,且BE =FD ,求证:AE =CF .25.已知:如图,在菱形ABCD 中,∠BCD =2∠ABC ,AC =4,求菱形ABCD 的周长.26.已知:如图,矩形ABCD ,E 是AB 上一点,连接DE ,使DE =AB ,过C 作CF ⊥DE 于点F.求证:CF =CB.27.已知:如图,在正方形ABCD 中,M ,N 分别是边AD ,CD 上的点,且∠MBN =45。

2015-2016学年北师大版八年级下册期末数学试卷及答案

2015-2016学年北师大版八年级下册期末数学试卷及答案

2015-2016学年八年级下学期期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分。

下列各小题均有四个选项,其中只有一个是正确的。

1.(3分)下列图形是中心对称图形的是()A.B.C D.2.(3分)下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x+2x+1=x(x+2)+1C.a2﹣4b2=(a+2b)(a﹣2b)D.a(x﹣y)=ax﹣ay3.(3分)若分式的值不为0,则x的值为()A.﹣1 B.0C. 2 D.不确定4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC⊥BD6.(3分)过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是()A.八边形B.九边形C.十边形D.十一边形7.(3分)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°8.(3分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣a,b﹣2)B.(﹣a,b+2)C.(﹣a+2,﹣b)D.(﹣a+2,b+2)二、填空题:本题共7小题,每小题3分,共21分。

9.(3分)化简=.10.(3分)分式的值为零时,实数a、b满足条件.11.(3分)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.12.(3分)已知y1=﹣x+3,y2=3x﹣4,当x时,y1<y2.13.(3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=.14.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=.15.(3分)有一张一个角为30°,最小变长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.三、解答题:本大题共7小题,满分55分。

2015年八下期末数学测试题及答案

八年级下册数学期末试卷注意事项:1.本试卷满分150分,考试用时120分钟.2.答题前,考生务必将班级、姓名、考试号等填写在答题卷相应的位置上. 3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效. 一、选择题(每小题3分,共24分.每题有且只有一个答案正确) 1.若53=b a ,则b b a +的值是 ( ▲ )A .53B .58C .85D .232. 如图,天平右盘中的每个砝码的质量都是1克, 则物体A 的质量m 克的取值范围表示在数轴上 为 ( ▲ )A. B. C. D.3. 下列命题中,有几个真命题 ( ▲ ) ①同位角相等 ②直角三角形的两个锐角互余 ③平行四边形的对角线互相平分且相等 ④对顶角相等A. 1个 B . 2个 C. 3个 D. 4个 4. 若反比例函数xm y 2+=的图象在各个象限内y 随着x 的增大而增大,则m 的取值范围是( ▲ ) A .2-<mB .2->mC .2<mD .2>m5. 在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,从盒子里任意摸出1个球,摸到红球的概率是 ( ▲ )A.92 B. 94 C. 32 D. 31 6. 如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是 ( ▲ )A .B .C .D .ABC7. 如果不等式组⎩⎨⎧≥<m x x 5有解,那么m 的取值范围是 ( ▲ ) A .5>m B. 5<m C.5≥m D. 5≤m8. 如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,点P 在AD 边上以每秒l cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返..运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 有多少次平行于AB ? ( ▲ )A .1B .2C .3D .4二、填空题(每小题3分,共30分)将答案填写在题中横线上. 9.当m = ▲ 时,分式22m m --的值为零. 10. 命题“全等三角形的面积相等”的逆命题是 ▲11.在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm ,则两地的实际距离 ▲ km .12. 如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割(AC > BC ).已知AB =10cm ,则AC 的长约为 ▲ cm .(结果精确到0.1cm )13. 扬州市义务教育学业质量监测实施方案如下:3、4、5年级在语文、数学、英语3个科目中各抽1个科目进行测试,各年级测试科目不同.对于4年级学生,抽到数学科目的概率为 ▲ .14. 如图,使△AOB ∽△COD ,则还需添加一个条件是: ▲ (写一个即可)ODCBA第12题图 第14题图15. 若关于x 的分式方程xm x x -=--525无解,则m 的值为____▲_____16. 如图,△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB •边上的C ′处,并且C ′D ∥BC ,则CD 的长是 ▲17. 某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个.设A 型包装箱每个可以装x 件文具,根据题意列方程为 ▲ .18. 如图,双曲线2(0)y x x=>经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC的面积是 ▲三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤. 19.(本题满分8分)(1)解不等式,并把解集表示在数轴上 (2)解分式方程 242x x +>-211x x x-=-20.(本题满分8分)先化简:1)111(2-÷-+x xx ,再选择一个恰当的x 值代入并求值. 21.(本题满分8分)如图,已知D E 、分别是△ABC 的边AC AB 、上的点,若55A ∠=︒,85C ∠=︒, 40ADE ∠=︒.(1)请说明:△ADE ∽△ABC ;(2)若8,6,10AD AE BE ===,求AC 的长.22.(本题满分8分)如图,点D ,E 在△ABC 的边BC 上, 连接AD ,AE . ①AB =AC ;②AD =AE ;③BD =CE .以 此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ;(2)请选择一个真命题进行证明(先写出所选命题,然后证明).ED CB AEDCBA第16题图 第18题图23.(本题满分10分)如图,在单位长度为1的方格 纸中.ABC △如图所示:(1)请在方格纸上建立平面直角坐标系,使(0,0)A ,(4,4)C -并求出B 点坐标( , ); (2)以点A 为位似中心,位似比为1:2,在第一,二象限内将ABC △缩小,画出缩小后的位似图形A B C '''△; (3)计算A B C '''△的面积S24.(本题满分10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌.(1)用树状图或列表的方法计算两次摸取纸牌上数字之积为奇数的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之积为奇数,则甲胜;如果两次摸出纸牌上数字之积为偶数,则乙胜。

北京市东城区2015-2016学年八年级数学下学期期末考试试题 京改版

北京市东城区2015-2016学年八年级数学下学期期末考试试题本试卷共6 页,共100分。

考试时长100分钟,考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共30分,每小题3分) 下面各题均有四个选项,其中只有一个..是符合题意的 1.下列四组线段中,可以构成直角三角形的是A.1B. 2,3,4C. 1,2,3D.4,5,62.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示,在地面上取一点C ,使点C 均可直接到达A ,B 两点,测量找到AC 和BC 的中点D ,E ,测得DE 的长为1100m ,则隧道AB 的长度为A .3300mB .2200mC .1100mD .550m3.平行四边形ABCD 中,有两个内角的比为1:2,则这个平行四边形中较小的内角是A.45 B.60 C. 90 D.1204.在 “我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的A. 中位数B. 众数C.平均数D. 方差5. 一次函数112y x =-+的图像不.经过的象限是A .第一象限 B.第二象限 C.第三象限 D.第四象限6.已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为 A .2 B .3 C .4 D .87.已知菱形的两条对角线的长分别是6和8,则菱形的周长是 A. 36 B. 30 C. 24 D. 208.若关于x 的一元二次方程2(5)410a x x ---=(a -5)有实数根,则a 的取值范围是 A .1a ≥ B .5a ≠ C .a >1且 5a ≠ D .1a ≥且5a ≠9.如图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式24x ax ≥+的解集为 A .32x ≥B .3x ≤C . 32x ≤ D .3x ≥10.如图,两个大小不同的正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,两个正方形重叠部分的面积为y ,则 下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题:(本题共24分,每小题3分)11.写出一个图象经过一,三象限的正比例函数(0)y kx k =≠的解析式 . 12. 甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”)13.方程220x x -=的根是 .14.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB 、BC 、CA 的中点,若CD =6cm ,则EF = cm .图③图②图①(第15题15.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面 1 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x 尺,根据题意,可列方程为 .16. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为 (﹣3,0),(2,0),点D 在y 轴上,则点C 的坐标是 .(第16题) (第17题)如图,沿折痕AE 折叠矩形ABCD 的一边,使点D 落在BC 边上一点F 处.若AB =8,且⊿ABF 的面积为24,则EC 的长为 . 18.小明的折叠方法如下:老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是_________________________. 三、解方程:(本题共8分,每小题4分)19.223+10x x -=20. 0182=+-x x .(用配方法)四、解答题:(本题共18分,21-22每小题4分,23-24每小题5分)21.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.22.列方程解应用题某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元,求2013年至2015年该地区投入教育经费的年平均增长率.23.如图,E 、F 分别是□ABCD 的边BC ,AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10,∠BAC =90°,且四边形AECF 是菱形,求BE 的长.24.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2).AB F D C(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.五、解答题:(本大题共20分,25-26题每题6分,27题8分)25.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD 与边长为3的正方形AEFG 按图1位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上. (1)小明发现DG BE =且DG BE ⊥,请你给出证明.(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时△ADG 的面积.26. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21-y ax x =,求这个函数的表达式;(3) 将(2)中所得的函数的图象在直线a =2的左侧部分沿直线a =2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象直接写出:当关于a 的函数y =2a +b 的图象与此图象有两个公共点时,b 的取值范围是 .27.如图1,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,AB=2,直线MN :y=x ﹣4沿x 轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被矩形ABCD 的边截得的线段长度为m ,平移时间为t ,m 与t 的函数图象如图2所示. (1)点A 的坐标为 ,矩形ABCD 的面积为 ; (2)求a ,b 的值;(3)在平移过程中,求直线MN 扫过矩形ABCD 的面积S 与t 的函数关系式(其中3t b ≤≤)东城区2015--2016学年第二学期期末教学统一检测 初二数学参考答案 2016.711.答案不唯一,2y x =等 12.甲 13.120,2x x == 14.6 15. ()22251x x +=+ 16. (5,4) 17. 3 18. CD 和EF 是四边形DECF 对角线,而CD 和EF 互相垂直且平分(答案不唯一). 三、解答题:(本题共8分,每小题4分)2221219.3+102,3,14(3)421=1>013122211,.42x x a b c b ac x x x -===-=∆=-=--⨯⨯±==⨯==解:2分分分20.解:182-=-x x . …………………………………………………………1分1611682+-=+-x x .15)4(2=-x . ………………………………………………………2分 154±=-x .∴1541+=x ,1542-=x . ……………………………………4分四、解答题:(本题共18分,21-22每小题4分,23-24每小题5分) 21. (1)平均数26件,中位数是24件,众数是24件。

八年级(下用)期末考试数学试卷(含答案)

2015年新北师大版八年级下数学期末考试试卷(2):把下列各式分解因式1、222xy x y -- 2、232a a a -+-参考答案一、 选择题(每小题3分,共30分)1、A ;2、B ;3、C ;4、C ;5、C ;6、A ;7、D ;8、B ;9、B ;10、D .二、填空题(每小题3分,共18分)11、2-;12、20o ;13、12 ;14、18;15、-3;16、(9,6),(-1,6),(7,0). 三、解答题(7+7+8+8+10+10+10+12) 17、解:(1)解①得2x <, ……2分解②得4x ≥-, ……4分所以不等式组的解集为:42x -≤<, ……6分 其解集在数轴上表示出来略. ……7分18、解:)2(311---=x x …………2分 6311+--=x x521+-=x …………4分 42=x2=x …………5分经检验2=x 是原方程的增根…………6分 ∴原方程无解…………7分19、解:(1)以B 为圆心,适当长为半径画弧,交AB BC ,于M ,N 两点.…1分 分别以M N ,为圆心,大于12MN 长为半径画弧.两弧相交于点P .……2分 过B P ,作射线BF 交AC 于F .……4分(注:没有作出射线BF 与AC 的交点并表明、标明F 扣1分). (2)证明:AD BC ∥,DAC C ∴=∠∠. 又BF 平分ABC ∠, ∴∠ABC =2∠FBC , ∵2ABC ADG =∠∠, D BFC ∴=∠∠,……7分 又AD BC = ,ADE CBF ∴△≌△, DE BF ∴=.……8分20、解:原式=22(2)4(2)x x x x x --÷-……2分 =2(2)(2)(2)(2)x xx x x x -∙-+-……4分 =12x +……6分∵64<<x -,且x 为整数,∴若使分式有意义,x 只能取-3,-1和1.当x =1时,原式=13. ……8分 21、证法一:∵ 四边形ABCD 是平行四边形, ∴ AD =BC ,AB =CD ,∠A =∠C ,∵ AM =CN ,∴ △ABM ≌△CDN (SAS ).……5分 ∴ BM =DN .∵ AD -AM =BC -CN ,即MD =NB ,∴ 四边形MBND 是平行四边形(两组对边分别相等的四边形是平行四边形)……10分 证法二:∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,AD =BC ,∵ AM =CN , ∴ AD -AM =BC -CN , ∴ MD =NB ,∴ 四边形MBND 是平行四边形,(一组对边平行且相等的四边形是平行四边形)(2)解:假设存在时间t 秒,使△BDP 和△CPQ 全等, 则BP =2t ,BD =5,CP =8-2t ,CQ =2.5t , ∵△BDP 和△CPQ 全等,∠B =∠C ,∴2825 2.5t t t =-⎧⎨=⎩ 或2 2.5582t t t =⎧⎨=-⎩(此方程组无解),解得:t =2,∴存在时刻t =2秒时,△BDP 和△CPQ 全等,……8分 此时BP =4,BD =5,CP =8-4=4=BP ,CQ =5=BD , 在△BDP 和△CQP 中BD CQ B C BP CP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△CQP (SAS ).……10分23、解:(1)依题意得: 1(2100800200)1100y x x =--=,2(24001100100)20000120020000y x x =---=-,……4分(2)设该月生产甲种塑料m 吨,则乙种塑料(700-m )吨,总利润为W 元,依题意得: W=1100m +1200(700-m )-20000=-100m +820000. ∵400700400m m ≤⎧⎨≤⎩-解得:300≤m≤400.……7分∵-100<0,∴W随着m的增大而减小,∴当m=300时,W最大=790000(元).此时,700-m=400(吨).因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.……10分一、选择题:1. 如果(1)1m x m +>+的解集为1x <,则m 的取值范围是( ) A. 0m <B. 1m <-C. 1m >-D. m 是任意实数BC .A. 4个B. 5个C. 3个D. 2个(第3题) (第7题)(第6题)4、下列运动中,是平移的是( )A.开门时,门的移动 B.走路时手臂的摆动 C.移动电脑的鼠标时,显示屏上鼠标指针的移动 D .移动书的某一页时,这一页上的某个图形的移动5. 直角三角形中两锐角平分线所交成的角的度数是( ) A. 45°B. 135°C. 45°或135°D. 都不对6、如图,所给的图案由△ABC 绕点O 顺时针旋转多少度前后的图形组成的 ( ). A .45°、90°、135° B . 90°、135°、180°C .45°、90°、135°、180°、225°D .45°、135°、225°、270°7、若x 2+(2m +2)x +16是完全平方式,则m 的值为 ( )A .m =3B .m =5C .m =-3或m =5;D .m =3或m =-5 8. 如图8,已知AB =AC ,∠A =36°,AC 的垂直平分线MN 交AB 于D ,AC 于M ,以下结论:①△BCD 是等腰三角形;②射线CD 是∠ACB 的角平分线;③△BCD 的周长C △BCD =AB +BC ;④△ADM ≌△BCD 。

2015年新北师大版八年级下数学期末考试试卷(有答案)

2015 年新北师大版八年级下数学期末考试一试卷 ( 有答案 )2015 年新北师大版八年级下数学期末考试一试卷234567参照答案一、 (每小 3 分,共 30 分)1、A ;2、B ;3、C ;4、C ;5、C ;6、A ;7、D ;8、B ;9、B ;10、D . 二、填空 (每小 3 分,共 18 分)11、 2; 12、20o;13、12 ;14、 18;15、-3;16、( 9,6),(- 1,6),( 7,0).三、解答 ( 7+7+8+8+ 10+ 10+10+12) 17、解:(1)解①得 x 2 , ⋯⋯ 2 分解②得 x4 ,⋯⋯ 4 分所以不等式 的解集 :4 x 2 ,⋯⋯ 6 分其解集在数 上表示出来略.⋯⋯7分18、解: 1x 1 3(x 2) ⋯⋯⋯⋯ 2 分1 x 1 3x 6 1 2x 5 ⋯⋯⋯⋯ 4 分 2x 4x 2⋯⋯⋯⋯ 5分 x 2 是原方程的增根⋯⋯⋯⋯ 6 分原方程无解⋯⋯⋯⋯ 7 分19、解:( 1)以 B 心,适合 半径画弧,交AB ,BC 于 M , N 两点.⋯ 1 分分 以 M ,N 心,大于 1MN 半径画弧.两弧订交于点P .⋯⋯ 2 分2B ,P 作射 BF 交 AC 于 F .⋯⋯4 分 (注:没有作出射 BF 与 AC 的交点并表示、 明 F 扣 1 分).( 2) 明: Q AD ∥ BC ,∠DAC ∠C .又Q BF 均分 ∠ABC , ∴∠ ABC = 2∠FBC , ∵∠ABC 2∠ADG ,∠D ∠BFC ,⋯⋯ 7 分又Q AD BC ,△ ADE ≌△ CBF , DE BF .⋯⋯8分2x 2⋯⋯2 分20、解:原式 =(x 2)4x(x 2)x2=( x 2)xx(x 2) ?( x 2)( x 2)⋯⋯ 4 分8=和 1.1⋯⋯ 6分x 2∵4< x< 6 ,且x整数,∴若使分式存心, x 只好取-3,-1当 x =1,原式=1.⋯⋯8分321、法一:∵四形ABCD是平行四形,∴ AD =BC,AB=CD,∠A=∠ C,∵ AM =CN,∴ △ ABM ≌△ CDN(SAS).⋯⋯5分∴ BM =DN.∵ AD -AM =BC-CN,即 MD =NB,∴四形 MBND 是平行四形(两分相等的四形是平行四形)⋯⋯ 10 分法二:∵四形ABCD是平行四形,∴AD∥BC,AD =BC,∵AM =CN,∴ AD -AM = BC-CN,∴MD =NB,∴四形 MBND 是平行四形,(一平行且相等的四形是平行四形)22、解: (1) △BPD 与△ CQP 是全等,⋯⋯ 1 分原因是:当 t= 1 秒 BP=CQ=3,CP=8-3 =5,⋯⋯ 3 分∵D AB 中点,∴BD=1AC=5=CP,2∵AB= AC,∴∠ B=∠C,在△ BDP 和△ CPQ 中BD CPB C BPCQ∴△ BDP ≌△ CPQ( SAS) .⋯⋯ 5 分9(2)解:假存在 t 秒,使△ BDP 和△ CPQ 全等,BP=2t,BD =5, CP= 8-2 t,CQ=2.5 t,∵△ BDP 和△ CPQ 全等,∠ B=∠ C,∴ 2t8 2t 或2t82.5t( 此方程无解 ) ,5 2.5t52t解得: t=2,∴存在刻 t= 2 秒,△ BDP 和△ CPQ 全等,⋯⋯ 8 分此 BP=4,BD=5,CP=8-4 =4=BP,CQ=5=BD ,在△BDP 和△ CQP 中BD CQB C ,BP CP∴△ BDP ≌△ CQP( SAS) .⋯⋯ 10 分23、解:( 1)依意得:y1(2100800 200) x 1100 x ,y2 (2400 1100100)x200001200x 20000,⋯⋯4分(2)月生甲种塑料m吨,乙种塑料( 700-m)吨,利 W 元,依意得:W=1100 m +1200( 700-m)- 20000=- 100m +820000.∵m 400700- m400解得: 300≤m≤400.⋯⋯7分∵- 100<0,∴ W 跟着m的增大而减小,∴当m =300,W最大=790000(元).此, 700-m =400(吨).所以,生甲、乙塑料分300 吨和 400 吨利最大,最大利790000元.⋯⋯ 10 分102015年新北师大版八年级下数学期末考试试卷(有答案)24、⋯⋯2分⋯⋯4分⋯⋯8分⋯⋯12分11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.某市在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽取获得的50个家庭去年的月人均用水量(单位:吨)的调查数据进行研究了如下整理:
频数分布表
分组
频数
频率
11
0.22
19
0.38
13
0.26
8.0以上
2
0.04
合计
50
1.00
(1)请把上面的频数分布表补充完整;
(2)请把频数分布直方图补充完整;
点 ( 是自然数)的坐标为________.
三、解答题(本题共30分,14题10分,15—18题每小题5分)
14.用适当方法解下列方程(本题共10分,每小题5分)
(1) ;
(2) .
15.如图,在□ABCD中,点 分别在 上, .求证:
16.如图,直线 经过点 .
(1)求k的值;
(2)求直线与 轴, 轴的交点坐标.
24.已知:关于 的一元二次方程 有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为正整数,设方程的两个整数根分别为p,q(p<q),求点 的坐标;
(3)在(2)的条件下,分别在y轴和直线y=x上取点M、N,使 的周长最小,求 的周长.
25.如图,矩形ABCD中,点E是边AB的中点,点F、G是分别边AD、BC上任意一点,且AE=BG, .
1.在平面直角坐标系中,点P 在
A.第一象限. B.第二象限. C.第三象限. D.第四象限.
2.下列图形中,既是轴对称图形又是中心对称图形的是
A BCD
3.方程 的根是
A. B. C. , D. ,
4.如果一个多边形的内角和与外角和相等,那么这个多边形是
A.四边形B.五边形C.六边形D.七边形
5.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
(1)如图,若AE=AF,则EF与EG的数量关系为, ;
(2)在(1)的条件下,若点P为边BC上一点,连接EP,将线段EP以点E为旋转中心,逆时针旋转90°,得到线段EQ,连接FQ,在图2中补全图形,请猜想AF与BG的数量关系,并证明你的结论;
(3)在(2)的条件下,若 , ,则FQ=(用含a的代数式表示).
(3)为了鼓励节约用水,要确定一个月用水量的标准,超出这个标准的部分按1.4倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少合适?
22.如图,□ABCD中,AE⊥BD于点E,CF⊥BD于点F.
(1)求证:BF=DE;
(2)如果 , ,BC=2,求BD的长.
五、解答题(本题共22分,第23题6分,第24题8分,第25题8分)
(1)点 的坐标是;
(2)在(1)的条件下,画出 关于原点 对称的 ,点 坐标是;
(3)在(1)的条件下,平移 ,使点 移到点 ,画出平移后的 ,点 的坐标是,点 的坐标是.
20.已知:直线 经过点 和 .
(1)求直线 的解析式;
(2)如果直线 ,与x轴交于点C,在y轴上有一点P,使得PA=AC,请直接写出点P坐标.
2014-2015年第二学期小学八年级数学期末试卷(北京课改版)
亲爱的同学,勤奋好学的你很想显露自己的数学才华吧!老师为你提供了展示自我的平台,请你在规定时间内完成下面的试卷,老师会给你作出恰当的评价!




1.试卷分为试题和答题卡两部分,共8页,所有试题均在答题卡上作答。
满分120分,考试时间100分钟。
10.点 关于x轴对称点的坐标为.
11.如图,□ABCD中,DE平分∠ADC交边BC于点E,AD=9,AB=6,则BE=.
12.过点(0, )的直线不过第二象限,写出一个满足条件的一次函数解析式___________.
13.如图,在平面直角坐标系中,一动点A从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点 ,则点 的坐标为_____,点 的坐标为_______,
选手甲Leabharlann 乙丙丁平均数(环)
9.2
9.2
9.2
9.2
方差(环2)
0.35
0.15
0.25
0.27
则这四人中成绩发挥最稳定的是
A.甲B.乙C.丙D.丁
6.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,
如果△ABC的周长为20,那么△DEF的周长是
A.5B.10C.15D.20
7.把方程 配方后的结果为
17.关于 的一元二次方程 有两个不相等实数根.
(1)求 的取值范围;
(2)如果 是方程的一个根,求m的值及方程另一个根.
18.列方程(组)解应用题:
某产粮大户今年产粮20吨,计划后年产粮达到28.8吨,若每年粮食增产的百分率相同,求平均每年增产的百分率.
四、解答题(本题共24分,每小题6分)
19.如图,在正方形网格中, 的三个顶点都在格点上,点 的坐标分别为 、 ,结合所给的平面直角坐标系解答下列问题:
2.答题前,在答题卡上考生务必将自己的考试编号、姓名填写清楚。
3.把选择题的所选选项填涂在答题卡上;作图题用2B铅笔。
4.修改时,用塑料橡皮擦干净,不得使用涂改液。请保持卡面清洁,不要折叠。
5.考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本题共24分,每小题3分)
下面各题均有四个选项,其中只有一个是符合题意的.
A. B. C. D.
8.如图是矩形ABCD剪去一角所成图形,AB=6cm,BC=8cm,AE=5cm,CF=2cm.一动点P以1cm/s的速度沿折线AE—EF—FC运动,设点P运动的时间为x(s),△ABP的面积为y(cm2),则y与x之间的函数图象大致为
二、填空题(本题共20分,每小题4分)
9.函数 中自变量x的取值范围是________.
23.我们把能够平分一个图形面积的直线叫“好线”,如图1.
问题情境:如图2,M是圆O内的一定点,请在图2中作出两条“好线”(要求其中一条“好线”必须过点M),使它们将圆O的面积四等分.
小明的思路是:如图3,过点M、O画一条“好线”,过O作OM的垂线,即为另一条“好线”.所以这两条“好线”将的圆O的面积四等分.
问题迁移:(1)请在图4中作出两条“好线”,使它们将□ABCD的面积四等分;
(2)如图5,M是正方形 内一定点,请在图5中作出两条“好线”(要求其中一条“好线”必须过点 ),使它们将正方形 的面积四等分;
(3)如图6,在四边形 中, , ,点 是 的中点,点 是边 一点,请作出“好线” 将四边形 的面积分成相等的两部分.
相关文档
最新文档