重庆一中初级学年八年级下数学期末考试及答案
重庆初二初中数学期末考试带答案解析

重庆初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.将数49开平方,其结果是()A.±7B.-7C.7D.2.要使式子有意义,字母x应满足的条件为()A.x>2B.x<2C.x≥2D.x>-23.若点P(m,2)与点Q(3,n)关于原点对称,则m、n的值分别为().A.-3,2B.3, -2C.–3, -2D.3, -24.结合函数y=-2x的图象回答,当x<-1时,y的取值范围()A.y<2B.y>2C.y≥D.y≤5.直线y=3x与双曲线的一个分支(k≠0、x>0)相交,则该分支所在象限为()A.1B.2C.3D.46.如果把三角形的三边按一定的比例扩大,则下列说法正确的是A.三角形的形状不变,三边的比变大B.三角形的形状变,三边的比变大C.三角形的形状变,三边的比不变D.三角形的形状不变,三边的比不变7.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A.都不变B.都扩大5倍C.正弦扩大5倍、余弦缩小5倍D.不能确定8.已知∠α的顶点在原点,一条边在x轴的正半轴,另一条边经过点P(3,-4),则sinα的值是()A.B.C.D.9.如图、两条宽度为1的纸条,交叉重叠在一起,且它们的较小交角为α,则它们重叠部分(阴影部分)的面积为()A.B.C.sinαD.110.为了判断甲乙两个小组学生英语口语测验成绩哪一组整齐,通常需要知道两组成绩的A.平均数B.方差C.众数D.频率分布()二、填空题1.计算:=2.已知,那么(xy)2005=3.如果点M(a+1,2-a)在第一象限内,则a 的取值范围是4.设点P (x ,y )在第二象限,且 ,则P 点的坐标为5.某种中性笔一盒12支,售价18元,可零卖,小明买了x 支,付款为y 元,那么y 与x 的函数关系式是___________________________.6.在△ABC 和△A 1B 1C 1中,若,且∠B=∠B 1=56°,则= 。
【解析版】重庆市第一中学八年级下期末数学试卷

2014-2015学年重庆市第一中学八年级(下)期末数学试卷一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,x的取值范围是()A.x≠1 B.x≠0 C.x>1 D.x<12.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.已知α、β是一元二次方程x2﹣2x﹣3=0的两个根,则α+β的值是()A.2 B.﹣2 C.3 D.﹣34.如图,反比例函数y=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为()A.4 B.2 C.1 D.5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为()A.3cm B.6cm C.9cm D.12cm6.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.D.(x+3)2=47.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形8.分式方程的解是()A.x=﹣5 B.x=5 C.x=﹣3 D.x=39.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为()A.30°B.35°C.40°D.45°10.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>111.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.5012.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C.D.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2﹣2=.14.若分式的值为零,则x=.15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为.16.已知x=2是方程x2+mx+2=0的一个根,则m的值是.17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA 和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在分钟内,师生不能呆在教室.18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0<α<45),得到∠B′AD′,其中过点B作与对角线BD垂直的直线交射线AB′于点E,射线AD′与对角线BD交于点F,连接CF,并延长交AD于点M,当满足S四边形AEBF=S△CDM时,线段BE的长度为.三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)x2﹣6x﹣2=0(2)=+1.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.21.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(﹣)÷(﹣1),其中a是方程a2﹣4a+2=0的解.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.26.如图,已知点A是直线y=2x+1与反比例函数y=(x>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(x>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(x>0)图象上一点B(3,1),点P是直线y=x上一动点,点Q是反比例函数y=(x>0)图象上另一点,是否存在以P、A、B、Q为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2014-2015学年重庆市第一中学八年级(下)期末数学试卷参考答案与试题解析一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,x的取值范围是()A.x≠1 B.x≠0 C.x>1 D.x<1考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.已知α、β是一元二次方程x2﹣2x﹣3=0的两个根,则α+β的值是()A.2 B.﹣2 C.3 D.﹣3考点:根与系数的关系.分析:根据根与系数的关系得到α+β=﹣=2,即可得出答案.解答:解:∵α、β是一元二次方程x2﹣2x﹣3=0的两个根,∴α+β=﹣=2;故选A.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.4.如图,反比例函数y=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为()A.4 B.2 C.1 D.考点:反比例函数系数k的几何意义.分析:设点A的坐标为(x,y),用x、y表示OB、AB的长,根据矩形ABOC的面积为2,列出算式求出k的值.解答:解:设点A的坐标为(x,y),则OB=x,AB=y,∵矩形ABOC的面积为2,∴k=xy=2,故选:B.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为()A.3cm B.6cm C.9cm D.12cm考点:三角形中位线定理;平行四边形的性质.分析:由平行四边形的性质,易证OE是中位线,根据中位线定理求解.解答:解:根据平行四边形基本性质:平行四边形的对角线互相平分.可知点O是BD中点,所以OE是△BCD 的中位线.根据中位线定理可知AD=2OE=2×3=6(cm).故选B.点评:主要考查了平行四边形的基本性质和中位线性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.D.(x+3)2=4考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:由原方程移项,得x2+6x=5,等式两边同时加上一次项系数一半的平方,即32,得x2+6x+9=5+9,∴(x+3)2=14.故选A.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形考点:多边形内角与外角.分析:利用多边形的内角和=180(n﹣2)可得.解答:解:108=180(n﹣2)÷n解得n=5.故选A.点评:本题主要考查了多边形的内角和定理.8.分式方程的解是()A.x=﹣5 B.x=5 C.x=﹣3 D.x=3考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.解答:解:方程两边同乘以(x+1)(x﹣1),得3(x+1)=2(x﹣1),解得x=﹣5.经检验:x=﹣5是原方程的解.故选A.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为()A.30°B.35°C.40°D.45°考点:菱形的性质.专题:计算题.分析:先根据菱形的对边平行和直线平行的性质得到∠BAD=70°,然后根据菱形的每一条对角线平分一组对角求解.解答:解:∵四边形ABCD为菱形,∴AD∥AB,∴∠BAD=180°﹣∠D=180°﹣110°=70°,∵四边形ABCD为菱形,∴AC平分∠BAD,∴∠BAC=∠BAD=35°.故选B.点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.10.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>1考点:根的判别式;一元二次方程的定义.专题:计算题.分析:根据根的判别式和一元二次方程的定义,令△>0且二次项系数不为0即可.解答:解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴△>0,即(﹣6)2﹣4×9k>0,解得,k<1,∵为一元二次方程,∴k≠0,∴k<1且k≠0.故选A.点评:本题考查了根的判别式和一元二次方程的定义,要知道:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.50考点:规律型:图形的变化类.分析:由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n﹣1)=5n+4个边长为1的小正方形,由此求得答案即可.解答:解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n﹣1)=5n+4个,所以第10个图形中边长为1的小正方形的个数为5×10+4=54个.故选:C.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.12.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C.D.考点:反比例函数系数k的几何意义.分析:设双曲线的解析式为:y=,E点的坐标是(x,y),根据E是OB的中点,得到B点的坐标,求出点E的坐标,根据三角形的面积公式求出k.解答:解:设双曲线的解析式为:y=,E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x﹣)×2y=10,解得,k=,故选:D.点评:本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2﹣2=2(m+1)(m﹣1).考点:提公因式法与公式法的综合运用.专题:压轴题.分析:先提取公因式2,再对剩余的多项式利用平方差公式继续分解因式.解答:解:2m2﹣2,=2(m2﹣1),=2(m+1)(m﹣1).故答案为:2(m+1)(m﹣1).点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行二次因式分解.14.若分式的值为零,则x=﹣3.考点:分式的值为零的条件.专题:计算题.分析:分式的值为零,分子等于0,分母不为0.解答:解:根据题意,得|x|﹣3=0且x﹣3≠0,解得,x=﹣3.故答案是:﹣3.点评:本题考查了分式的值为0的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为8.考点:矩形的性质;含30度角的直角三角形.分析:由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出OA=OB=AB=4,得出AC=2OA即可.解答:解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=4,∴AC=2OA=8;故答案为:8.点评:本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16.已知x=2是方程x2+mx+2=0的一个根,则m的值是﹣3.考点:一元二次方程的解.分析:将x=2代入方程即可得到一个关于m的方程,解方程即可求出m值.解答:解:把x=2代入方程可得:4+2m+2=0,解得m=﹣3.故答案为﹣3.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA 和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在75分钟内,师生不能呆在教室.考点:反比例函数的应用.分析:首先根据题意,药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.解答:解:设反比例函数解析式为y=(k≠0),将(25,6)代入解析式得,k=25×6=150,则函数解析式为y=(x≥15),当y=2时,=2,解得x=75.答:从消毒开始,师生至少在75分钟内不能进入教室.点评:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0<α<45),得到∠B′AD′,其中过点B作与对角线BD垂直的直线交射线AB′于点E,射线AD′与对角线BD交于点F,连接CF,并延长交AD于点M,当满足S四边形AEBF=S△CDM时,线段BE的长度为2﹣2.考点:旋转的性质;正方形的性质.分析:先根据旋转的性质得∠EAB=∠FAD=α,再根据正方形的性质得AB=AD,∠ADB=∠ABD=45°,则利用BE⊥BD 得∠EBA=∠FDA=45°,于是可根据“ASA”判定△ABE≌△ADF,得到S△ABE=S△ADF,所以S四边形AEBF=S△ABD=4,则S△CDM=2,利用三角形面积公式可计算出DM=2,延长AB到M′使BM′=DM=2,如图,接着根据勾股定理计算出CM=2,再通过证明△BCM≌△DCM得到CM′=CM=2,∠BCM′=∠DCM,然后证∠M′NC=∠M′CN得到M′N=M′C=2,则BN=M′C﹣BM′=2﹣2.解答:解:∵∠BAD绕着点A顺时针旋转α°(0<α<45°),得到∠B′AD′,∴∠EAB=∠FAD=α,∵四边形ABCD为正方形,∴AB=AD,∠ADB=∠ABD=45°,∵BE⊥BD,∴∠EBD=90°,∴∠EBA=45°,∴∠EBA=∠FDA,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴S△ABE=S△ADF,∴S四边形AEBF=S△ABE+S△ABF=S△ADF+S△ABF=S△ABD=×2×2=4,∵S四边形AEBF=S△CDM,∴S△CDM==2,∴DM•2=2,解得DM=2,延长AB到M′使BM′=DM=2,如图,在Rt△CDM中,CM==2,在△BCM′和△DCM中,∴△BCM≌△DCM(SAS),∴CM′=CM=2,∠BCM′=∠DCM,∵AB∥CD,∴∠M′NC=∠DCN=∠DCM+∠NCM=∠BCM′+∠NCM,而NC平分∠BCM,∴∠NCM=∠BCN,∴∠M′NC=∠BCM′+∠BCN=∠M′CN,∴M′N=M′C=2,∴BN=M′C﹣BM′=2﹣2.故答案为:2﹣2.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和全等三角形的判定与性质.三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)x2﹣6x﹣2=0(2)=+1.考点:解一元二次方程-配方法;解分式方程.分析:(1)移项,配方,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)先把分式方程转化成整式方程,求出方程的解,再进行检验即可.解答:解:(1)x2﹣6x﹣2=0,x2﹣6x=2,x2﹣6x+9=2+9,(x﹣3)2=11,x﹣3=,x1=3+,x2=3﹣;(2)方程两边都乘以x﹣2得:1﹣x=﹣1+x﹣2,解这个方程得:x=2,检验:当x=2时,x﹣2=0,所以x=2不是原方程的解,所以原方程无解.点评:本题考查了解一元二次方程,解分式方程的应用,解(1)小题的关键是能把一元二次方程转化成一元一次方程,解分式方程的关键是能把分式方程转化成整式方程.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)根据平行四边形性质得出AB=CD,∠A=∠C.求出∠ABD=∠CDB.推出∠ABE=∠CDF,根据ASA 推出全等即可;(2)根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出DE∥BF,DE=BF,得出四边形DFBE 是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.解答:证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.点评:本题考查了平行线的性质,平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定,角平分线定义等知识点的应用,主要考查学生综合运用性质进行推理的能力.21.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.专题:数形结合;待定系数法.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:(1)用降价前每件利润×销售量列式计算即可;(2)设每件童装降价x元,利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可.解答:解:(1)童装店降价前每天销售该童装可盈利:(100﹣60)×20=800(元);(2)设每件童装降价x元,根据题意,得(100﹣60﹣x)(20+2x)=1200,解得:x1=10,x2=20.∵要使顾客得到更多的实惠,∴取x=20.答:童装店应该降价20元.点评:此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(﹣)÷(﹣1),其中a是方程a2﹣4a+2=0的解.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.解答:解:原式=[﹣]÷=•=,由a2﹣4a+2=0,得a2﹣4a=﹣2,则原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.考点:一次函数综合题.分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣﹣0|,即可得出答案;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0=x0+2,据此可以求得点C的坐标;解答:解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.考点:四边形综合题.分析:(1)根据菱形的性质证明△ABC是等边三角形和AB=2,求出△ABC的面积;(2)作EG∥BC交AB于G,证明△BGE≌△ECF,得到BE=EF;(3)作EH∥BC交AB的延长线于H,证明△BHE≌△ECF,得到BE=EF.解答:解:(1)∵四边形ABCD是菱形,∠ABC=60°,∴△ABC是等边三角形,又E是线段AC的中点,∴BE⊥AC,AE=AB=1,∴BE=,∴△ABC的面积=×AC×BE=;(2)如图2,作EG∥BC交AB于G,∵△ABC是等边三角形,∴△AGE是等边三角形,∴BG=CE,∵EG∥BC,∠ABC=60°,∴∠BGE=120°,∵∠ACB=60°,∴∠ECF=120°,∴∠BGE=∠ECF,在△BGE和△ECF中,,∴△BGE≌△ECF,∴EB=EF;(3)成立,如图3,作EH∥BC交AB的延长线于H,∵△ABC是等边三角形,∴△AHE是等边三角形,∴BH=CE,在△BHE和△ECF中,,∴△BHE≌△ECF,∴EB=EF.点评:本题考查的是菱形的性质、等边三角形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的判定定理和性质定理是解题的关键.26.如图,已知点A是直线y=2x+1与反比例函数y=(x>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(x>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(x>0)图象上一点B(3,1),点P是直线y=x上一动点,点Q是反比例函数y=(x>0)图象上另一点,是否存在以P、A、B、Q为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)点A是直线y=2x+1的点,点A的横坐标为1,代入y=2×1+1=3,求得点A即可得到结果;(2)如图1,设点M(m,),过A作AE⊥x轴于E,过M作MF⊥x轴于F,根据题意得:S△AOM=S梯形AEFM=(3+)(m﹣1)=4,解方程即可得到结果;(3)首先求得反比例函数的解析式,然后设P(m,m),分若PQ为平行四边形的边和若PQ为平行四边形的对角线两种情况分类讨论即可确定点Q的坐标.解答:解:(1)∵点A是直线y=2x+1的点,点A的横坐标为1,∴y=2×1+1=3,∴A(1,3),∵点A是反比例函数y=(x>0)图象上的点,∴k=3;(2)如图1,设点M(m,),过A作AE⊥x轴于E,过M作MF⊥x轴于F,根据题意得:S△AOM=S梯形AEFM=(3+)(m﹣1)=4,解得:m=3(负值舍去),∴M(3,1);(3)∵反比例函数y=(x>0)图象经过点A(1,3),∴k=1×3=3,∴反比例函数的解析式为y=,∵点P在直线y=x上,。
重庆一中八年级(下)期末数学试卷

的值为( )
A. 20
B. 12
C. −12
D. −20
9. 下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有 5 个棋子, 图②中有 10 个棋子,图③中有 16 个棋子,……,则图⑥中有( )个棋子.
A. 31
B. 35
C. 40
10. 下列命题正确的是( )
A. 任意两个矩形一定相似 B. 相似图形就是位似图形
B. 4������2������3 = 4������2 ⋅ ������3
D.
������−1
1
= ������(1−������)
3. 下列各分式中,最简分式是( )
A.
������ ������2−3������
B. ������2 + ������2 ������2������ + ������������2
������ + 4 ≤ 2(������−������)
A. −12
B. −8
C. −7
二、填空题(本大题共 6 小题,共 24.0 分)
D. −2
13.
若������
������
=
11,则������−2������=______.
4
������
14. 已知关于 x 的一元二次方程(k-5)x2-2x+2=0 有实根,则 k 的取值范围为______.
八年级(下)期末数学试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 12 小题,共 48.0 分)
1. 下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、 音叉、凹透镜和砝码,其中是中心对称图形的是( )
【八年级】2021年重庆初二数学下期末试卷(有答案和解释)

【八年级】2021年重庆初二数学下期末试卷(有答案和解释)2021-2021学年重庆市第一中学八年级(下)期末数学试卷一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,x的取值范围是()A.x≠1B.x≠0C. x>1 D. x<12.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.已知α、β是一元二次方程x2?2x?3=0的两个根,则α+β的值是()A. 2 B. ?2 C. 3 D. ?34.如图,反比例函数y=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为()A. 4 B. 2 C. 1 D.5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为()A. 3cm B. 6cm C. 9cm D. 12cm6.方程x2+6x?5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x?3)2=14 C.D.(x+3)2=47.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形8.分式方程的解是()A. x=?5 B. x=5 C. x=?3 D. x=39.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为()A.30°B.35°C.40°D.45°10.若关于x的一元二次方程kx2?6x+9=0有两个不相等的实数根,则k的取值范围()A. k<1且k≠0B.k≠0C. k<1 D. k>111.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A. 72 B. 64 C. 54 D. 5012.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A. 10 B. 5 C.D.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2?2= .14.若分式的值为零,则x= .15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为.16.已知x=2是方程x2+mx+2=0的一个根,则m的值是.17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在分钟内,师生不能呆在教室.18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0<α<45),得到∠B′AD′,其中过点B作与对角线BD垂直的直线交射线AB′于点E,射线AD′与对角线BD交于点F,连接CF,并延长交AD于点M,当满足S四边形AEBF=S△CDM时,线段BE的长度为.三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)x2?6x?2=0(2)=+1.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.21.如图,一次函数y=kx+b(k≠0)的图象过点P(?,0),且与反比例函数y=(m≠0)的图象相交于点A(?2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(?)÷(?1),其中a是方程a2?4a+2=0的解.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1?x2|≥|y1?y2|,则点P1与点P2的“非常距离”为|x1?x2|;若|x1?x2|<|y1?y2|,则点P1与点P2的“非常距离”为|y1?y2|.例如:点P1(1,2),点P1(3,5),因为|1?3|<|2?5|,所以点P1与点P2的“非常距离”为|2?5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(?),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.26.如图,已知点A是直线y=2x+1与反比例函数y=(x>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(x>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(x>0)图象上一点B(3,1),点P是直线y=x上一动点,点Q是反比例函数y=(x>0)图象上另一点,是否存在以P、A、B、Q 为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2021-2021学年重庆市第一中学八年级(下)期末数学试卷参考答案与试题解析一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,x的取值范围是()A.x≠1B.x≠0C. x>1 D. x<1考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x?1≠0,解得x≠1.故选A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.已知α、β是一元二次方程x2?2x?3=0的两个根,则α+β的值是()A. 2 B. ?2 C. 3 D. ?3考点:根与系数的关系.分析:根据根与系数的关系得到α+β=?=2,即可得出答案.解答:解:∵α、β是一元二次方程x2?2x?3=0的两个根,∴α+β=?=2;故选A.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=?,x1x2=.4.如图,反比例函数y=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为()A. 4 B. 2 C. 1 D.考点:反比例函数系数k的几何意义.分析:设点A的坐标为(x,y),用x、y表示OB、AB的长,根据矩形ABOC的面积为2,列出算式求出k的值.解答:解:设点A的坐标为(x,y),则OB=x,AB=y,∵矩形ABOC的面积为2,∴k=xy=2,故选:B.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为()A. 3cm B. 6cm C. 9cm D. 12cm考点:三角形中位线定理;平行四边形的性质.分析:由平行四边形的性质,易证OE是中位线,根据中位线定理求解.解答:解:根据平行四边形基本性质:平行四边形的对角线互相平分.可知点O是BD中点,所以OE是△BCD的中位线.根据中位线定理可知AD=2OE=2×3=6(cm).故选B.点评:主要考查了平行四边形的基本性质和中位线性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6.方程x2+6x?5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x?3)2=14 C.D.(x+3)2=4考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:由原方程移项,得x2+6x=5,等式两边同时加上一次项系数一半的平方,即32,得x2+6x+9=5+9,∴(x+3)2=14.故选A.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形考点:多边形内角与外角.分析:利用多边形的内角和=180(n?2)可得.解答:解:108=180(n?2)÷n解得n=5.故选A.点评:本题主要考查了多边形的内角和定理.8.分式方程的解是()A. x=?5 B. x=5 C. x=?3 D. x=3考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x+1)(x?1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.解答:解:方程两边同乘以(x+1)(x?1),得3(x+1)=2(x?1),解得x=?5.经检验:x=?5是原方程的解.故选A.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为()A.30°B.35°C.40°D.45°考点:菱形的性质.专题:计算题.分析:先根据菱形的对边平行和直线平行的性质得到∠BAD=70°,然后根据菱形的每一条对角线平分一组对角求解.解答:解:∵四边形ABCD为菱形,∴AD∥AB,∴∠BAD=180°?∠D=180°?110°=70°,∵四边形ABCD为菱形,∴AC平分∠BAD,∴∠BAC=∠BAD=35°.故选B.点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.10.若关于x的一元二次方程kx2?6x+9=0有两个不相等的实数根,则k的取值范围()A. k<1且k≠0B.k≠0C. k<1 D. k>1考点:根的判别式;一元二次方程的定义.专题:计算题.分析:根据根的判别式和一元二次方程的定义,令△>0且二次项系数不为0即可.解答:解:∵关于x的一元二次方程kx2?6x+9=0有两个不相等的实数根,∴△>0,即(?6)2?4×9k>0,解得,k<1,∵为一元二次方程,∴k≠0,∴k<1且k≠0.故选A.点评:本题考查了根的判别式和一元二次方程的定义,要知道:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A. 72 B. 64 C. 54 D. 50考点:规律型:图形的变化类.分析:由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n?1)=5n+4个边长为1的小正方形,由此求得答案即可.解答:解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n?1)=5n+4个,所以第10个图形中边长为1的小正方形的个数为5×10+4=54个.故选:C.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.12.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A. 10 B. 5 C.D.考点:反比例函数系数k的几何意义.分析:设双曲线的解析式为:y=,E点的坐标是(x,y),根据E是OB的中点,得到B点的坐标,求出点E的坐标,根据三角形的面积公式求出k.解答:解:设双曲线的解析式为:y=,E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x?)×2y=10,解得,k=,故选:D.点评:本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2?2= 2(m+1)(m?1).考点:提公因式法与公式法的综合运用.专题:压轴题.分析:先提取公因式2,再对剩余的多项式利用平方差公式继续分解因式.解答:解:2m2?2,=2(m2?1),=2(m+1)(m?1).故答案为:2(m+1)(m?1).点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行二次因式分解.14.若分式的值为零,则x= ?3 .考点:分式的值为零的条件.专题:计算题.分析:分式的值为零,分子等于0,分母不为0.解答:解:根据题意,得|x|?3=0且x?3≠0,解得,x=?3.故答案是:?3.点评:本题考查了分式的值为0的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为8 .考点:矩形的性质;含30度角的直角三角形.分析:由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出OA=OB=AB=4,得出AC=2OA即可.解答:解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=4,∴AC=2OA=8;故答案为:8.点评:本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16.已知x=2是方程x2+mx+2=0的一个根,则m的值是?3 .考点:一元二次方程的解.分析:将x=2代入方程即可得到一个关于m的方程,解方程即可求出m值.解答:解:把x=2代入方程可得:4+2m+2=0,解得m=?3.故答案为?3.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在75 分钟内,师生不能呆在教室.考点:反比例函数的应用.分析:首先根据题意,药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.解答:解:设反比例函数解析式为y=(k≠0),将(25,6)代入解析式得,k=25×6=150,则函数解析式为y=(x≥15),当y=2时,=2,解得x=75.答:从消毒开始,师生至少在75分钟内不能进入教室.点评:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0<α<45),得到∠B′AD′,其中过点B作与对角线BD垂直的直线交射线AB′于点E,射线AD′与对角线BD交于点F,连接CF,并延长交AD于点M,当满足S四边形AEBF=S△CDM时,线段BE的长度为2?2 .考点:旋转的性质;正方形的性质.分析:先根据旋转的性质得∠EAB=∠FAD=α,再根据正方形的性质得AB=AD,∠ADB=∠ABD=45°,则利用BE⊥BD得∠EBA=∠FDA=45°,于是可根据“ASA”判定△ABE≌△ADF,得到S△ABE=S△ADF,所以S四边形AEBF=S△ABD=4,则S△CDM=2,利用三角形面积公式可计算出DM=2,延长AB到M′使BM′=DM=2,如图,接着根据勾股定理计算出CM=2,再通过证明△BCM≌△DCM得到CM′=CM=2,∠BCM′=∠DCM,然后证∠M′NC=∠M′CN得到M′N=M′C=2,则BN=M′C?BM′=2?2.解答:解:∵∠BAD绕着点A顺时针旋转α°(0<α<45°),得到∠B′AD′,∴∠EAB=∠FAD=α,∵四边形ABCD为正方形,∴AB=AD,∠ADB=∠ABD=45°,∵BE⊥BD,∴∠EBD=90°,∴∠EBA=45°,∴∠EBA=∠FDA,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴S△ABE=S△ADF,∴S四边形AEBF=S△ABE+S△ABF=S△ADF+S△ABF=S△ABD=×2×2=4,∵S四边形AEBF=S△CDM,∴S△CDM==2,∴DM•2=2,解得DM=2,延长AB到M′使BM′=DM=2,如图,在Rt△CDM中,CM==2,在△BCM′和△DCM中,∴△BCM≌△DCM(SAS),∴CM′=CM=2,∠BCM′=∠DCM,∵AB∥CD,∴∠M′NC=∠DCN=∠DCM+∠NCM=∠BCM′+∠NCM,而NC平分∠BCM,∴∠NCM=∠BCN,∴∠M′NC=∠BCM′+∠BCN=∠M′CN,∴M′N=M′C=2,∴BN=M′C?BM′=2?2.故答案为:2?2.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和全等三角形的判定与性质.三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)x2?6x?2=0(2)=+1.考点:解一元二次方程-配方法;解分式方程.分析:(1)移项,配方,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)先把分式方程转化成整式方程,求出方程的解,再进行检验即可.解答:解:(1)x2?6x?2=0,x2?6x=2,x2?6x+9=2+9,(x?3)2=11,x?3=,x1=3+,x2=3?;(2)方程两边都乘以x?2得:1?x=?1+x?2,解这个方程得:x=2,检验:当x=2时,x?2=0,所以x=2不是原方程的解,所以原方程无解.点评:本题考查了解一元二次方程,解分式方程的应用,解(1)小题的关键是能把一元二次方程转化成一元一次方程,解分式方程的关键是能把分式方程转化成整式方程.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)根据平行四边形性质得出AB=CD,∠A=∠C.求出∠ABD=∠CDB.推出∠ABE=∠CDF,根据ASA推出全等即可;(2)根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出DE∥BF,DE=BF,得出四边形DFBE是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.解答:证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.点评:本题考查了平行线的性质,平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定,角平分线定义等知识点的应用,主要考查学生综合运用性质进行推理的能力.21.如图,一次函数y=kx+b(k≠0)的图象过点P(?,0),且与反比例函数y=(m≠0)的图象相交于点A(?2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.专题:数形结合;待定系数法.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(?,0)和A(?2,1),∴,解得,∴一次函数的解析式为y=?2x?3,反比例函数y=(m≠0)的图象过点A(?2,1),∴,解得m=?2,∴反比例函数的解析式为y=?;(2),解得,或,∴B(,?4)由图象可知,当?2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:(1)用降价前每件利润×销售量列式计算即可;(2)设每件童装降价x元,利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可.解答:解:(1)童装店降价前每天销售该童装可盈利:(100?60)×20=800(元);(2)设每件童装降价x元,根据题意,得(100?60?x)(20+2x)=1200,解得:x1=10,x2=20.∵要使顾客得到更多的实惠,∴取x=20.答:童装店应该降价20元.点评:此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(?)÷(?1),其中a是方程a2?4a+2=0的解.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.解答:解:原式=[?]÷=•=,由a2?4a+2=0,得a2?4a=?2,则原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1?x2|≥|y1?y2|,则点P1与点P2的“非常距离”为|x1?x2|;若|x1?x2|<|y1?y2|,则点P1与点P2的“非常距离”为|y1?y2|.例如:点P1(1,2),点P1(3,5),因为|1?3|<|2?5|,所以点P1与点P2的“非常距离”为|2?5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(?),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.考点:一次函数综合题.分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0?y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|??0|≥|0?y|,得出点A与点B的“非常距离”最小值为|??0|,即可得出答案;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1?x2|≥|y1?y2|,则点P1与点P2的“非常距离”为|x1?x2|”知,C、D两点的“非常距离”的最小值为?x0=x0+2,据此可以求得点C的坐标;解答:解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|??0|=≠2,∴|0?y|=2,解得,y=2或y=?2;∴点B的坐标是(0,2)或(0,?2);②设点B的坐标为(0,y).∵|??0|≥|0?y|,∴点A与点B的“非常距离”最小值为|??0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1?x2|≥|y1?y2|,则点P1与点P2的“非常距离”为|x1?x2|”解答,此时|x1?x2|=|y1?y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴?x0=x0+2,此时,x0=?,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(?,).点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.考点:四边形综合题.分析:(1)根据菱形的性质证明△ABC是等边三角形和AB=2,求出△ABC的面积;(2)作EG∥BC交AB于G,证明△BGE≌△ECF,得到BE=EF;(3)作EH∥BC交AB的延长线于H,证明△BHE≌△ECF,得到BE=EF.解答:解:(1)∵四边形ABCD是菱形,∠ABC=60°,∴△ABC是等边三角形,又E是线段AC的中点,∴BE⊥AC,AE=AB=1,∴BE=,∴△ABC的面积=×AC×BE=;(2)如图2,作EG∥BC交AB于G,∵△ABC是等边三角形,∴△AGE是等边三角形,∴BG=CE,∵EG∥BC,∠ABC=60°,∴∠BGE=120°,∵∠ACB=60°,∴∠ECF=120°,∴∠BGE=∠ECF,在△BGE和△ECF中,,∴△BGE≌△ECF,∴EB=EF;(3)成立,如图3,作EH∥BC交AB的延长线于H,∵△ABC是等边三角形,∴△AHE是等边三角形,∴BH=CE,在△BHE和△ECF中,,∴△BHE≌△ECF,∴EB=EF.点评:本题考查的是菱形的性质、等边三角形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的判定定理和性质定理是解题的关键.26.如图,已知点A是直线y=2x+1与反比例函数y=(x>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(x>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(x>0)图象上一点B(3,1),点P是直线y=x上一动点,点Q是反比例函数y=(x>0)图象上另一点,是否存在以P、A、B、Q 为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)点A是直线y=2x+1的点,点A的横坐标为1,代入y=2×1+1=3,求得点A即可得到结果;(2)如图1,设点M(m,),过A作AE⊥x轴于E,过M作MF⊥x轴于F,根据题意得:S△AOM=S梯形AEFM=(3+)(m?1)=4,解方程即可得到结果;(3)首先求得反比例函数的解析式,然后设P(m,m),分若PQ为平行四边形的边和若PQ为平行四边形的对角线两种情况分类讨论即可确定点Q的坐标.解答:解:(1)∵点A是直线y=2x+1的点,点A的横坐标为1,∴y=2×1+1=3,。
人教版八年级数学下册重庆市第一中学期末考试试题

初中数学试卷重庆一中初2016级14—15学年度下期期末考试数学试卷2015.07(时间:120分钟满分:150分)一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.在分式12-x中,x的取值范围是().A.1≠x B.0≠x C.1>x D.1<x2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是().A.B.C.D.3.已知βα、是一元二次方程x2-2x-3=0的两个根,则βα+的值().A.2B.2-C.3D.3-4.如图,反比例函数xky=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C,若矩形ABOC的面积为2,则k的值为().A.4 B.2 C.1 D.215.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为().A.3cm B.6cm C.9cm D.12cm4题图y xEDCBAO12题图6.方程2650x x +-=的左边配成完全平方后所得方程为( ).A .2(3)4x += B. 2(3)14x -= C. 2(3)14x += D .2(6)41x +=7.果一个多边形的每一个内角都是108°,那么这个多边形是( ). A .四边形 B .五边形 C .六边形 D .七边形8.分式方程3211x x =-+的解是( ). A .5x =- B .5x = C .3x =- D .3x =9.如图,菱形ABCD 中,已知∠D =110°,则∠BAC 的度数为( ).A .30°B .35°C .40°D .45°10.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实 数根,则k 的取值范围( ).A. k <1 B . 1≤k C . k <1且k ≠0 D . 1≤k 且0≠k11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第 (10)个图形中面积为1的正方形的个数为( ).A .72B .64C .54D .50 12.已知四边形OABC 是矩形,边OA 在x 轴上,边OC 在y 轴上, 双曲线与边BC 交于点D 、与对角线OB 交于点中点E, 若△OBD 的面积为10,则k 的值是( ).A .10B . 5C . 310D . 320二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.题号1314151617 18ADBC9题图11题图15题图13.分解因式222-m= ▲ .14.若分式33xx--的值为零,则x=▲ .15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为▲ .16.已知2=x是一元二次方程022=++mxx的一个解,则m的值是▲ .17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在▲分钟内,师生不能呆在教室.18.如图,在正方形ABCD中,22=AB,将BAD∠绕着点A顺时针旋转 α(450<<α),得到''ADB∠,其中过点B作与对角线BD垂直的直线交射线'AB于点E,射线'AD与对角线BD交于点F,连接CF,并延长交AD于点M,当满足CDMAEBFSS∆=2四边形时,线段BE的长度为▲ .三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:答案17题图MD′B′FEDCBA18题图(1) 0262=--x x (2)11122x x x-=+--20. 如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F . (1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.21. 如图,一次函数y=kx+b(k ≠0)的图象过点P(-32,0),且与反比例函数y=mx(m ≠0)的图象相交于点A(-2,1)和点B .(1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值.22. 童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”, 童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件, (1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23. 先化简,再求值:)14()22441(22-÷-+-+--aa a a a a a ,其中a 是方程2420a a -+=的解. ABCDEF24.阅读理解: 在平面直角坐标系xoy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若∣x 1-x 2∣≥∣y 1-y 2∣,则点P 1与点P 2的“非常距离”为∣x 1-x 2∣; 若∣x 1-x 2∣<∣y 1-y 2∣,则点P 1与点P 2的“非常距离”为∣y 1-y 2∣.例如:点P 1(1,2),点P 2(3,5),因为∣1-3∣<∣2-5∣,所以点P 1与点P 2的“非常距离”为∣2-5∣=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点)。
(精品)重庆一中初级-年八年级下学期期末数学试题

重庆一中初2012级2010-2011年八年级下学期期末数学试题(全卷共五个大题,满分150分,考试时间120分钟) 注意事项:1. 试题的答案用钢笔或圆珠笔书写在答题卷上,不得在试卷上直接作答.2. 答题前将答题卷上密封线内的各项内容写清楚.3. 考试结束,由监考人员将答题卷收回,试题卷不收回.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.不等式21>+x 的解集是A.1>xB.1<xC.1≥xD.1≤x 2.多项式22y x -分解因式的结果是 A.2)(y x + B.2)(y x - C.))((y x y x -+ D.))((x y x y -+3.函数23-=x y 的自变量的取值范围是 A.2>x B.2≠x C.2≥x D.2-≠x4.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是 A.ACBC AB AC =B.BC AB BC ⋅=2C.215-=ABAC D.618.0≈ACBC5.若ABC ∆∽DEF ∆,若050=∠A ,060=∠B ,则F ∠的度数是 A.050 B.060 C.070 D.080 6.下列调查中,适宜采用普查方式的是A.调查中国第一艘航母各零件的使用情况B.调查重庆市中学生对利比亚局势的看法C.调查一箱牛奶是否含有三聚氰胺D.调查重庆一中所有学生每天跳绳的时间7.若0=+-c b a ,则关于x 的一元二次方程)0(02≠=++a c bx ax 有一根是 A.1=x B.1-=x C.0=x D.无法判断 8. 已知反比例函数xy 1-=图像上有三个点的坐标分别为),(11y x A 、),(22y x B 、),(33y x C ,若4题图当3210x x x <<<时,则1y 、2y 、3y 的大小关系是A.321y y y <<B.123y y y <<C.213y y y <<D.312y y y << 9. 如图1,已知AC AB =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AC AB =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AC AB =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依次规律,第n 个图形中有全等三角形的对数是A.n B.12-n C.2D.)1(3+n 10.如图,正方形ABCD 中,E 为AD 的中点,CE DF ⊥于M ,交AC 于N ,交AB 于F ,连接EN 、BM .有如下结论: ①DCE ADF ∆≅∆;②FN MN =;③AN CN 2=;④5:2:=∆CNFB ADN S S 四边形;⑤BMF ADF ∠=∠.其中正确结论的个数是 A.2个 B.3个 C.4个 D.5个 二、填空题:(本大题6个小题,每小题4分,共24对应的横线上.11.分解因式:=+-2422x x .12.如图,DE 是ABC ∆的中位线,则ADE ∆与ABC ∆的面积比为.13.重庆一中初2012级举行了丰富多彩的综合实践活动,在刚刚结束的跳绳比赛中, 初2012级某6个班跳绳个数分别是:570,600,552,482,481,486. 则这组数据的中位数是. 14. 若一元二次方程022=++k x x 有两个实数根,则k 的取值范围是. 15.如图,在平面直角坐标系xOy 中,P 是反比例函数图象上一点,过点P 作x PA ⊥轴于点A ,1=∆AOP S ,则这个反比例函数的解析式是.16.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后 再打开出水管(进水管不关闭).若同时打开2个出水管,那么8如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开分钟. 三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上. C17.解不等式212-<-x x ,并把解集在数轴上表示出来. 解分式方程32121---=-xxx . 18.19.解一元二次方程03622=-+x x .20.如图,在ABC ∆中,BC DE //,DE 交AC 于E 点,DE 交AB 于D 点,若5=AE ,2=CE ,3=DE .求BC 的长.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a . 22.如图,已知一次函数b x k y +=1的图象分别与x 轴、y 轴的正半 轴交于A 、B 两点,且与反比例函数xk y 2=交于C 、E 两 点,点C 在第二象限,过点C 作CD ⊥x 轴于点D , 1==OB OA ,2=CD .(1)求反比例函数与一次函数的解析式; (2)求BOC ∆的面积.23.重庆一中初2012级上周刚刚举行了初二下期体育期末考试,现随机抽取了部分学生的成绩为样本,按A (优秀)、B (良好)、C (及格)、D (不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题:(1) 本次调查共随机抽取了名学生; (2) 将条形统计图在图中补充完整;(3) 扇形统计图中“A ”部分所对应的圆心角的度数是; (4) 若随机抽取一名学生的成绩在等级C 的概率是;初2012级目前举行了四次体育期末考试,分别是初一上期体育期末考试、初一下期体育期末考试、初二上期体育期末考试、初二下期体育期末考试.学生小欣初一下期体育期末考试成绩为25分,初二下期体育期末考试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率. 24.如图,梯形上一点,F 是(1) 当=CE (2) 求证:20题图M NC AQAC N五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.某商店今年61-月份经营A 、B 两种电子产品,已知A 产品每个月的销售数量y (件)与月份x (61≤≤x 且x 为整数)之间的关系如下表: 月份x 1 2 3 4 5 6 销量y 600 300 200 150 120 100A 产品每个月的售价z (元)与月份x 之间的函数关系式为:x z 10=; 已知B 产品每个月的销售数量m (件)与月份x 之间的关系为:622+-=x m ,B 产品每个月的售价n (元)与月份x 之间存在如图所示的变化趋势:(1) 请观察题中表格,用所学过的一次函数或反比例函数的有关知识,直接写出y 与x 的函数关系式;(2) 请观察如图所示的变化趋势,求出n 与x 的函数关系式;(3) 求出此商店61-月份经营A 、B 两种电子产品的销售总额w 与月份x 之间的函数关系式;今年7月份,商店调整了A 、B 两种电子产品的价格,A 产品价格在6月份基础上增加%a ,B 产品价格在6月份基础上减少%a ,结果7月份A 产品的的销售数量比6月份减少%2a ,B 产品的销售数量比6月份增加%2a .若调整价格后7月份的销售总额比6月份的销售总额少2000元,请根据以下参考数据估算a 的值.(参考数据:69.393.62=,91.404.62=,25.425.62=,56.436.62=)26.如图(1)AOB Rt ∆中,090=∠A ,060=∠AOB ,32=OB ,AOB ∠的平分线OC 交AB于C ,过O 点作与OB 垂直的直线ON .动点P 从点B 出发沿折线CO BC -以每秒1个单位长度的速度向终点O 运动,运动时间为t 秒,同时动点Q 从点C 出发沿折线ON CO -以相同的速度运动,当点P 到达点O 时P 、Q 同时停止运动. (1)求OC 、BC 的长;(2)设CPQ ∆的面积为S ,直接写出S 与t 的函数关系式;(3)当P 在OC 上、Q 在ON 上运动时,如图(2),设PQ 与OA 交于点M ,当t 为何值时,OPM ∆为等腰三角形?求出所有满足条件的t 值.参考答案(本卷共五个大题 满分:150分 考试时间:120分钟)注意事项:24题图n (1.试卷各题的答案用钢笔或圆珠笔书写在答题卷上,不得在试卷上直接作答。
2013-2014重庆一中八年级数学第二学期期末检测(带答案)

2013-2014重庆一中八年级数学第二学期期末检测(带答案)(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式011=+-x x ,则的值是( ) A . 1=x B .1-=x C .0=x D .1-≠x 2.下列分解因式正确的是( ) A .)1(23-=-x x x xB .)1)(1(12-+=-x x xC .2)1(22+-=+-x x x xD .22)1(12-=-+x x x3.下列图形中,是中心对称图形,但不是轴对称图形的是( )4.方程x x 32=的解是( )A .3=xB .3-=xC .0=xD . 3=x 或0=x 5.根据下列表格的对应值:判断方程012=-+x x 一个解的取值范围是( )A .61.059.0<<xB .61.060.0<<xC .62.061.0<<xD .63.062.0<<x6.将点P (-3,2)向右平移2个单位后,向下平移3个单位得到点Q ,则点Q 的坐标为( ) A .(-5,5) B .(-1,-1) C .(-5,-1) D .(-1,5)7.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为( )A .100)1(1202=-xB .120)1(1002=-xC .120)1(1002=+xD .100)1(1202=+x8.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,若2=∆BO E S ,则DOC S ∆是( ) A .4B .6C .8D .99.已知0=x 是关于的一元二次方程012)1(22=-++-k x x k的根,则常数的值为( ) A .0或1 B .1 C .-1 D .1或-1 10.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,菱形ABCD 周长为32,点P 是边CD 的中点,则线段OP 的长为( ) A .3 B .5 C .8 D .411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86 12.如图,□ABCD 中,∠B =70°,点E 是BC 的中点,点F 在 AB 上,且BF=BE ,过点F 作FG ⊥CD 于点G ,则∠EGC 的度数 为( )A .35° B.45° C.30° D .55°CO PA BD第10题图第12题图第8题图①④ ③ ② F GA EB C D OEDCB A13.已知23=y x ,则yy x + = . 14.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,则AC 的长为 .15.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解集是 .16. 已知一元二次方程01892=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为 .17. 关于的方程15=+x m的解是负数,则的取值范围是 . 18. 如图,矩形ABCD 中,AD=10,AB=8,点P 在边CD 上,且BP=BC ,点M 在线段BP 上,点N 在线段BC 的延长线上,且PM=CN ,连接MN 交BP 于点F ,过 点M 作ME ⊥CP 于E ,则EF= .三.解答题(本大题3个小题,19题12分,20,21题各6分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上. 19.解方程: (1) 121=--xx x (2) 01322=-+x x20. 解不等式组: ()⎪⎩⎪⎨⎧-≥-+<-42211513x x x x 第15题图3b21.如图,矩形ABCD中,点E在CD边的延长线上,且∠EAD=∠CAD.求证:AE=BD.四.解答题(本大题3个小题,每小题10分,共30分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:41)2122(216822+-+--÷++-x x x xx x x ,其中满足0342=-+x x .23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元. (1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F 是BC 延长线上一点,过点B 作BE ⊥DF 于点E ,交CD 于点G ,连接CE .(1)若正方形ABCD 边长为3,DF =4,求CG 的长; (2)求证:EF+EG =2C E .五.解答题(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25. 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:450100502++=x x p ,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为(吨),每月的利润为(元). (1)分别求出与,与的函数关系式; (2)在今年内....该单位哪个月获得利润达到5800元? (3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了m 6.0%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.第24题图 G EA B CD F26. 如图1,菱形ABCD 中,AB =5,AE ⊥BC 于E ,AE =4.一个动点P 从点B 出发,以每秒个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,边向右作正方形PQMN ,点N 在射线BC 上,当P 点到达C 点时,运动结束.设点P 的运动时间为秒(0t >). (1)求出线段BD 的长,并求出当正方形PQMN 的边PQ 恰好经过点A 时,运动时间的值; (2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与之间的函数关系式和相应的自变量的取值范围;(3)如图2,当点M 与点D 重合时,线段PQ 与对角线BD 交于点O ,将△BPO 绕点O 逆时针旋转︒α (1800<<α),记旋转中的△BPO 为△O P B '',在旋转过程中,设直线P B ''与直线BC 交于G ,与直线BD 交于点H ,是否存在这样的G 、H 两点,使△BGH 为等腰三角形?若存在,求出此时2OH 的值;若不存在,请说明理由.重庆一中初2015级13—14学年度下期期末考试 数 学 答 案 2014.7一、选择题(每小题4分,共48分)二、填空题(每小题4分,共24分)19. (1)解:方程两边同乘以)1(-x x ,得)1()1(22-=--x x x x ……………… 3分∴02=+-x ……………… 4分 ∴2=x . ……………… 5分 经检验2=x 是原方程的解.∴原方程的解为2=x . ……………… 6分(2)解:∵2=a ,3=b ,1-=c∴17)1(24942=-⨯⨯-=-ac b ……………… 2分∴4173±-=x ……………… 5分 ∴41731+-=x ,41732--=x . ……………… 6分21..证明:∵四边形ABCD 是矩形∴∠CDA =∠EDA =90°,AC=BD . ……………… 3分∵∠CAD=∠EAD ,AD=AD∴△ADC ≌△ADE . ……………… 5分 ∴AC =AE. 分∴BD=AE . ……………… 6分23.解:(1)设第一次所购该蔬菜的进货价是每千克元,根据题意得5.07002400-=⋅x x …………………………3分 解得4=x .经检验4=x 是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; ············ 5分 (2)由(1)知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200 设该蔬菜每千克售价为元,根据题意得[100(1-2%)+200(1-3%)]944700400≥--y . ··········· 8分 ∴7≥y . ···························· 9分 ∴该蔬菜每千克售价至少为7元. ················ 10分24. (1)∵四边形ABCD 是正方形∴∠BCG =∠DCB=∠DCF=90°,BC=DC .∵BE ⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF . ……………………………………2分 ∴△CBG ≌△CDF .∴BG=DF=4. ……………………………………3分∴在Rt △BCG 中,222BG BC CG =+∴CG =73422=-. …………………………4分(2)过点C 作CM ⊥CE 交BE 于点M∵∠BCG=∠MCE =∠DCF =90° ∴∠BCM=∠DCE ,∠MCG=∠ECF ∵BC=DC ,∠CBG=∠CDF∴△CBM ≌△CDE ……………………………………6分 ∴CM=CE∴△CME 是等腰直角三角形 ……………………………………7分∴ME=CE 2 ,即MG+EG=CE 2又∵△CBG ≌△CDF ∴CG=CF∴△CMG ≌△FCE ……………………………………9分 ∴MG=EF∴EF+EG =2CE ……………………………………10分26.(1)过点D 作DK ⊥BC 延长线于K∴Rt △DKC 中,CK =3.∴Rt △DBK 中,BD=544)35(22=-+ ……………………2分 在Rt △ABE 中,AB =5,AE =4, . ∴BE =3,∴当点Q 与点A 重合时,3=t . …………3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<++-≤<-+-≤<=)54(1041)43(31031032)3715(35091402768)7150(9102222t t t t t t t t t t S …………8分(3)当点M 与点D 重合时,BP=QM=4,∠BPO=∠MQO ,∠BOP=∠MOQ ∴△BPO ≌△MQO ∴PO=2,BO=52若HB=HG 时,∠HBC=∠HGB=∠O B H ' ∴B O '∥BG ∴HO=B H '∴设HO=B H '=222)4(2x x -+=, ∴25=x ∴4252=OH . ……………………………………9分 若GB=GH 时, ∠GBH=∠GHB∴此时,点G 与点C 重合,点H 与点D 重合∴20)52(222===OD OH . ……………………………………10分 当BH=BG 时, ∠BGH=∠BHG∵∠HBG=∠B ', ∴∠B OH B HO '∠='∴B O B H '='=52,∴P H '=452-.A P 'B B 'O C D HGA BC D OP ' B '(G) (H)ABC DOB 'P 'G H∴51640)452(2222-=-+=OH . 或∠BGH=∠H∴∠OBG=∠H P B O ∠=''2 ∴∠H B HO ∠='∴B O B H '='=52,∴P H '=452+.∴51640)452(2222+=++=OH . ……………………………………12分 综上所述,当4252=OH 、20、51640-、51640+时,△BGH 为等腰三角形.P ' G HB A DO CB '。
2020-2021学年重庆一中八年级(下)期末数学试卷(含解析)

2020-2021学年重庆一中八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.函数y=中,自变量x的取值范围是()√x−2A. x>2B. x≥2C. x>−3D. x≥−32.在平行四边形、等边三角形、矩形、正八边形、圆、菱形六个图形中,既是中心对称图形又是轴对称图形的有A. 2个B. 3个C. 4个D. 5个3.在一个仓库里堆积着若干个正方体的货箱,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物分别从正面,左面,上面所看到的平面图形画了出来,如图所示,你能根据这些平面图形帮他清点一下箱子的数量吗?这些正方体货箱的个数是()A. 5B. 6C. 7D. 84.已知△ABC∽△DEF,且AB:DE=1:3,则△DEF与△ABC的面积之比为()A. 1:3B. 9:1C. 1:6D. 1:95.如图,正五边形ABCDE内接于⊙O,点P为DE⏜上一点(点P与点D,点E不重合),连接PC,PD,DG⊥PC,垂足为G,则∠PDG等于()A. 72°B. 54°C. 36°D. 64°6.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于12PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. 12B. 1C. 65D. 327.若方程2x2−3x−4=0的两根是x1,x2,那么(x1+1)(x2+1)的值是()A. −12B. −6 C. 12D. −528.在反比例函数y=3−mx的图象在某象限内,y随着x的增大而减小,则m的取值范围是()A. m>−3B. m<−3C. m>3D. m<39.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠A E D=90°②∠A D E=∠C D E③D E=B E④AD=AB+CD,四个结论中成立的是()A. ①②④B. ①②③C. ②③④D. ①③④10.如图,为测量一幢大楼的高度,在地面上距离楼底O点30m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为()m.A. 30⋅sin65°B. 30cos65∘C. 30⋅tan65° D. 30tan65∘11.已知关于x的分式方程2x−3+x+a3−x=2有正整数解,且关于x的不等式组{x−13−1>−22(x+1)≤x+a至少有2个整数解,则符合条件的整数a的个数为()A. 2B. 3C. 4D. 512.如图,A是半径为2√2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC//OA,则BC的长为()A. √2B. 2C. 2√2D. 4二、填空题(本大题共8小题,共24.0分)13.若3a=5b,则ba=______.14.直角三角形的两边长分别是3cm、5cm,则第三边长______cm.15.已知点A(2,y1),B(4,y2)都在反比例函数y=kx(k<0)的图象上,则y1,y2的大小关系为______.16.如图,在平面直角坐标系中,点A坐标为(1,3),点B坐标为(4,1),点C在x轴上,点D在y轴上,则以A、B、C、D为顶点的四边形的周长的最小值是______.17.把矩形ABCD沿着对角线BD折叠,使点C落在C′处,交AD于E,若AD=8,AB=4,则AE的长为______.18.关于x的一元二次方程2x2−2x+m−2=0有正整数根,则正整数m的值为______.19.如图,在平面直角坐标系中,抛物线y=x2−2x+2交y轴于点A,直线AB交x轴正半轴于点B,交抛物线的对称轴于点C,若OB=2OA,则点C的坐标为______ .20. 如图,在△ABC 中,∠ACB =90°,∠A =34°,D ,E 分别为AB ,AC 上一点,将△BCD ,△ADE 沿CD ,DE 翻折,点A ,B 恰好重合于点P 处,则∠ACP =______°.三、解答题(本大题共9小题,共78.0分)21. 解二元一次方程组{3x −2y =32x +3y =15.22. 如图,PB 为⊙O 的切线,点B 为切点,直线PO 交⊙O于点E ,F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF ,(1)求证:直线PA 为⊙O 的切线;(2)若BC =6,tan∠F =12,求cos∠ACB 的值.23. 先化简,再求值:(x 2−3x−1−2)÷1x−1,其中x 满足x 2−2x −5=0.24.阅读材料并解决问题2016年北京市春季学期初中开放性科学实践活动共上线1009个活动项目,资源单位为学生提供了三种预约方式:自主选课、团体约课、送课到校,其中少年创学院作为首批北京市开放性科学实践平台入选单位,在2015年下半年就已经分别为北京市多所学校提供送课到校服务,并以高质量的创客课堂赢得大家的认可.全市初一学生可以通过网络平台进行开放性科学实践平台选课,活动项目包括六个领域,A:自然与环境,B:健康与安全,C:结构与机械,D:电子与控制,E:数据与信息,F:能源与材料某区为了解学生自主选课情况,随机抽取了初一部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)扇形统计图中m值为______;(2)这次被调查的学生共有______人;(3)请将统计图2补充完整;(4)该区初一共有学生3000人,根据以上信息估计该区初一学生中选择电子与控制的人数约有______人.25.反比例函数y=k与一次函数y=x−4都经过点A(−2,m).x(1)求m的值;(2)求反比例函数的解析式.26.一次函数y=kx+4的图象经过点(−1,2).(1)求出这个一次函数的解析式;(2)在平面直角坐标系中画出这个函数的图象;(3)把该函数图象向下平移1个单位长度后得到的函数图象解析式为______.27.某商店经销甲、乙两种商品,现有如下信息:(1)甲、乙两种商品的进货单价各是多少元?(2)该商店平均每天卖出甲商品500件,乙商品200件.经调查发现,甲、乙两种商品零售单价分别每涨0.5元,这两种商品每天各少销售50件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都涨n元,在不考虑其它因素的条件下,当甲、乙两种商品的零售单价分别定为多少元时,才能使商店每天销售这两种商品获取的利润最大?每天的最大利润是多少元?28.如图,在平行四边形ABCD纸片中,AC⊥AB,AC与BD交于点O,把△OAB沿对角线AC翻折后,E与B对应.(1)试问:四边形ACDE是什么形状的四边形?为什么?(2)若EO平分∠AOD,求证△ODE为等边三角形.29.如图,直线y=kx+b与x轴、y轴分别交于点A(4,0)、B(0,4),点P在x轴上运动,(1)求k、b的值;(2)在x轴上是否存在点C,使得△ABC为等腰三角形?若存在,求出点C的坐标;若不存在,说明理由.(3)若点O′恰好落在直线AB上,求△OBP的面积.答案和解析1.【答案】A【解析】解:根据题意得:x−2>0,解得:x>2,故选:A.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知:x−2>0,解得x的范围.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.【答案】C【解析】平行四边形不是轴对称图形,是中心对称图形,不符合题意;等边三角形是轴对称图形,不中心对称图形,不符合题意;矩形、正八边形、圆、菱形是轴对称图形,也是中心对称图形,符合题意;综上可得符合题意的有4个.故选C.3.【答案】D【解析】【分析】此题主要考查了由三视图想象立体图形,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和【解答】解:从图可得箱子的个数有8个,如图:故选D.4.【答案】B【解析】解:∵△ABC∽△DEF,且AB:DE=1:3,∴△DEF与△ABC的面积之比为9:1,故选:B.根据相似三角形的面积比是相似比的平方即可完成.本题考查相似三角形的性质:相似三角形的面积比等于相似比的平方,解题时注意两个三角形的先后顺序.5.【答案】B【解析】解:连接OC,OD.=72°,在正五边形ABCDE中,∠COD=360°5∠COD=36°,∴∠CPD=12∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°−36°=54°,故选:B.连接OC,OD.求出正五边形的中心角,再利用圆周角定理可得结论.本题考查正多边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于6.【答案】B【解析】【分析】本题考查的是作图−基本作图,熟知角平分线的作法是解答此题的关键.只要证明BE=BC即可解决问题.【解答】解:由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB//CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE−AB=1.故选B.7.【答案】C【解析】解:根据韦达定理得x1+x2=32,x1⋅x2=−2∴(x1+1)(x2+1)=x1+x2+x1⋅x2+1=32−2+1=12.故选:C.首先根据根与系数的关系求得x1+x2=32,x1⋅x2=−2;再进一步利用整式的乘法把(x1+1)(x2+1)展开,代入求得数值即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=−ba ,x1⋅x2=ca.8.【答案】D【解析】解:∵反比例函数y=3−mx的图象在每个象限内,y随着x的增大而减小,∴3−m>0,解得,m<3.故选:D.根据反比例函数的性质可得3−m>0,再解不等式即可.本题考查了反比例函数的性质.对于反比例函数y=kx,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x 增大而增大.9.【答案】A【解析】【分析】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【解答】解:过E 作EF ⊥AD 于F ,如图,∵AB ⊥BC ,AE 平分∠BAD ,∴Rt △AEF≌Rt △AEB∴BE =EF ,AB =AF ,∠AEF =∠AEB ;而点E 是BC 的中点,∴EC =EF =BE ,所以③错误;∴Rt △EFD≌Rt △ECD ,∴DC =DF ,∠FDE =∠CDE ,所以②正确;∴AD =AF +FD =AB +DC ,所以④正确;∴∠AED =∠AEF +∠FED =12∠BEC =90°,所以①正确. 故①②④正确.故选A .10.【答案】C【解析】解:如图,在Rt △ABO 中,∵∠AOB =90°,∠A =65°,AO =30m ,∴tan65°=BO AO ,∴BO =30⋅tan65°.故选:C .利用正切函数的定义tan∠BAO =OB AO 即可解决.本题考查解直角三角形的应用、记住三角函数的定义是解题的关键,属于基础题. 11.【答案】A【解析】解:解不等式组{x−13−1>−22(x +1)≤x +a,得:−2<x ≤a −2, ∵不等式组至少有2个整数解,∴a −2≥0,解得:a ≥2,解关于x 的分式方程:2x−3+x+a 3−x =2,得:x=8−a,3∵分式方程有正整数解,≠3,a≠−1,∴8−a>0,8−a是3的倍数,且8−a3解得:a=5,2,−4,…,所以所有满足条件的整数a的值为2和5,有2个.故选:A.解不等式组和分式方程得出关于x的范围及x的值,根据不等式组至少有2个整数解和分式方程的解为正整数得出a的范围,继而可得整数a的值.本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于a的范围是解题的关键12.【答案】D【解析】【分析】本题考查了圆的切线性质,及解直角三角形的知识.连接OC,在Rt△OAB中,根据勾股定理得AB=√42−(2√2)2=2√2,∠AOB=∠OAB= 45°;在△OCB中,OC=OB=2√2,∠2=∠3,利用BC//OA,得△OCB是等腰直角三角形,根据勾股定理可求BC.【解答】解:如图:连接OC,∵AB是⊙O的切线,∴OB⊥AB,即∠ABOA=90°,在Rt△OAB中,OA=4,OB=2√2.∵AB2=OA2−OB2即AB=√42−(2√2)2=2√2.∴OB=AB,∠AOB=∠OAB=45°.在△OCB中,OC=OB=2√2,∠2=∠3.∵BC//OA,∴∠3=∠AOB=∠OAB=45°.∴△OCB是等腰直角三角形.∴BC=√OC2+OB2=4.故选D.13.【答案】35【解析】解:3a=5b,b a =35.故答案为:35.根据比例的性质求出即可.本题考查了比例的性质的应用,能熟练地运用比例的性质进行变形是解此题的关键,注意:如果ab =cd,那么ad=bc.14.【答案】4或√34【解析】解:①当3cm和5cm都是直角边时,第三边为斜边,由勾股定理得:第三边为√32+52=√34(cm);②当3cm为直角边和5cm为斜边时,第三边为直角边,由勾股定理得:第三边为√52−32=4(cm).故答案为:4或√34.分为两种情况,①当3cm和5cm都是直角边时;②当3cm为直角边和5cm为斜边时;根据勾股定理求出即可.本题考查了勾股定理的应用,能根据勾股定理求出符合的所以情况是解此题的关键,注意:直角三角形两直角边的平方和等于斜边的平方,用了分类讨论思想.15.【答案】y1<y2【解析】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=kx(k<0)的图象上,∴每个象限内,y随x的增大而增大,∵2<4∴y1<y2,故答案为y1<y2.直接利用反比例函数的增减性分析得出答案.此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.16.【答案】√13+√41【解析】解:如图,作点A关于y轴的对称点A′,点B关于x轴的对称点B′,连接A′B′交x轴于C,交y轴于D,连接AD,CD,BC,AB,四边形ABCD的周长最小.由作图可知:AD=DA′,BC=CB′,A′(−1,3),B′(4,−1)∴四边形ABCD使得周长=AB+BC+CD+AD=AB+B′C+CD+DA′=AB+A′B′=√32+22+√52+42=√13+√41,故答案为√13+√41.如图,作点A关于y轴的对称点A′,点B关于x轴的对称点B′,连接A′B′交x轴于C,交y轴于D,连接AD,CD,BC,AB,四边形ABCD的周长最小.四边形ABCD使得周长=AB+BC+CD+AD=AB+B′C+CD+DA′=AB+A′B′.本题考查轴对称−最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.17.【答案】3【解析】【分析】本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.由矩形的性质和折叠的性质可得DE=BE,由勾股定理可求AE的长.【解答】解:∵四边形ABCD是矩形,∴AD//BC∴∠EDB=∠DBC,∵折叠∴∠EBD=∠DBC∴∠EDB=∠EBD∴BE=DE在Rt△ABE中,AE2+AB2=BE2,∴AE2+16=(8−AE)2,∴AE=3故答案为:318.【答案】2【解析】解:由题意△≥0,∴4−8(m−2)≥0,,解得m≤52∵m是正整数,∴m=1或2,当m=1时,方程:2x2−2x−1=0,没有正整数根,不合题意舍弃,当m=2时,方程:2x2−2x=0,有正整数根符合题意,∴m的值为2,故答案为2利用判别式△≥0,确定m的取值范围,求出m的整数解即可判断.本题考查一元二次方程的根的判别式,解题的关键是理解题意灵活运用所学知识解决问题.)19.【答案】(1,32【解析】【分析】本题考查了二次函数的性质以及待定系数法求一次函数的解析式,利用抛物线的解析式求A的坐标和对称轴是解题的关键.由抛物线的解析式求得A(0,2)和对称轴x=1,进而求得B的坐标,然后根据待定系数法求得直线AB的解析式,把x=1代入即可求得.【解答】解:由抛物线y=x2−2x+2=(x−1)2+1,可知A(0,2),对称轴为x=1,∴OA=2,∵OB=2OA,∴B(4,0),设直线AB的解析式为y=kx+b,∴{b=24k+b=0,解得{k=−12b=2,∴直线AB为y=−12x+2,当x=1时,y=32,∴C(1,3 2 ).20.【答案】22【解析】解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=12AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°−90°=22°,故答案为:22.根据折叠的性质即可得到AD=PD=BD,可得CD=12AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD=112°,即可得出∠ACP= 112°−90°=22°.本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.21.【答案】解:{3x −2y =3 ①2x +3y =15 ②, ①×3+②×2得:13x =39,解得:x =3,把x =3代入①得:9−2y =3,解得:y =3,所以原方程组的解为:{x =3y =3.【解析】①×3+②×2得出13x =39,求出x ,把x =3代入①求出y 即可.本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.22.【答案】证明:(1)连接OB ,∵PB 是⊙O 的切线,∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于D ,∴AD =BD ,∠POA =∠POB ,在△PAO 和△PBO 中,{OA =OB ∠POA =∠POB OP =OP,∴△PAO≌△PBO(SAS),∴∠PAO =∠PBO =90°,∴OA ⊥PA ,∴直线PA 为⊙O 的切线;(2)∵OA =OC ,AD =DB ,∴OD =12BC =3,设AD =x ,∵tan∠F=12,∴FD=2x,则OA=OF=2x−3,在Rt△AOD中,OA2=OD2+AD2,即(2x−3)2=32+x2,解得,x=4,则AD=4,AB=8,∵AC是直径∴∠ABC=90°∴AC=√AB2+BC2=10∴cos∠ACB=BCAC=610=35【解析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,继而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论;(2)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,根据勾股定理计算即可.此题考查了切线的判定与性质、勾股定理、全等三角形的判定与性质,掌握圆的切线垂直于经过切点的半径、全等三角形的判定定理和性质定理是解题的关键.23.【答案】解:(x2−3x−1−2)÷1x−1=x2−2x−1x−1⋅(x−1)=x2−2x−1,∵x满足x2−2x−5=0,∴x2−2x=5,当x2−2x=5时,原式=5−1=4.【解析】先算括号内的减法,同时把除法变成乘法,再代入求出即可.本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.24.【答案】(1)30;(2)200;(3)E项目人数为200×20%=40人,补全图形如下:(4)900;【解析】解:(1)扇形统计图中m%=1−(10%+15%+10%+20%+15%)=30%,即m=30,故答案为:30;(2)这次被调查的学生共有20÷10%=200人,故答案为:200;(3)见答案;(4)估计该区初一学生中选择电子与控制的人数约有3000×30%=900人,故答案为:900.【分析】(1)根据各组的百分比的和是1即可求得m的值;(2)根据A项目的有20人,所占的百分比是10%,据此即可求得总人数;(3)根据百分比的意义求得E领域的人数,补全直方图;(4)利用总人数乘以对应的百分比即可求解.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.【答案】解:(1)因为一次函数y=x−4经过点A(−2,m),所以m=−2−4m=−6;(2)因为反比例函数经过点A(−2,−6),所以,所以k=12,所以反比例函数的解析式为.【解析】试题分析:(1)根据把函数的交点坐标代入一次函数解析式,可得函数值;(2)根据待定系数法,可得反比例函数的解析式.26.【答案】(1)∵一次函数y =kx +4的图象经过点(−1,2),∴2=−k +4,∴k =2,∴y =2x +4.(2)函数图象如图所示:(3)y =2x +3【解析】解:(1)见答案.(2)见答案(3)把该函数图象向下平移1个单位长度后得到的函数图象解析式为y =2x +3, 故答案为y =2x +3.(1)根据待定系数法即可解决问题;(2)利用描点法画出函数图象即可;(3)根据平移的性质即可解决问题;本题考查一次函数的图象与几何变换,解题的关键是熟练掌握基本知识,属于中考常考题型.27.【答案】解:(1)假设甲、乙两种商品的进货单价各为x ,y 元,则甲的零售价是(x +2)元,乙的零售价是(2y −3)元.根据题意得:{x +y =102(x +2)+3(2y −3)=31, 解得:{x =6y =4,∴甲、乙零售单价分别为6元和4元;(2)甲、乙两种商品的零售单价都涨n元,则甲、乙商品的销售量分别是(500−100n)、(200−100n)件,甲的每件利润是(2+n)元,乙每件的利润是2y−3−y+n=y−3+ n=1+n元.则商店的每天的销售利润w=(500−100n)(2+n)+(200−100n)(1+n),即w=−200n2+400n+1200,=1时,w最大,最大值是:1400元.则当n=−4002×(−200)【解析】(1)根据图上信息可以得出甲乙商品之间价格之间的等量关系,即可得出方程组求出即可;(2)把商店的销售利润表示成n的函数,根据函数的性质即可求解.此题主要考查了一元二次方程的应用,此题比较典型也是近几年中考中热点题型,注意表示总利润时表示出商品的单件利润和所卖商品件数是解决问题的关键.28.【答案】(1)解:四边形ACDE是矩形.理由如下:∵四边形ABCD为平行四边形,∴AB//CD,AB=CD;又∵AB⊥AC,∴∠BAC=∠DCA=90°;∵把△OAB沿对角线AC翻折后,E与B对应,∴AE=AB,∠EAO=∠BAO=90°,∴AE//CD,AE=CD,且∠EAC=90°,∴四边形ACDE是矩形;(2)证明:∵把△OAB沿对角线AC翻折后,E与B对应,∴∠AOE=∠AOB,OE=OB.∵在平行四边形ABCD中,OD=OB,∴OE=OD.∵EO平分∠AOD,∴∠AOE=∠DOE,∴∠AOE=∠DOE=∠AOB.∵∠AOE+∠DOE+∠AOB=180°,∴∠AOE=∠DOE=∠AOB=60°,∴△ODE为等边三角形.【解析】(1)首先根据平行四边形的性质得出AB//CD,AB=CD;又AB⊥AC,得出∠BAC=∠DCA=90°;再根据折叠的性质得出AE=AB,∠EAO=∠BAO=90°,那么AE//CD,AE=CD,且∠EAC=90°,从而得到四边形ACDE为矩形;(2)根据平行四边形与折叠的性质得出OE=OD,再证明∠AOB=∠AOE=∠EOD=60°,从而证明△ODE为等边三角形.本题考查了平行四边形的性质、翻折变换的性质、矩形的判定以及等边三角形的判定;解题的关键是牢固掌握平行四边形的性质、翻折变换的性质等知识点.29.【答案】解:(1)∵点A(4,0)、B(0,4)在直线y=kx+b上,∴{4k+b=0b=4,解得:k=−1,b=4;(2)存在,理由如下:如图1所示,①当AB=AC时,AC=AB=√42+42=4√2,可得C1(4−4√2,0),C2(4+4√2,0).②当BA=B时,OA=OC=4,可得C3(−4,0).③当CA=CB时,点C与点O重合,可得C4(0,0),综上所述,满足条件的点C坐标为(4−4√2,0)或(4+4√2,0)或(−4,0)或(0,0).(3)存在两种情况:①当P在x轴的正半轴上时,如图2所示:点O′恰好落在直线AB上,则OP=O′P,∠BO′P=∠BOP=90°,∵OB=OA=4,∴△AOB是等腰直角三角形,∴AB=4√2,∠OAB=45°,由折叠得:∠OBP=∠O′BP,BP=BP,∠PO′B=∠POB=90°,∴∠PO′A=90°,∴O′B=OB=4,∴AO′=4√2−4,Rt△PO′A中,O′P=AO′=4√2−4=OP,∴S△OBP=12OB⋅OP=12×4×(4√2−4)=8√2−8;②当P在x轴的负半轴时,如图3所示:由折叠得:∠PO′B=∠POB=90°,O′B=OB=4,∵∠BAO=45°,∴PO′=PO=AO′=4√2+4,∴S△OBP=12OB⋅OP=12×4×(4√2+4)=8√2+8;综上所述,△OBP的面积为8√2−8或8√2+8.【解析】(1)用待定系数法直接求出;(2)分三种情形讨论,①当AB=AC时,②当BA=BC时,③当CA=CB时;分别求出即可;(3)分P在x轴的正半轴和负半轴:①当P在x轴的正半轴时,求OP=O′P=AO′= 4√2−4,根据三角形面积公式可得结论;②当P在x轴的负半轴时,同理可得结论.此题是一次函数综合题,考查了待定系数法、坐标与图形性质、折叠的性质、勾股定理、等腰直角三角形的判定与性质、三角形的面积公式、等腰三角形的性质以及分类讨论等知识;本题综合性强,熟练掌握待定系数法和等腰三角形的性质,进行分类讨论是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆一中初2012级2010-2011年八年级下学期期末数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1. 试题的答案用钢笔或圆珠笔书写在答题卷上,不得在试卷上直接作答.2. 答题前将答题卷上密封线内的各项内容写清楚.3. 考试结束,由监考人员将答题卷收回,试题卷不收回.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内. 1.不等式21>+x 的解集是A.1>xB.1<xC.1≥xD.1≤x 2.多项式22y x -分解因式的结果是A.2)(y x + B.2)(y x - C.))((y x y x -+ D.))((x y x y -+3.函数23-=x y 的自变量的取值范围是 A.2>x B.2≠x C.2≥x D.2-≠x4.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是 A.ACBC AB AC =B.BC AB BC ⋅=2C.215-=ABAC D.618.0≈ACBC5.若ABC ∆∽DEF ∆,若050=∠A ,060=∠B ,则F ∠的度数是 A.050 B.060 C.070 D.080 6.下列调查中,适宜采用普查方式的是A.调查中国第一艘航母各零件的使用情况B.调查重庆市中学生对利比亚局势的看法C.调查一箱牛奶是否含有三聚氰胺D.调查重庆一中所有学生每天跳绳的时间7.若0=+-c b a ,则关于x 的一元二次方程)0(02≠=++a c bx ax 有一根是4题图A.1=xB.1-=xC.0=xD.无法判断8. 已知反比例函数xy 1-=图像上有三个点的坐标分别为),(11y x A 、),(22y x B 、),(33y x C ,若当3210x x x <<<时,则1y 、2y 、3y 的大小关系是A.321y y y <<B.123y y y <<C.213y y y <<D.312y y y << 9. 如图1,已知AC AB =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AC AB =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AC AB =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依次规律,第n 个图形中有全等三角形的对数是A.nB.12-nC.2D.)1(3+n 10.如图,正方形ABCD 中,E 为AD 的中点,CE DF ⊥于M ,交AC 于N ,交AB 于F ,连接EN 、BM .有如下结论: ①DCE ADF ∆≅∆;②FN MN =;③AN CN 2=;④5:2:=∆CNFB ADN S S 四边形;⑤BMF ADF ∠=∠.其中正确结论的个数是 A.2个 B.3个 C.4个 D.5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.11.分解因式:=+-2422x x .12.如图,DE 是ABC ∆的中位线,则ADE ∆与ABC ∆的面积比为 .13.重庆一中初2012级举行了丰富多彩的综合实践活动,在刚刚结束的跳绳比赛中, 初2012级某6个班跳绳个数分别是:570,600,552,482,481,486. 则这组数据的中位数是 . 14. 若一元二次方程022=++k x x 有两个实数根,则k 的取值范围是 . 15.如图,在平面直角坐标系xOy 中,P 是反比例函数图象上一点,过点P 作x PA ⊥轴于点A ,1=∆AOP S ,则这个反比例函数的解析式是 .C16.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后 再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空; 如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开 分钟.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上. 17.解不等式212-<-x x ,并把解集在数轴上表示出来.18.解分式方程32121---=-xx x .19.解一元二次方程03622=-+x x .20.如图,在ABC ∆中,BC DE //,DE 交AC 于E 点,DE 交AB 于D 点,若5=AE ,2=CE ,3=DE .求BC 的长.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a .22.如图,已知一次函数b x k y +=1的图象分别与x 轴、y 轴的正半 轴交于A 、B 两点,且与反比例函数xk y 2=交于C 、E 两 点,点C 在第二象限,过点C 作CD ⊥x 轴于点D , 1==OB OA ,2=CD .(1)求反比例函数与一次函数的解析式; (2)求BOC ∆的面积.20题图成绩10AD40%B C23.重庆一中初2012级上周刚刚举行了初二下期体育期末考试,现随机抽取了部分学生的成绩为样本,按A (优秀)、B (良好)、C (及格)、D (不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题: (1) 本次调查共随机抽取了 名学生; (2) 将条形统计图在图中补充完整; (3) 扇形统计图中“A ”部分所对应的圆心角的度数是 ; (4) 若随机抽取一名学生的成绩在等级C 的概率是 ;(5) 初2012级目前举行了四次体育期末考试,分别是初一上期体育期末考试、初一下期体育期末考试、初二上期体育期末考试、初二下期体育期末考试.学生小欣初一下期体育期末考试成绩为25分,初二下期体育期末考试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率.24.如图,梯形ABCD 中,CD AB //,BC DC AD ==,060=∠DAB ,E 是对角线AC 延长线上一点,F 是AD 延长线上的一点,且AB EB ⊥,AF EF ⊥. (1) 当1=CE 时,求BCE ∆的面积; (2) 求证:CE EF BD +=.23题图五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上. 25.某商店今年61-月份经营A 、B 两种电子产品,已知A 产品每个月的销售数量y (件)与月份x (61≤≤x 且x 为整数)之间的关系如下表: 月份x 1 2 3 4 5 6 销量y 600 300 200 150 120 100A 产品每个月的售价z (元)与月份x 之间的函数关系式为:x z 10=; 已知B 产品每个月的销售数量m (件)与月份x 之间的关系为:622+-=x m ,B 产品每个月的售价n (元)与月份x 之间存在如图所示的变化趋势:(1) 请观察题中表格,用所学过的一次函数或反比例函数的有关知识,直接写出y 与x 的函数关系式;(2) 请观察如图所示的变化趋势,求出n 与x 的函数关系式;(3) 求出此商店61-月份经营A 、B 两种电子产品的销售总额w 与月份x 之间的函数关系式;(4) 今年7月份,商店调整了A 、B 两种电子产品的价格,A 产品价格在6月份基础上增加%a ,B 产品价格在6月份基础上减少%a ,结果7月份A 产品的的销售数量比6月份减少%2a ,B 产品的销售数量比6月份增加%2a .若调整价格后7月份的销售总额比6月份的销售总额少2000元,请根据以下参考数据估算a 的值. (参考数据:69.393.62=,91.404.62=,25.425.62=,56.436.62=)n (图(2)MNOBPCA Q图(1)QACPBON26.如图(1)AOB Rt ∆中,090=∠A ,060=∠AOB ,32=OB ,AOB ∠的平分线OC交AB 于C ,过O 点作与OB 垂直的直线ON .动点P 从点B 出发沿折线CO BC -以每秒1个单位长度的速度向终点O 运动,运动时间为t 秒,同时动点Q 从点C 出发沿折线ON CO -以相同的速度运动,当点P 到达点O 时P 、Q 同时停止运动.(1)求OC 、BC 的长;(2)设CPQ ∆的面积为S ,直接写出S 与t 的函数关系式;(3)当P 在OC 上、Q 在ON 上运动时,如图(2),设PQ 与OA 交于点M ,当t 为何值时,OPM ∆为等腰三角形?求出所有满足条件的t 值.参考答案(本卷共五个大题 满分:150分 考试时间:120分钟)注意事项:1.试卷各题的答案用钢笔或圆珠笔书写在答题卷上,不得在试卷上直接作答。
2.答题前将答题卷上密封线内的各项内容写清楚。
3.考试结束,由监考人员将答题卷收回,试题卷不收回第I 卷(选择题 共40分) 题号 1 2 3 4 5 6 7 89 10 答 案 ACB BC A BC C C第Ⅱ卷(非选择题 共110分)二、填空题(每小题4分,共24分)11. 2)1(2-x . 12.4:1.13. 519 . 14.1≤k .15.xy 2-=. 16. 40 . 三、解答题(共24分) 17.(6分)解:142-<-x x …………2分 3<x …………4分图略…………6分18.(6分)解:)2(311---=x x …………2分6311+--=x x521+-=x …………3分 42=x2=x …………4分经检验2=x 是原方程的增根…………5分 ∴原方程无解…………6分题 号 一二 三 四 五 总分 总分人分 数得 分 评卷人得 分 评卷人得 分 评卷人第20题图19.(6分)解:3,6,2-===c b a Θ …………1分060)3(246422>=-⨯⨯-=-∴ac b …………2分22606242⨯±-=-±-=∴a ac b b x215341526±-=±-=…………4分21531+-=∴x ,21532--=x …………6分20.(6分)解:BC DE //ΘB ADE ∠=∠∴…………1分 A A ∠=∠Θ…………2分ABC ADE ∆≈∆∴…………3分BC DEAC AE =∴…………4分 BC DECE AE AE =+∴ BC 3255=+∴…………5分 521=∴BE …………6分 四、解答题(共40分)21.(10分)解:原式a a a a a a a a )2)(2()2)(2(8)2(2-+÷⎥⎦⎤⎢⎣⎡-+--+= )2)(2()2)(2(8)2(2-+⋅-+-+=a a aa a a a a222)2()2()2(-+-=a a a 2)2(1+=a 4412++=a a …………6分 得 分 评卷人得 分 评卷人得 分 评卷人人数D C B A 020103040AD40%B C0142=++a a Θ 142-=+∴a a ∴原式31411=+-=…………10分22.(10分)解:(1)1==OB OA Θ )0,1(),1,0(A B ∴ b x k y +=1Θ过)1,0(),0,1(A⎩⎨⎧=+=∴b b k 101 ⎩⎨⎧=-=∴111b k1+-=∴x y …………4分 2=CD Θ ∴令)2,(m D1+-=x y Θ过)2,(m D 12+-=∴m 1-=∴m )2,1(-∴Dx k y 2=Θ过)2,1(-D 122-=∴k22-=∴k xy 2-=∴…………8分 (2))2,1(-D Θ 1=∴OD 21112121=⨯⨯=⋅=∴∆DO BO S BOC …………10分23.(10分)(1) 100 ;…………1分 (2)图略…………3分得 分 评卷人得 分 评卷人23题图(3)072;…………5分(4)103;…………7分 (5)令增长率为x 36)1(252=+x 2.2,2.021-==∴x x (舍)∴增长率为%20…………10分分)(1)解:CD AD =Θ DCA DAC ∠=∠∴AB DC //Θ CAB DCA ∠=∠∴03021=∠=∠=∠∴DAB CAB DAC BC AD AB DC =,//Θ 060=∠=∠∴CBA DAB90)(180=∠+∠-=∠∴CBA CAB ACB 0090180=∠-=∠∴ACB BCEAB BE ⊥Θ 090=∠∴ABE 030=∠-∠=∠∴ABC ABE CBE在BCE Rt ∆中,22==CE BE ,322=-=CE BE BC23312121=⨯⨯=⋅=∴∆CE BC S BCE …………5分 (2)证明:过E 点作DB EM ⊥于点M ∴四边形FDME 是矩形 DM FE =∴ 090=∠=∠BCE BME Θ 060=∠=∠MBE BECECB BME ∆≅∆∴ CE BM =∴ CE EF BM DM BD +=+=∴…………10分四、解答题(共22分)25.(10分)解:(1)xy 600=…………1分 (2)令)0(≠+=k b kx n)0(≠+=k b kx n Θ过)40,2(),30,1(n (⎩⎨⎧+=+=∴b k b k 24030 ⎩⎨⎧==∴2010b k2010+=∴x n …………3分(3))2010)(622(10600++-+⨯=+=x x x xmn yz w )124058020(6002++-+=x x 1840580202++-=x x …………5分 (4)今年6月份A 产品的售价:60610=⨯=z 元今年6月份B 产品的售价:8020610=+⨯=n 元今年6月份B 产品的销售数量:506262=+⨯-=m 件2000805010060%)21(50%)1(80%)21(100%)1(60-⨯+⨯=+⋅-+-⋅+a a a a …………8分令%a p =,整理得 01102=-+p p020411,2041121<--=+-=∴p p (舍) 25.425.6,91.404.6,69.393.6222===Θ 而40.91更接近41 4.641≈∴ 27.0204.61=+-≈∴p 27≈∴a a ∴的值约为27…………10分26.(12分)解:(1)在AOB Rt ∆中,003090=∠-=∠AOB ABO321==∴OB AOOC Θ平分AOB ∠ 03021=∠=∠=∠∴AOB BOC AOC题图图(2)MNOBPCA Q∴在AOC Rt ∆中,令x AC = x AC OC 22==∴222)3()2(+=∴x x 1,121-==∴x x (舍)2,1==∴OC AC …………3分30=∠=∠CBO COB Θ 2==∴OC BC …………4分 (2)当20≤<t 时,t t S 23432+-=…………6分 当42<<t 时,32233432-+-=t t S …………8分 (3)2-=t QO ,t PO -=4,060=∠POQ ①MP OM =时,如图∴030=∠=∠MPO MOP 090=∠∴PQOQO PO 2=∴ )2(24-=-∴t t 38=∴t …………9分 ②OP OM =时,如图00752180=∠-=∠=∠∴POMOPM OMP 045=∠-∠=∠∴POM PMO PQO过P 点作ON PD ⊥于D 点,030=∠∴DOP 21OP DO ==∴ )4(2322t DO PO PD -=-=∴045=∠PQD Θ)4(23t PD QD -==∴ DQ OD OQ +=Θ )4(23)4(212t t t -+-=-∴ 33348++=∴t …………11分③PM OP =时,此时030=∠=∠PMO POM ,而030=∠NOM ,ON PM //∴,故舍…………12分∴当38=t 或33348++时,OPM ∆为等腰三角形。