THQWD.温度传感器实验doc

合集下载

温度传感器实训报告

温度传感器实训报告

温度传感器实训报告一、引言温度传感器是一种广泛应用于工业自动化、家用电器、医疗设备等领域的重要传感器。

它能够将物体的温度信息转化为电信号输出,实现温度的检测和控制。

本篇实训报告将介绍温度传感器的原理、分类、工作特性以及实际应用。

二、原理温度传感器根据不同的原理可以分为热电偶、热敏电阻、半导体温度传感器等多种类型。

其中,热电偶是利用两种不同金属的热电效应产生电势差来测量温度的传感器;热敏电阻则是利用电阻与温度呈线性关系的特性来测量温度的传感器;而半导体温度传感器则是利用半导体材料的电阻与温度呈非线性关系的特性来测量温度的传感器。

三、分类根据测量范围的不同,温度传感器可以分为低温传感器、常温传感器和高温传感器。

常见的低温传感器有气温传感器、液温传感器等;常见的常温传感器有室温传感器、环境温度传感器等;而高温传感器通常用于测量高温环境下的物体温度,如炉温传感器、高温液体传感器等。

四、工作特性温度传感器的工作特性主要包括测量范围、精度、响应时间、线性度和稳定性等。

测量范围是指传感器可以测量的温度范围,精度是指传感器测量结果与真实值之间的偏差,响应时间是指传感器从接收到温度变化信号到输出结果稳定的时间,线性度是指传感器输出与输入温度之间的线性关系程度,稳定性是指传感器在长时间使用后输出结果的稳定性。

五、实际应用温度传感器在工业自动化领域的应用非常广泛。

例如,在石油化工领域,温度传感器可以用来测量管道中液体的温度,以确保生产过程的安全性和稳定性;在食品加工领域,温度传感器可以用来监测食品的加热过程,保证食品的质量和卫生;在医疗设备领域,温度传感器可以用来测量人体温度,帮助医生判断患者的健康状况。

六、实训过程在温度传感器的实训过程中,首先需要了解传感器的工作原理和分类,然后根据实际需求选择合适的传感器型号,接着进行电路设计和焊接工作,最后通过测试仪器对传感器的性能进行测试和验证。

七、实训心得通过本次温度传感器的实训,我深入了解了温度传感器的原理、分类和工作特性,掌握了温度传感器的选型、设计和测试方法。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告实验报告:温度传感器实验一、实验目的本实验旨在探究温度传感器的工作原理和特性,通过实际操作来了解温度传感器在温度测量中的应用。

二、实验原理温度传感器是一种将温度变化转化为可测量电信号的装置。

根据测量原理,温度传感器可分为多种类型,如热电偶、热敏电阻、红外线温度传感器等。

本实验中,我们将使用热电偶温度传感器进行实验。

热电偶温度传感器基于热电效应原理,将温度变化转化为热电势差信号。

热电偶由两种不同材料的导体组成,当两种导体连接在一起时,如果它们之间存在温差,就会在电路中产生电动势。

当温度发生变化时,热电势也会相应变化,从而实现对温度的测量。

三、实验步骤1.准备实验器材(1)热电偶温度传感器(2)数据采集器(3)恒温水槽(4)计时器(5)实验用的不同温度的水2.进行实验操作(1)将热电偶温度传感器连接到数据采集器上。

(2)将恒温水槽中的水加热至一定温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(3)将恒温水槽中的水降温至另一不同温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(4)重复步骤(3),直至记录下不同温度下的数据。

(5)将实验数据整理成表格,并进行数据分析。

四、实验数据分析实验数据如下表所示:根据热电偶温度传感器的测量原理,我们可以计算出每一组数据的热电势差值ΔT。

将所有热电势差值进行平均,得到平均热电势差值ΔTave。

根据公式T = ΔT / ΔTave × Tref,我们可以计算出实验测量的温度值T。

其中,Tref为参考温度值,本实验中取为25℃。

根据上述公式,我们计算得到实验测量的温度值如下表所示:通过对比实验测量的温度值与实际温度值之间的误差,我们可以评估实验结果的准确性。

同时,我们还可以分析实验数据的变化趋势,例如在不同温度范围内热电势的变化趋势等。

五、实验结论通过本次实验,我们了解了温度传感器的原理和特性,并掌握了热电偶温度传感器的使用方法。

温度传感器实训报告

温度传感器实训报告

温度传感器实训报告一、引言温度传感器是一种用来测量环境温度的设备,广泛应用于工业自动化、气象、医疗、农业等领域。

本实训旨在通过使用温度传感器,学习其工作原理和应用技巧,并实现温度测量和数据显示功能。

二、实训目的1. 了解温度传感器的基本原理和分类;2. 掌握温度传感器的接线方法和使用技巧;3. 学习如何使用开发板进行温度传感器的数据采集和处理;4. 实现温度传感器数据的显示和存储。

三、实训内容1. 温度传感器的原理与分类温度传感器根据测量原理的不同,可以分为接触式和非接触式两种类型。

接触式温度传感器通过与待测物体接触,通过物体的导热性质来测量温度;非接触式温度传感器则是通过测量物体辐射的红外线来推算温度。

2. 温度传感器的接线和使用温度传感器一般有3个引脚,分别是VCC、GND和OUT。

其中,VCC和GND分别用于连接电源正负极,OUT则是用来输出温度信号。

在实际接线时,需要根据具体传感器的引脚定义进行连接。

3. 温度传感器的数据采集和处理在实训中,我们将使用开发板进行温度传感器数据的采集和处理。

首先,将温度传感器与开发板连接好,并通过编程设置相应的引脚模式和通信协议。

然后,通过指令或程序读取传感器输出的模拟信号,并进行模数转换得到数字温度值。

最后,根据需要可以对数据进行进一步的处理,如单位转换、数据滤波等。

4. 温度传感器数据的显示和存储为了实现温度数据的显示和存储,我们可以通过连接显示屏或使用串口通信等方式将数据输出到外部设备。

同时,可以将数据存储到开发板的存储器中,或通过网络传输到云平台进行进一步的分析和处理。

四、实训结果通过本次实训,我们成功实现了温度传感器的数据采集和处理,并将数据显示在了外部设备上。

同时,我们还实现了数据的存储和传输功能,方便后续的数据分析和应用。

五、实训总结本次实训使我们对温度传感器有了更深入的了解,并掌握了其使用方法和技巧。

通过实际操作,我们不仅提高了对传感器的实际应用能力,也加深了对传感器原理和数据处理的理解。

传感器实验实验报告

传感器实验实验报告

一、实验目的1. 理解传感器的基本原理和分类。

2. 掌握传感器的应用及其在各类工程领域的实际意义。

3. 通过实验操作,验证传感器的工作性能,并分析其优缺点。

4. 学习传感器测试和数据处理的方法。

二、实验器材1. 传感器:温度传感器、压力传感器、光电传感器、霍尔传感器等。

2. 测试仪器:示波器、万用表、信号发生器、数据采集器等。

3. 实验台:传感器实验台、电路连接线、固定装置等。

三、实验内容1. 温度传感器实验(1)实验目的:验证温度传感器的响应特性,分析其线性度、灵敏度等参数。

(2)实验步骤:a. 将温度传感器固定在实验台上,连接好电路。

b. 使用信号发生器输出不同温度的信号,观察温度传感器的输出响应。

c. 记录温度传感器在不同温度下的输出电压,绘制输出电压与温度的关系曲线。

d. 分析温度传感器的线性度、灵敏度等参数。

2. 压力传感器实验(1)实验目的:验证压力传感器的响应特性,分析其非线性度、灵敏度等参数。

(2)实验步骤:a. 将压力传感器固定在实验台上,连接好电路。

b. 使用压力泵对压力传感器施加不同压力,观察压力传感器的输出响应。

c. 记录压力传感器在不同压力下的输出电压,绘制输出电压与压力的关系曲线。

d. 分析压力传感器的非线性度、灵敏度等参数。

3. 光电传感器实验(1)实验目的:验证光电传感器的响应特性,分析其灵敏度、响应时间等参数。

(2)实验步骤:a. 将光电传感器固定在实验台上,连接好电路。

b. 使用光强控制器调节光电传感器的光照强度,观察光电传感器的输出响应。

c. 记录光电传感器在不同光照强度下的输出电压,绘制输出电压与光照强度的关系曲线。

d. 分析光电传感器的灵敏度、响应时间等参数。

4. 霍尔传感器实验(1)实验目的:验证霍尔传感器的响应特性,分析其线性度、灵敏度等参数。

(2)实验步骤:a. 将霍尔传感器固定在实验台上,连接好电路。

b. 使用磁场发生器产生不同磁感应强度的磁场,观察霍尔传感器的输出响应。

温度传感器特性研究实验报告

温度传感器特性研究实验报告

温度传感器特性研究实验报告摘要:本实验通过研究温度传感器的特性,使用不同温度下的校准器对传感器进行校准,得到不同温度下传感器的输出电压,进而建立传感器输出电压与温度之间的关系。

实验结果表明,在一定范围内,温度传感器的输出电压与温度呈线性关系,并且可以通过简单的线性拟合方程进行温度的测量。

1.引言2.实验目的-研究温度传感器的特性,了解其输出电压与温度之间的关系。

-通过实验校准温度传感器,获得传感器的输出电压与温度的关系方程。

3.实验装置与方法-实验装置:温度传感器、温度校准器、数字万用表、温控槽等。

-实验步骤:1.将温度传感器和校准器连接起来,校准器设置为不同的温度。

2.使用数字万用表测量传感器的输出电压。

3.记录不同温度下传感器的输出电压。

4.将实验数据进行整理和分析,得出传感器的特性。

4.实验结果与分析通过实验我们得到了不同温度下传感器的输出电压,如下表所示:温度(℃)输出电压(V)-100.200.5100.8201.0301.3401.6根据实验数据,我们可以得到传感器的输出电压与温度之间的关系。

通过绘制散点图,并进行线性拟合,我们得到下面的结果:传感器输出电压(V)=0.05*温度(℃)+0.5可以发现,传感器的输出电压与温度之间呈线性关系,且经过简单的线性拟合,我们可以得到传感器输出电压与温度之间的关系方程。

这为后续的温度测量提供了便利。

5.总结与展望本实验通过研究温度传感器的特性,得到了传感器输出电压与温度之间的关系。

实验结果表明,温度传感器在一定范围内可以通过线性拟合得到与温度相关的输出电压方程。

这为后续的温度测量提供了便利。

未来的研究可以进一步探索不同类型的温度传感器的特性,并进行更加精确的测量与分析。

大学物理实验温度传感器实验报告

大学物理实验温度传感器实验报告

大学物理实验_温度传感器实验报告大学物理实验报告:温度传感器实验一、实验目的1.学习和了解温度传感器的原理和应用。

2.掌握实验方法,提高实验技能。

3.探究温度变化对传感器输出的影响。

二、实验原理温度传感器是一种将温度变化转换为电信号的装置。

根据热敏电阻的阻值随温度变化的特性,当温度发生变化时,热敏电阻的阻值会相应地改变,从而输出与温度成比例的电信号。

常见的温度传感器有热电偶、热敏电阻等。

本实验采用热敏电阻作为温度传感器。

三、实验步骤1.准备实验器材:热敏电阻、数据采集器、恒温水槽、温度计、导线若干。

2.将热敏电阻置于恒温水槽中,连接导线至数据采集器。

3.将数据采集器与计算机连接,打开数据采集软件。

4.设置实验参数:采样频率、采样点数等。

5.将恒温水槽加热至预设温度,观察并记录实验数据。

6.改变恒温水槽的温度,重复步骤5。

7.对实验数据进行处理和分析。

四、实验结果与分析1.实验数据记录:在实验过程中,记录不同温度下的热敏电阻阻值和数据采集器的输出电压。

如下表所示:温度与数据采集器输出电压的关系图。

结果表明,随着温度的升高,热敏电阻阻值逐渐减小,数据采集器的输出电压逐渐增大。

这符合热敏电阻的特性。

3.误差分析:在实验过程中,可能存在以下误差来源:恒温水槽的温度波动、热敏电阻的灵敏度差异、导线连接不良等。

为了减小误差,可以采取以下措施:使用高精度温度计、提高导线连接的稳定性、多次测量取平均值等。

4.思考题:在本次实验中,我们采用了简单的数据采集器和热敏电阻进行温度测量。

在实际应用中,还可以通过其他方式进行温度测量,如采用单片机结合热敏电阻实现智能温度测量。

请思考:如何将热敏电阻与单片机连接?如何通过程序控制温度测量?如何实现温度数据的实时显示或传输?在实际应用中,还需要考虑哪些因素会影响测量精度?如何减小误差?五、结论与总结本实验通过热敏电阻和数据采集器测量了不同温度下的阻值和输出电压,验证了热敏电阻的阻值随温度变化的特性。

(word完整版)大学物理实验-温度传感器实验报告

(word完整版)大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。

本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好.热电偶的温差电动势关于温度有很好的线性性质.PN节作为常用的测温元件,线性性质也较好。

本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。

关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。

温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。

作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系.2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性.利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。

铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。

按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100—R0)/(R0×100) (1。

1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100。

00Ω),代入上式可得到Pt100的TCR为0。

003851。

Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B+C(t-100)] (-200℃<t<0℃) (1。

温度传感器实训

温度传感器实训

实验二十九温度源的温度调节控制实验一、实验目的:了解温度控制的基本原理及熟悉温度源的温度调节过程,学会智能调节器和温度源的使用(要求熟练掌握),为以后的温度实验打下基础。

二、基本原理:当温度源的温度发生变化时温度源中的P t100热电阻(温度传感器)的阻值发生变化,将电阻变化量作为温度的反馈信号输给智能调节仪,经智能调节仪的电阻--电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)或继电器触发信号(冷却),使温度源的温度趋近温度设定值。

温度控制原理框图如图29—1所示。

图29—1温度控制原理框图三、需用器件与单元:主机箱中的智能调节器单元、转速调节0~24V直流稳压电源;温度源、P t100温度传感器。

四、实验步骤:温度源简介:温度源是一个小铁箱子,内部装有加热器和冷却风扇;加热器上有二个测温孔,加热器的电源引线与外壳插座(外壳背面装有保险丝座和加热电源插座)相连;冷却风扇电源为+24V(或12V) DC,它的电源引线与外壳正面实验插孔相连。

温度源外壳正面装有电源开关、指示灯和冷却风扇电源+24V(12V) DC插孔;顶面有二个温度传感器的引入孔,它们与内部加热器的测温孔相对,其中一个为控制加热器加热的传感器P t100的插孔,另一个是温度实验传感器的插孔;背面有保险丝座和加热器电源插座。

使用时将电源开关打开(o 为关,-为开)。

从安全性、经济性即具有高的性价比考虑且不影响学生掌握原理的前提下温度源设计温度≤160℃。

1、智能调节器的简介及面板按键说明参阅实验二十八附言。

2、设置调节器温度控制参数:在温度源的电源开关关闭(断开)的情况下,按图29-2示意接线。

检查接线无误后,合上主机箱上的总电源开关;将主机箱中的转速调节旋钮(0~24V)顺时针转到底,再将调节器的控制对象开关拨到R t.V i位置后再合上调节器电源开关,仪表上电后,仪表的上显示窗口(PV)显示随机数或HH;下显示窗口(SV)显示控制给定值(实验值)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

THQWD-1型温度传感器特性测试实验预习题1、什么是热电偶?什么是热电阻?2、PID智能模糊+位式调节温度控制原理?热电式温度传感器是一种将温度变化转化为电量变化的装置,利用敏感传感元件的电磁参数随温度变化的特性来达到测量温度的目的。

通常把被测温度变化转化为敏感元件的电阻、磁导或电势变化,再经过相应的测量电路输出电压或电流,然后由这些电参数的变化来表达被测温度的变化。

在各种热电式温度传感器中,以把温度转化为电阻和电势的方法最为普遍。

其中将温度转化为电势大小的热电式温度传感器叫热电偶,将温度转化为电阻值大小的热电式温度传感器叫热电阻。

这两种温度传感器目前在工业生产中已得到广泛应用。

另外利用半导体PN结与温度的关系,所研制的PN结型温度传感器在窄温场中,也得到十分广泛的应用。

THQWD-1型温度传感器特性测试实验仪由温度传感器特性测试加热源、温度控制与测量装置、传感器调理电路、热电偶冷端补偿电路、热敏电阻特性测试电路、温度传感器、直流稳压电源及冷却风扇组成。

温度控制装置采用PID智能温度调节器,具有PID智能温度控制加AI人工智能调节功能,可控硅调节输出,根据实验要求设定温度控制值,温度控制范围室温~120℃,控温精度±0.5℃。

温度测量装置采用热电阻Ptl00,测温范围0~200℃,温度显示最小分辨率0.1℃,测温精度±0.2℃。

利用本实验仪可以完成各种典型温度传感器特性测试实验。

实验一温度传感器温度控制实验一、实验目的1.了解PID智能模糊+位式调节温度控制原理;2.学习PID智能温度调节器使用方法,用Ptl00作信号输入控制温度。

二、实验仪器1.THOwD-1型温度传感器特性测试实验仪;需用单元:PID智能温度调节器、风扇电源、加热电源;2.THOWD-1型温度传感器特性测试加热源;3.Ptl00温度传感器。

三、实验原理1.位式调节位式调节(ON/()FF)是一种简单的调节方式,常用于一些对控制精度不高的场合作温度控制,或用于报警。

位式调节仪表用于温度控制时,通常利用仪表内部的继电器控制外部的中问继电器再控制一个交流接触器来控制电热丝的通断达到控制温度的目的。

2.PID智能模糊调节PID智能温度调节器采用人工智能调节方式,是采用模糊规则进行PID调节的一种先进的新型人工智能算法,能实现高精度控制,先进的自整定(Ar)功能使得无需设置控制参数。

在误差大时,运用模糊算法进行调节,以消除PII)饱和积分现象,当误差趋小时,采用PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化,具有无超调、高精度、参数确定简单等特点。

3.基本原理由于温度具有滞后性,加热源为一滞后时间较长系统。

本实验仪采用PID智能模糊+位式双重调节控制温度。

用报警方式控制风扇开启与关闭,使加热源在尽可能短的时间内控制在某一温度值上,并能在实验结束后通过参数设置将加热源温度快速冷却下来,可以节约实验时间。

当温度源的温度发生变化时,温度源中的热电阻Ptl00的阻值发生变化,将电阻变化量作为温度的反馈信号输给PID智能温度调节器,经调节器的电阻一电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)和继电器触发信号(冷却),使温度源的温度趋近温度设定值。

PID 智能温度控制原理框图如图1—1所示。

图1—1 PID智能温度控制原理框图四、实验内容与步骤加热源简介:加热源为一小铁箱子,内部装有加热器和冷却风扇。

加热器上有两个测温孔,对应上面两个温度传感器插孔,其中一个用于温度控制,另一个用于温度测量;加热器电源线从铁箱子后面引出,实验时直接接至实验仪面板上“加热电源”(Ac 0~220V),通过铁箱子上面“加热开关”通断,“加热开关”指示灯亮灭及明暗程度可以大致反映加热状态。

冷却风扇电源为Dc+24V,实验时用弱电连接线接至实验仪面板上“风扇电源”,“风扇电源”指示灯亮灭表示风扇运行状态。

加热源设计温度≤120℃。

温度传感器温度控制实验接线示意图如图1—2所示。

图1—2 温度传感器温度控制实验接线示意图1.将加热源电源线接至实验仪加热电源输出,将风扇电源(+24V)接至加热源风扇电源输入(注意电源极性不能接错)。

2.将其中一只Ptl00(用于温度控制)三端引线按插头颜色(两端蓝色,一端红色)插入调节器“Ptl00输入”插孔,Ptl00金属护套插入加热源其中一个“温度传感器插孔”(用于温度控制)。

3.将实验仪“电源开关”置于“开”,实验仪上电,此时调节器上显示窗PV显示室温值。

将加热源温度给定值SP设定在实验要控制的温度值(加热源温度设定范围为室温~120℃)上,上限报警(第一报警)AL一1、下限报警(第二报警)AL一2值设定在高于温度给定值SV 0.5℃上。

4.将加热源“电源开关”置于“开”,电源指示灯亮,加热器被加热。

整个加热过程中,输出指示灯0uT通过亮/暗变化反映加热电压的大小,指示灯越亮,加热电压越大,反之越小。

上限报警(第一报警)AL一1指示灯通过亮灭反映冷却风扇运行状态,指示灯亮,风扇开启,反之关闭。

5.调节器经过两三次振荡后,温度显示值(PV)达到动态平衡,稳定在温度给定值(SV)左右。

6.更改Sv、AL一1、AL一2参数,根据实验需要将加热源温度控制在要控制的温度值上。

7.如果因环境温度变化或其它因素导致加热源温度控制效果不好,可以使用手动调节,设置输出功率的百分比,使加热源温度稳定。

8.实验结束,关闭所有电源,整理实验仪器。

五、实验报告画出PID智能温度控制原理框图。

六、注意事项1.实验前应仔细阅读PID智能温度调节器使用说明书。

2.除SP、AL一1、AL一2参数外,其它参数在实验仪出厂前均已设置好,一般情况下不要随意更改。

3.调节器在实验仪出厂前均已白整定,如果因长期使用或其它因素导致加热源温度控制效果不好,可以按照调节器使用说明重新白整定,使温度控制精确。

4.整个加热及温度控制过程中,不要随意将温度控制用传感器拿出。

七、思考题1.温度控制受哪些因素影响?实验二集成温度传感器(AD590)特性测试实验一、实验目的1.了解常用的集成温度传感器(AD590)测温基本原理;2.学习常用的集成温度传感器(AD590)特性与应用。

二、实验仪器1.THQWD一1型温度传感器特性测试实验仪;需用单元:PID智能温度调节器、风扇电源、加热电源、+5V直流稳压电源、直流数字电压表、温度传感器调理电路;2.THQWD一1型温度传感器特性测试加热源;3.铂热电阻Ptl00、集成温度传感器AD590。

三、实验原理1.集成温度传感器集成温度传感器是把温敏器件、偏置电路、放大电路及线性化电路集成在同一芯片上的温度传感器。

其特点是使用方便、外围电路简单、性能稳定可靠;不足的是测温范围较小、使用环境有一定的限制。

目前大量生产的集成温度传感器有电流输出型、电压输出型和数字输出型。

其工作温度范围约在一50℃~+150℃。

电流输出型具有输出阻抗高的优点,因此可以配合使用双绞线进行数百米远的精密温度遥感与遥测,而不必考虑长馈线上引起的信号损失和噪声问题;也可用在多点温度测量系统中,而不必考虑选择开关或多路转换器引入的接触电阻造成的误差。

电压输出型的优点是直接输出电压,且输出阻抗低,易于读出或与控制电路接口。

数字输出型的优点是便远传,抗干扰能力强,可直接与计算机测试系统接口。

2.集成温度传感器AD90AD590能直接给出正比于绝对温度的理想线性输出,在一定温度下,相当于一个恒流源,一般用于-50℃一+150℃之问温度测量。

温敏晶体管的集电极电流恒定时,晶体管的基极一发射极电压与温度成线性关系。

为克服温敏晶体管Uh电压生产时的离散性、均采用了特殊的差分电路。

本实验仪采用电流输出型集成温度传感器AD590,在一定温度下,相当于一个恒流源。

因此不易受接触电阻、引线电阻、电压噪声的干扰,具有很好的线性特性。

AD590的灵敏度(标定系数)为1μA/K,只需要一种+4V~+30V电源(本实验仪用+5V),即可实现温度到电流的线性变换,然后在终端使用一只取样电阻(本实验中为传感器调理电路单元中R=1K)即可实现电流到电压的转换,使用十分方便。

电流输出型比电压输出型的测量精度更高。

AD590的特点:(1)集成温度传感器AD590是将温敏晶体管与相应的辅助电路集成在同一芯片上,由生产厂家经过校正的温度传感器,不需要外围温度补偿和线性处理电路,接口简单,使用方便。

(2)使用的直流电源范同比较宽+4V~+30V(3)由于生产时对芯片上的薄膜进行过激光校正,器件具有良好的互换性,在一55℃~+150℃范围内,精度为±1℃。

(4)由于输出阻抗高达10MΩ以上,抗干扰能力强,不受长距离传输线电压降的影响,信号传输距离可达100m以上。

AD590基本应用电路如图2—1所示。

图2.1 AD590基本应用电路四、实验内容与步骤集成温度传感器AD590调理电路如图2.2所示。

图2—2 集成温度传感器AD590调理电路原理图1.将加热源电源线接至实验仪加热电源输出,将风扇电源(+24V)接至加热源风扇电源输入(注意电源极性不能接错)。

2.将其中一只Ptl00(用于温度控制)三端引线按插头颜色(两端蓝色,一端红色)插入调节器“Ptl00输入”插孔,Ptl00金属护套插入加热源其中一个插孔。

3.将AD590两端输出引线按插头颜色(一端红色,一端蓝色)插入温度传感器调理电路单元c、d插孔(红色对应c、蓝色对应d),AD590金属护套插入加热源另一个插孔。

4.将+5V直流稳压电源接至温度传感器调理电路单元c、GNDl插孔(+5V对应c,GNDl对应GNDl),给AD590供电;将±15V直流稳压电源接至+15V、GND3、一15V插孔,给仪器放大器供电。

5.将AD590输出电压(取样电阻R2=1K两端电压)接至仪器放大器输入Ui(d对应Ui一,GNDI 对应Ui+),将仪器放大器输出Uol接至直流数字电压表输入Ui(Uol对应+,GND3对应一),电压表量程选择20V档。

6.将实验仪“电源开关”置于“开”,实验仪上电,此时调节器上显示窗PV显示室温值,电压表读数显示AD590在室温时的输出电压值。

将加热源温度给定值SP设定在40℃(加热源温度设定范围为室温~110℃)上,上限报警(第一报警)AL一1、下限报警(第二报警)AL一2值设定在高于温度给定值SV 0.5℃上。

7.将增益调节电位器Rw2逆时针旋到底,即增益最小,增益一旦调节好后,实验过程中不要触碰电位器Rw2。

8.将加热源“电源开关”置于“开”,电源指示灯亮,加热器被加热。

当调节器温度显示值(PV)达到动态平衡,稳定在温度给定值(SV)左右时,记录电压表读数Vo(V)。

相关文档
最新文档