新人教版八年级数学下册18.2.2 第1课时 菱形的性质3(同步练习)

合集下载

人教版数学八年级下册同步课时训练1822 第1课时 菱形的性质

人教版数学八年级下册同步课时训练1822 第1课时 菱形的性质

18.2.2 第1课时菱形的性质1菱形的定义1.如图所示,在平行四边形ABCD中,若AB=BC,则这个平行四边形是.2.如图,折叠▱ABCD纸片,使AB与AD边重合,并且点B落在AD上的点B'处,折痕为AE,再将图形展开,得到四边形ABEB',请你判断四边形ABEB'是不是菱形,并说明理由.2菱形的性质3.(2021河南)关于菱形的性质,以下说法不正确的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形4.如图,在菱形ABCD中,∠D=150°,则∠1的度数为 ()A.30°B.25°C.20°D.15°5.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于 ()A.√5B.4√3C.4√5D.206.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,E是边AB的中点,若OE=6,则BC 的长为.7.(2021菏泽)如图,在菱形ABCD中,点M,N分别在边AB,CB上,且∠ADM=∠CDN.求证:BM=BN.3菱形面积的计算8.若菱形的两条对角线的长分别为6 cm和8 cm,则其面积为cm2.9.(教材练习T1变式)如图所示,四边形ABCD是边长为10 cm的菱形,其中对角线BD的长为16 cm.求:(1)对角线AC的长;(2)菱形ABCD的面积.10.如图所示,在菱形ABCD中,点M,N分别在边AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°11.如图,菱形ABCD的对角线AC,BD相交于点O.若AC=6,BD=8,AE⊥BC,垂足为E,则AE的长为.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.13.如图,在菱形ABCD中,∠ADB=60°,点E,F分别在AD,CD上,且∠EBF=60°.(1)求证:△ABE≌△DBF;(2)判断△BEF的形状,并说明理由.14.已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.。

人教版八年级数学下册 18.2.2.1菱形的性质 同步练习(包含答案)

人教版八年级数学下册    18.2.2.1菱形的性质    同步练习(包含答案)

人教版八年级数学下册18.2.2.1 菱形的性质同步练习一、选择题(共10小题,3*10=30)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是( ) A.1 cm B.2 cm C.3 cm D.4 cm3. 如图,在△ABC中,AB≠AC,D是BC上一点,DE∥AC交AB于点E,DF∥AB交AC于点F,要使四边形AEDF是菱形,只需添加的条件是()A.AD⊥BC B.∠BAD=∠CAD C.BD=DC D.AD=BD4. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 3 B.3 3 C.2 3 D. 35. 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′. 当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D. 106.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为()A.4B.4.8 C.2.4D.3.27. 已知菱形的周长为4 5 ,两条对角线的和为6,则菱形的面积为( )A .2 B. 5 C .3 D .48. 如图,菱形ABCD 的对角线AC ,BD 交于点O ,AC =4,BD =16,将△ABO 沿点A 到点C 的方向平移,得到△A′B′O′.当点A′与点C 重合时,点A 与点B′之间的距离为( )A .6B .8C .10D .129. 如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .410.如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .4二.填空题(共8小题,3*8=24)11. 菱形的两条对角线长分别是5和12,则此菱形的边长是_______,面积是_______.12.在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AB =7 cm ,则周长是________cm.13. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =110°,则∠BAD =________°, ∠ABD =________°,∠BCA =________°.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为_______.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为________.16.如图,四边形ABCD是菱形,O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为_______.17. 如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于________.18. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD 的周长为________.三.解答题(共7小题,46分)19.(6分) 如图,已知菱形的周长为40 cm,两邻角度数之比为1∶2.(1)求菱形的两条对角线的长;(2)求菱形的面积.20.(6分) 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.21.(6分) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,若∠E=50°,求∠BAO的大小.22.(6分) 已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.23.(6分) 如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.24.(8分) 如图,菱形ABCD的两条对角线相交于点O,∠DAC=30°,BD=12(1)求∠ABC的度数;(2)求菱形ABCD的面积.25.(8分) 在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.参考答案1-5DABBB 6-10 DDCAC11. 6.5,3012. 2813. 70,55,3514. 24 15. 2 316. 1217.4518.2419. 解:(1) ∵四边形ABCD 是菱形,两邻角度数之比为1∶2, ∴∠ABC=∠BAC=60°又∵菱形的周长为40 cm ,AC =AB=10 cm ,BD =2BO=2×AB 2-AO 2 =2×102-52 =10 3 cm(2)S 菱形=12BD·AC =50 3 cm 2 20. 解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC =90°,∴四边形OCED 是矩形,∴OE =CD ,∵四边形ABCD 是菱形,∴CD =BC ,∴OE =BC21. 解:菱形ABCD 中,AB =BC ,∵BE =AB ,∴BC =BE ,∴∠BCE =∠E =50°,∴∠CBE =180°-50°×2=80°,∵AD ∥BC ,∴∠BAD =∠CBE =80°,∴∠BAO =12×80°=40°. 22. 证明:∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDF ,DE =DF ,∴△ADE ≌△CDF(SAS).23. 证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC , ∴∠BPA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE , ∵AB =DA ,∴△ABF ≌△DAE(ASA)(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF24. 解:(1)∵菱形ABCD 的两条对角线相交于点O ,∠DAC =30°, ∴∠BAD =2∠DAC =60°,∵AD ∥BC ,∴∠ABC =180°-60°=120°;(2)∵菱形ABCD 的两条对角线相交于点O ,BD =12,∴AC ⊥BD ,DO =12BD =6, 又∵∠DAC =30°,∴AD =2DO =12,∴Rt △AOD 中,AO =122-62=63,∴AC =2AO =123,∴菱形ABCD 的面积=12×AC×BD =12×12×123=72 3. 25. 解:(1)连接AC ,∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∵点E 为BC 的中点,∴AE ⊥BC ,∴∠AEC =90°,∵∠AEF =60°,∴∠FEC =90°-60°=30°,∵∠C =180°-∠B =120°,∠C +∠EFC +∠FEC =180°, ∴∠EFC =30°,∴∠FEC =∠EFC ,∴CE =CF ,∵BC =CD ,∴BC -CE =CD -CF ,即BE =DF(2)连接AC ,由(1)得△ABC 是等边三角形,∴AB =AC , ∵∠BAE +∠EAC =60°,∠EAF =∠CAF +∠EAC =60°,∴∠BAE =∠CAF ,∵四边形ABCD 是菱形,∠B =60°,∴∠ACF =12∠BCD =∠B =60°, ∴△ABE ≌△ACF(ASA),∴AE =AF , 又∵∠EAF =60°,∴△AEF 是等边三角形。

人教版八年级下册数学 18.2.2菱形 同步习题

人教版八年级下册数学 18.2.2菱形 同步习题

18.2.2菱形同步习题一.选择题1.菱形ABCD的周长为40cm,它的一条对角线长10cm,则它的另一条对角线长为()A.10cm B.10cm C.5cm D.5cm2.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为菱形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 3.菱形不具备的性质是()A.对角线一定相等B.对角线互相垂直C.是轴对称图形D.是中心对称图形4.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.165.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为()A.36°B.54°C.64°D.72°6.如图,在菱形ABCD中,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,若∠BAD=70°,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,菱形ABCD中,在边AD、BC上分别截取DM=BN,连接MN交AC于点O,连接DO,若∠BAC=20°,则∠ODC的度数为()A.20°B.40°C.50°D.70°8.如图,在菱形ABCD中,AB=5,对角线BD=8,过BD的中点O作AD的垂线,交AD 于点E,交BC于点F,连接DF,则DF的长度为()A.B.C.D.9.如图平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=()A.35°B.45°C.50°D.55°10.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B 到AE的距离是()A.B.C.D.二.填空题11.如图,在▱ABCD中,点E、F分别在边AD,BC上,且DE=BF,则再添加一个条件:可判定四边形AFCE是菱形.(只添加一个条件)12.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD 的面积是cm2.13.如图,菱形ABCD中,AC和BD交于点O,过点D作DE⊥BC于点E,连接OE,若∠BAC=25°,则∠OED的度数是.14.如图,在菱形ABCD中,AB=5,AC=6.过点D作BA的垂线,交BA的延长线于点E,则线段DE的长为.15.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBC=80°,则∠ACB=°.三.解答题16.如图,在▱ABCD中,∠ABC=60°,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.17.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=5,BD=6,求CE的长.18.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且2DE=AC,连接AE交OD于点F,连接DE、OE.(1)求证:AF=EF;(2)已知AB=2,若AB=2DE,求AE的长.参考答案一.选择题1.解:菱形ABCD如右图所示,∵菱形ABCD的周长为40cm,∴AB=BC=CD=AD=10cm;∵对角线BD=10cm,∴BO=DO=5cm;在Rt△ADO中,AO===.∴AD=2AO=.故选:A.2.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵∠BAC=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:B.3.解:根据菱形的性质可知:菱形的对角线互相垂直平分;菱形既是轴对称图形,又是中心对称图形.进行的对角线相等,而菱形不具备对角线一定相等.故选:A.4.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.5.解:∵四边形ABCD是菱形,∴AB=BC=AD=CD,AB∥CD,AD∥BC,∴∠EAO=∠FCO,∠DAC=∠ACB=36°,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠OBC=90°﹣∠ACB=54°,故选:B.6.解:连接BF,如图所示:∵四边形ABCD是菱形,∴∠BAC=∠BAD=×70°=35°,∠BCF=∠DCF=∠BAC,BC=DC,∠ABC=180°﹣∠BAD=180°﹣70°=110°,∵EF是线段AB的垂直平分线,∴AF=BF,∴∠DCF=∠ABF=∠BAC=35°,∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=75°,∴∠CFD=180°﹣∠CDF﹣∠DCF=180°﹣75°﹣35°=70°,故选:C.7.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OAM=∠OCN,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OA=OC,∵四边形ABCD是菱形,∴点O为BD与AC的交点,∵∠ACD=∠BAC=20°,∴∠ODC=90°﹣∠ACD=70°.故选:D.8.解:连接AC,如图:∵四边形ABCD是菱形,O是BD的中点,∴OD=OB=BD=4,AD=AB=5,AC⊥BD,∴OA==3,∵OE⊥AD,∴△AOD的面积=AD×OE=OA×OD,∴OE===,同理:OF=,∴EF=OE+OF=,∵DE===,∵EF⊥AD,∴DF===;故选:D.9.解:∵平行四边形ABCD中,AD=DC,∴四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=55°,∵PE⊥AB,∴∠PEB=90°∴∠PEF=90°﹣55°=35°,故选:A.10.解:过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,∵菱形ABCD中,AB=2,∴BC=2,∵BE=2EC,∴BE=,CE=,∵∠D=120°,∴∠ABE=120°,∴∠EBF=60°,∴BF=BE=,EF=,∴AF=AB+BF=2+=,∴AE===,∵S△ABE=AB•EF,∴BH===.故选:A.二.填空题11.解:添加AE=AF,理由:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,又∵DE=BF,∴AE=FC.∴四边形AFCE是平行四边形.又∵AE=AF,∴四边形AFCE是菱形.故答案为:AE=AF.12.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,∴S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.13.解:∵四边形ABCD是菱形,∠BAC=25°,∴∠ABC=180°﹣25°﹣25°=130°,∴O为BD中点,∠DBE=∠ABC=65°.∵DE⊥BC,在Rt△BDE中,OE=BE=OD,∴∠OEB=∠OBE=65°.∴∠OED=90°﹣65°=25°.故答案为:25°.14.解:∵四边形ABCD是菱形,AB=5,AC=6.∴AB=BC=CD=DA=5,AC⊥BD,OA=OC=3,∴OB===4,∴BD=2OB=8,∵,∴=5DE,解得,DE=,故答案为:.15.解:∵四边形ABCD是菱形,∴AD∥BC,∠DAC=∠BAC,∴∠AFB=∠FBC=80°,∠DAC=∠ACB,∵EF是AB的垂直平分线,∴AF=BF,∴∠F AB=∠FBA=(180°﹣∠AFB)=50°,∴∠DAC=∠BAC=25°,∴∠ACB=25°,故答案为:25.三.解答题16.(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=BC,AF=AD,∴CE=AF,CE∥AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90°﹣∠ABC=30°,∴AG=AB=1,BG=AG=,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD===2.17.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,OB=OD=BD=3,∴OA===4,∴AC=2OA=8,∴菱形ABCD的面积=AC×BD=×8×6=24,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=5CE=24,∴CE=.18.(1)证明:∵四边形ABCD是菱形,∴OA=OC=AC,∵2DE=AC,∴DE=OA,又∵DE∥AC,∴四边形OADE是平行四边形,∴AF=EF;(2)解:连接CE,∵DE∥OC,DE=OC,∴四边形OCED是平行四边形,又∵菱形ABCD,∴AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,又∵AB=2DE=AC,∴△ABC为等边三角形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==,∴在Rt△ACE中,AE==.。

人教版八年级下册数学 18.2.2菱形 同步练习(含解析)

人教版八年级下册数学 18.2.2菱形 同步练习(含解析)

∴AC⊥BD,OA=OC= AC= ×4=2,∠BAC= ∠BAD= ×120°=60°,
∴AC=4,∠AOB=90°, ∴∠ABO=30°, ∴AB=2OA=4,OB=2 , ∴BD=2OB=4 ,
7 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∴该菱形的面积是: AC•BD= ×4×4
点睛:此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注 意先先连接 BD,BF,这是解答本题的突破口. 6.B 【解析】根据菱形四条边相等的性质可得 AB=AD,OB=OD,根据等腰三角形三线合一的性质 可得 AO⊥BD,即可得 AC⊥BD,所以正确的顺序为③→④→①→②,故选 B. 7.A 【解析】∵四边形 ABCD 是菱形,
点,将△AMN 沿 MN 所在的直线翻折得到△A′MN,连接 A′C,则线段 A′C 长度的最小值是
______.
12.如图,正△AEF 的边长与菱形 ABCD 的边长相等,点 E、F 分别在 BC、CD 上,则∠B 的度 数是_____.
3 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 24
B. 26
C. 30
D. 48
8.如图,四边形 ABCD 是菱形,对角线 AC,BD 相交于点 O,DH⊥AB 于 H,连接 OH,∠DHO=20°,
则∠CAD 的度数是( )
2 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 20° B. 25° C. 30° D. 40° 9.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到 第二个矩形,按照此方法继续下去.已知第一个矩形的面积为 1,则第 n 个矩形的面积为 ()

人教版八年级数学下册18.2.2菱形同步练习

人教版八年级数学下册18.2.2菱形同步练习

18.2.2菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是(C)A.AB=CD B.AD=BCC.AB=BC D.AC=BD2.下列说法正确的是(D)A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形3.如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为(C)A.1 B.3C.2 D.234.菱形的两条对角线长分别是6和8,则此菱形的边长是(D)A.10 B.8C.6 D.55.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是(B)A.∠ADB=∠CDB B.AC=BDC.AC⊥BD D.AB=AD6.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为(A)A.2 2 B. 2 C.6 2 D.827.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于(A)A.63米B.6米C.33米D.3米8.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是(B)A.矩形B.菱形C.一般的四边形D.平行四边形9.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是(D)A.AB=ACB.AD=BDC.BE⊥ACD.BE平分∠ABC10.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是24.11.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为12.如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件BO=DO(答案不唯一),使四边形ABCD成为菱形.(只需添加一个即可)13.如图,菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长是16.14.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且∠ACD =30°,BD =4,求菱形ABCD 的面积.解:∵四边形ABCD 是菱形,BD =4,∴OA =OC =12AC ,OB =OD =12BD =2,AC ⊥BD. ∵在Rt △OCD 中,∠OCD =30°, ∴CD =2OD =4,OC =CD 2-OD 2=42-22=2 3. ∴AC =2OC =4 3.∴S 菱形ABCD =12AC·BD =12×43×4=8 3.15.如图,在△ABC 中,AD 是∠BAC 的平分线,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,求证:四边形AEDF 是菱形.证明:∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形. ∴∠FAD =∠EDA. ∵AD 是∠BAC 的平分线,∴∠EAD=∠FAD.∴∠EDA=∠EAD.∴AE=ED.∴四边形AEDF是菱形.16.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE. 求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.证明:(1)∵△ABC≌△ABD,∴∠ABC=∠ABD.∵CE∥BD,∴∠CEB=∠ABD.∴∠CEB=∠CBE.(2)∵△ABC≌△ABD,∴BC=BD.由(1)得∠CEB=∠CBE,∴CE=CB.∴CE=BD.又∵CE∥BD,∴四边形BCED是平行四边形.又∵BC=BD,∴四边形BCED是菱形.。

最新人教版八年级下册数学同步练习 18.2.2 第1课时 菱形的性质3

最新人教版八年级下册数学同步练习  18.2.2 第1课时 菱形的性质3

18.2.2 菱形第1课时菱形的性质一.选择题(共4小题)1.(如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)2.(菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.二.填空题(共15小题)5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC 交BC的延长线于点E,则△BDE的周长为_________.9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_________度.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= _________度.10题图12题13题图14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D ﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________点.13.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.14.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C 重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.17题图18题图19题图18.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________度.三.解答题(共7小题)20.如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________;(2)猜想:_________=_________;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q 从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP 是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质。

18.2.2.1 菱形的性质-八年级数学下学期同步训练(人教版)(解析版)

18.2.2.1 菱形的性质-八年级数学下学期同步训练(人教版)(解析版)

§18.2.2.1菱形的性质一、知识导航1.菱形的定义:有一组邻边相等的四边形叫做菱形注意:(1)矩形的定义有两个要素:①是平行四边形;②有一组邻边相等,二者缺一不可;(2)菱形的定义既是它的性质,也是它的判定方法;(3)一组邻边相等的四边形不一定是菱形.2.菱形的性质类别性质符号语言图形边菱形的四条边都相等 四边形ABCD是菱形AB BC CD DA ∴===对角线菱形的两条对角线互相垂直平分,并且每条对角线平分一组对角四边形ABCD是菱形,,,AC BD OA OC OB OD∴⊥==,ABD CBD ADB CDB∠=∠=∠=∠BAC DAC BCA DCA∠=∠=∠=∠对称性矩形是轴对称图形,具有两条对称轴(即对角线所在的直线)3.菱形面积计算(1)平行四边形的面积公式:底×高(2)两条对角线长的积的一半二、重难点突破重点1利用菱形的性质求线段长度例1.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【答案】C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:由于菱形的两条对角线的长为6和8,,∴菱形的周长为:4×5=20,故选:C.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.变式1-1如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE 的长等于()A .2B .3.5C .7D .14【答案】B 【分析】由菱形的周长可求得AB 的长,再利用三角形中位线定理可求得答案0【详解】∵四边形ABCD 为菱形,∴AB 14=⨯28=7,且O 为BD 的中点.∵E 为AD 的中点,∴OE 为△ABD 的中位线,∴OE 12=AB =3.5.故选B .【点睛】本题考查了菱形的性质,由条件确定出OE 为△ABD 的中位线是解题的关键.变式1-2如图,在菱形ABCD 中,AB =5,AC =6,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为()A .125B .185C .4D .245【答案】D【分析】利用菱形的面积等于两对角线之积的一半,求解菱形的面积,再利用等面积法求菱形的高DE 即可.【详解】记AC 与BD 的交点为O ,菱形ABCD ,6,AC =,3,,AC BD OA OC OB OD ∴⊥===5,AB = 22534,8,OB BD ∴=-==∴菱形的面积16824,2=⨯⨯=,DE AB ⊥ ∴菱形的面积,AB DE =∙524,DE ∴=24.5DE ∴=故选D .【点睛】本题考查的是菱形的性质,菱形的面积公式,勾股定理.理解菱形的对角线互相垂直平分和学会用等面积法是解题关键.变式1-3如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为20,面积为24,则PE PF +的值为()A .4B .245C .6D .485【答案】B 【分析】连接BP ,通过菱形ABCD 的周长为20,求出边长,菱形面积为24,求出SABC 的面积,然后利用面积法,SABP +SCBP =SABC ,即可求出PE PF +的值.【详解】连接BP ,∵菱形ABCD 的周长为20,∴AB =BC =20÷4=5,又∵菱形ABCD 的面积为24,∴SABC =24÷2=12,又SABC =SABP +SCBP∴SABP +SCBP =12,∴111222AB PF BC PE += ,重点点拨:当菱形的一个内角为120°或60°时,菱形被其对角线分为4个含30°角的直角三角形;菱形较短的一条对角线将其分成两个等边三角形,因此可利用其性质进行计算.∵AB =BC ,∴()1122AB PE PF += ∵AB =5,∴PE +PF =12×25=245.故选:B.【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系,求出PF +PE 的值.重点2利用菱形的性质求角度例2.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为()A .65︒B .55︒C .45︒D .25︒【答案】A 【分析】由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.变式2-1如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是()A .35°B .30°C .25°D .20°【答案】C 【分析】根据直角三角形的斜边中线性质可得OE BE OD ==,根据菱形性质可得1652DBE ABC ∠︒=∠=,从而得到OEB ∠度数,再依据90OED OEB -∠︒∠=即可.【详解】∵四边形ABCD 是菱形,∠BCD =50°,∴O 为BD 中点,∠DBE =12∠ABC =65°.∵DE ⊥BC ,∴在Rt △BDE 中,OE =OB =OD ,∴∠OEB =∠OBE =65°.∴∠OED =90°-65°=25°.故选:C .【点睛】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.变式2-2如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF∠的度数是()A .90°B .60°C .45°D .30°【答案】B 【分析】根据垂直平分线的性质可得出△ABC 、△ACD 是等边三角形,从而先求得∠B =60°,∠C =120°,在四边形AECF 中,利用四边形的内角和为360°可求出∠EAF 的度数.【详解】解:连接AC ,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°-180°-120°=60°.故选B.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,关键是掌握线段垂直平分线上的点到线段两端点的距离相等,及菱形四边形等的性质.变式2-3如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒【答案】B【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】如图,连接BF,在菱形ABCD中,∠BAC=12∠BAD=12×100°=50°,∵EF是AB的垂直平分线,∴∠FBA=∠FAB=50°,∵菱形ABCD的对边AD∥BC,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.重点3利用菱形的性质计算面积及其应用例3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.【详解】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=12×8×6=24cm2,重点点拨:在菱形中已知边要求角的度数时需要利用矩形的性质和特殊三角形的性质找到角的关系,这些所求角度一般为45°,60°等特殊角度【点睛】本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.变式3-1已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.B.8C.D.【答案】D【分析】根据菱形的性质和菱形面积公式即可求出结果.【详解】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC=60°,∠BAD=120°,∵菱形的周长为8,∴边长AB=2,∴菱形的对角线AC=2,BD=2×2sin60°=∴菱形的面积=12 AC•BD=12故选:D.【点睛】本题考查菱形的性质,解题关键是掌握菱形的性质.变式3-2如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96B.48C.24D.6【答案】C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.重点4利用菱形的性质证明线段相等例4.如图,在菱形ABCD 中,BE ⊥CD 于点E .DF ⊥BC 于点F .求证:BF =DE;【分析】根据菱形的性质得到CB =CD ,根据全等三角形的判定和性质即可得到结论;【详解】证明:∵四边形ABCD 是菱形,∴CB =CD ,∵BE ⊥CD 于点E ,DF ⊥BC 于点F ,∴∠BEC =∠DFC =90°,∵∠C =∠C ,∴△BEC ≌△DFC (AAS ),∴EC =FC ,∴CD -CE =CB -CF∴BF =DE ;【点睛】本题考查了菱形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.变式4如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .求证:AF EF =;重点点拨:菱形的对角线容易作为一个直角三角形的斜边,这样两条对角线的交点也是斜边的中点;菱形的面积等于对角线乘积的一半重点点拨:利用菱形的性质证明边的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合【分析】连接CF ,根据垂直平分线的性质和菱形的对称性得到CF=EF 和CF=AF 即可得证;【详解】连接CF ,∵FG 垂直平分CE ,∴CF=EF ,∵四边形ABCD 为菱形,∴A 和C 关于对角线BD 对称,∴CF=AF ,∴AF=EF;【点睛】本题考查了菱形的性质,最短路径,等边三角形的判定和性质,中位线定理,难度一般,题中线段较多,需要理清线段之间的关系.重点5利用菱形的性质证明角相等例5.已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E .求证:∠AFD =∠CBE.【分析】根据菱形的性质得出∠BCE =∠DCE ,BC =CD ,AB ∥CD ,推出∠AFD =∠CDE ,证△BCE ≌△DCE ,推出∠CBE =∠CDE 即可.【详解】证明:∵四边形ABCD 是菱形,∴∠BCE =∠DCE ,BC =CD ,AB ∥CD ,∴∠AFD =∠CDE ,在△BCE 和△DCE 中BC CD BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCE ,∴∠CBE =∠CDE ,∵∠AFD =∠CDE ,∴∠AFD =∠CBE .【点睛】考查了菱形的判定与性质以及全等三角形的判定与性质等知识,得出△BCE ≌△DCE 是解题关键.变式5如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO =∠DCO.【分析】根据菱形的对角线互相平分可得OD =OB ,再根据直角三角形斜边上的中线等于斜边的一半可得OH =OB ,然后根据等边对等角求出∠OHB =∠OBH ,根据两直线平行,内错角相等求出∠OBH =∠ODC ,然后根据等角的余角相等证明即可.【详解】证明:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∵DH ⊥AB ,∴OH =12BD =OB ,∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO .【点睛】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.难点6菱形中的图形变换问题例6.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是()A 3B .2C .23D .4【答案】B 【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====重点点拨:利用菱形的性质证明角的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合∴∠111206022ABD ABC ︒=∠=⨯=︒∵AB AD =∴△ABD 是等边三角形,∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线,∴122EF BD ==故选:B .【点睛】本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力.变式6-1如图,在菱形纸片ABCD 中,对角线AC 、BD 长分别为16、12,折叠纸片使点A 落在DB 上,折痕交AC 于点P ,则DP 的长为()A .BC .D .【答案】A 【分析】首先设O 点的对应点为E ,连接PE ,由菱形的性质,可求得OD ,OA 与AD 的长,由折叠的性质,根据勾股定理可得方程:即(8-x )2=42+x 2,可求x 的值,由勾股定理可求DP 的长.【详解】解:设O 点的对应点为E ,连接PE ,由折叠的性质可得:PE=OP ,DE=OD ,∵四边形ABCD 是菱形,1111,168,1262222AC BD OA AC OB BD ∴⊥==⨯===⨯=10AD ∴==设OP=x,则PE=x,AE=AD-DE=10-6=4,AP=OA-OP=8-x,在Rt△APE中,AP2=AE2+PE2,即(8-x)2=42+x2,解得:x=3,即OP=3,DP∴===故选A.【点睛】本题考查了折叠的性质、菱形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合与方程思想的应用.变式6-2如图,在菱形纸片ABCD中,∠A=60°,P为AB中点.折叠该纸片使点C落在点C′处且点P在DC′上,折痕为DE,则∠CDE的大小为()A.30°B.40°C.45°D.60°【答案】C【分析】连接BD,首先根据∠A=60°,AB=AD,得到△ABD是等边三角形,然后根据等边三角形三线合一的性质得到DP⊥AB,然后根据平行线的性质得到∠CDP=∠APD=90°,最后根据折叠的性质求解即可.【详解】如图,连接BD,∵菱形ABCD中,∠A=60°,AB=AD,∴△ABD是等边三角形,∠ADC=120°,∵点P是AB的中点,∴DP⊥AB,∵CD AB,∴∠CDP=∠APD=90°,∴由折叠的性质可得:∠CDE=12∠CDP=45°.故选:C.【点睛】此题考查了等边三角形的性质和判定,菱形的性质以及折叠的性质等知识,解题的关键是在含有60°内角的菱形中,连接较短的对角线,把菱形分成的两个三角形是等边三角形.难点7菱形中的最值问题例7.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是()A .12B .1C 2D .2【答案】B 【分析】先作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM ′为平行四边形,即可求出MP +NP =M ′N =AB =1.【详解】如图难点点拨:解决菱形问题的思考方向:①边;②对角线.有60°的特殊角,就可以由菱形的性质构造等边三角形解决问题;有等边三角形,有中点,会出现“三线合一”作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.【点睛】本题主要考查了菱形的性质,以及最小值问题,解题关键在于熟练掌握菱形性质以及求最值的作图方式.变式7如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.4【答案】C【分析】作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.【详解】∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.【点睛】本题主要考查了菱形的性质;轴对称-最短路线问题三、提升训练1.下列结论中,不正确的是()A .对角线互相垂直的平行四边形是菱形B .对角线相等的平行四边形是矩形C .一组对边平行,一组对边相等的四边形是平行四边形D .菱形的面积等于对角线乘积的一半难点点拨:解决线段之和最小问题,一般转化为解决“两点之间,线段最短”问题.“两点一线”型:()minPA PB +“一点两线”型:()min ''''''ABC C AB AC BC A B A C BC A A ∆=++=++=【答案】C【分析】由菱形和矩形的判定得出A 、B 正确,由等腰梯形的判定得出C 不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D 正确,即可得出结论.【详解】解:A.∵对角线互相垂直的平行四边形是菱形,∴A 正确;B.∵对角线相等的平行四边形是矩形,∴B 正确;C.∵一组对边平行,一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,∴C 不正确;D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D 正确;故选:C【点睛】本题考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形,矩形和等腰梯形的判定方法是解题的关键.2.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是()A .90︒B .100︒C .120︒D .150︒【答案】C 【分析】如图(见解析),先根据菱形的性质可得,//AB BC AD BC =,再根据全等的性质可得1203AC AE cm ==,然后根据等边三角形的判定与性质可得60B ∠=︒,最后根据平行线的性质即可得.【详解】如图,连接AC四边形ABCD 是菱形20,//AB BC cm AD BC∴== 如图所示的木制活动衣帽架是由三个全等的菱形构成,60AE cm =1203AC AE cm ∴==AB BC AC∴==ABC ∴ 是等边三角形60B ∴∠=︒//AD BC180********DAB B ∴∠=︒=∠=︒-︒-︒故选:C .【点睛】本题考查了菱形的性质、等边三角形的判定与性质、平行线的性质等知识点,理解题意,熟练掌握菱形的性质是解题关键.3.如图,在△ABC 中,AD 平分BAC ∠,DE AC ∥交AB 于点E ,DF AB ∥交AC 于点F ,若8AF =,则四边形AEDF 的周长是()A .24B .28C .32D .36【答案】C 【分析】由题意知四边形AEDF 是平行四边形,有BAD ADF ∠=∠,AE DF AF DE ==,,AD 平分BAC ∠,可得BAD CAD ADF ∠=∠=∠,AF DF =,平行四边形AEDF 是菱形,进而计算周长即可.【详解】∵DE AC DF AB∥,∥∴四边形AEDF 是平行四边形∴BAD ADF ∠=∠,AE DF AF DE==,∵AD 平分BAC∠∴BAD CAD ADF∠=∠=∠∴AF DF=∴平行四边形AEDF 是菱形∴432AE DE DF AF AF +++==故选C .【点睛】本题考查了角平分线的性质,平行四边形的判定与性质,菱形的判定.解题的关键在于对知识的灵活运用.4.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是()A .20B .24C .40D .48【答案】A 【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【详解】由菱形对角线性质知,AO =12AC =3,BO =12BD =4,且AO ⊥BO ,则AB =5,故这个菱形的周长L=4AB =20.故选A .【点睛】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB 的长是解题的关键,难度一般.5.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,∠CAD =20°,则∠DHO 的度数是()A .20°B .25°C .30°D .40°【答案】A 【分析】先根据菱形的性质得OD =OB ,AB ∥CD ,BD ⊥AC ,则利用DH ⊥AB 得到DH ⊥CD ,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.【详解】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选A.【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.245B.125C.5D.4【答案】A【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB5,∵S菱形ABCD=12AC BD AB DE ⨯⨯=⨯,∴18652DH ⨯⨯=⨯,∴DH=24 5,故选:A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=12×AC×BD=AB×DH是解此题的关键.7.如图,菱形ABCD中,∠ABC=135°,DH⊥AB于H,交对角线AC于E,过E作EF⊥AD 于F.若△DEF的周长为2,则菱形ABCD的面积为()A.B C.2D.2【答案】A【分析】根据题意利用菱形的性质,可得AH=DH,再根据等腰直角三角形的判定与性质得出DE EF,再求出DH=DE+EH AB=2.【详解】∵四边形ABCD是菱形,∠ABC=135°,∴∠DAB=45°,∠DAC=∠BAC,且EH⊥AB,EF⊥AD∴EF =EH ,∠ADH =∠DAB =45°∴AH =DH∵∠DAB =45°,DH ⊥AB∴∠ADH =45°,且EF ⊥AD∴∠ADH =∠DEF =45°∴DF =EF ,∴DE EF∵△DEF 的周长为2,∴DE +EF +DF =2∴2EF =2∴EF =2∴EH =2,DE =2,∴DH =DE +EH ∵∠DAB =∠ADH =45°∴AH =DH ,∴AD AH =2∴AB =2∴菱形ABCD 的面积=AB ×DH =故选A .【点睛】此题考查菱形的性质,等腰直角三角形的判定与性质,解题关键在于掌握判定定理.8.如图,菱形ABCD 的边,8AB =,60B ∠= ,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为()A .5B .7C .8D .132【答案】B【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则2CH AB ==4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠= ,ABC ∆∴为等边三角形,CH AB ∴==,4AH BH ==,3PB = ,1HP ∴=,在Rt CHP ∆中,7CP ==,梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上,∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠,7CQ CP ∴==.故选B .【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.9.如图,平行四边形ABCD 中,2AB BC =.AE 平分BAD ∠,交CD 于点E ,点F 为AB 边的中点,AE 与DF 交于点M ,BD 与EP 交于点N ,连接MN .则下列结论:①四边形ADEF 是菱形;②与BFN ∆全等的三角形有5个;③7FMN BCEN S S ∆=四边形;④当FM FN =时,60BAD ∠=︒.其中正确的是()A .①③B .①④C .②③D .②④【答案】B 【分析】①根据四边形ABCD 是平行四边形,可得:AD =BC ,AB =CD ,AB ∥CD ,再由AE 平分∠BAD ,可得出∠AED =∠DAE ,进而推出AF =DE ,即可运用菱形的判定方法证得结论;②根据题目条件可证明△BFN ≌DEN ,其它三角形均不能证明;③根据题目条件可得出12FMN DMN BFNS S S ==,S 菱形BCEF =4S △BFN ,S 四边形BCEN =3S △BFN ,即可判断结论③错误;④由FM =FN 可得出DF =AF =AD ,即△ADF 是等边三角形,可判定结论④正确.【详解】解:①四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,AB ∥CD ,∵点F 为AB 边的中点,∴AF =12AB ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∵AB ∥CD ,∴∠AED =∠BAE ,∴∠AED =∠DAE ,∴AD =DE ,∴BC =DE ,∵AB =2BC .∴BC =12AB ,∴AF =DE ,∵AF ∥DE ,∴四边形ADEF 是平行四边形,∵AD =DE ,∴四边形ADEF 是菱形,故①正确;∵AB ∥CD ,∴∠FBN =∠EDN ,DE =AF =BF ,∠BNF =∠DNE ,∴△BFN ≌DEN (AAS ),能够确定与△BFN 全等的三角形只有1个,故②错误;③∵△BFN ≌DEN ,∴FN =EN ,BN =DN ,∵四边形ADEF 是菱形,∴DM =FM ,∴12FMN DMN BFNS S S == ,同理可证:四边形BCEF 是菱形,∴S 菱形BCEF =4S △BFN ,∴S 四边形BCEN =3S △BFN ,·S △BFN =2S △FMN ,∴S 四边形BCEN =4S △FMN ,故③错误;④当FM =FN 时,∵FN =EN ,EF =AF ,∴AF =2FM ,∵DF =2FM ,∴DF =AF =AD ,∴△ADF 是等边三角形,∴∠BAD =60°,故④正确;故选:B .【点睛】本题是四边形综合题,考查了平行四边形性质,菱形的判定,全等三角形判定和性质,三角形面积和四边形面积,等边三角形判定等,熟练掌握平行四边形的性质和菱形的判定,证明三角形全等是解题的关键.10.已知某菱形的周长为8cm ,高为1cm ,则该菱形的面积为A .22cmB .24cmC .26cmD .28cm 【分析】先利用菱形的性质求出菱形的边长为2,再利用菱形的面积=底⨯高即可【详解】解:菱形的边长:842÷=.菱形的面积:212⨯=.【点睛】本题主要是考题菱形的性质与面积,易出现求面积时不懂的把菱形当作平行四边的面积来求.11.如图,四边形ABCD 是菱形,对角线AC =8cm ,DB =6cm ,DH ⊥AB 于点H ,则DH 的长为【分析】由菱形对角线和边长组成一个直角三角形,由勾股定理可得菱形的边长,再利用面积相等建立等式,进而可求解高DH 的长.【详解】∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =12AC =4cm ,OB =12BD =3cm ,在Rt △AOB 中,OA =4cm ,OB =3cm ,∴AB ,菱形的面积S =12AC •BD =AB •DH ,即12×8×6=5×DH ,解得DH =245cm ,【点睛】本题考查了菱形的性质和菱形的面积,熟练掌握“菱形的对角线互相垂直平分,菱形的面积等于对角线乘积的一半”是解题的关键.12.如图,在菱形纸片ABCD 中,60A ︒∠=,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 的中点)所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的度数为________.【答案】75°【分析】连接BD ,先证明ABD △为等边三角形,然后根据三线合一定理得到30ADP BDP ∠=∠=o 即可得到90PDC ∠= ,则45CDE PDE ∠=∠=o ,再根据三角形内角和定理求解即可.【详解】连接BD ,∵四边形ABCD 为菱形,∴AD =AB ,60C A ∠==o ∠,AB ∥CD ,∴180A ADC ∠+∠= ,∴120ADC ∠=∵60A ∠= ,∴ABD △为等边三角形,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=o ,∴90PDC ∠= ,由折叠的性质得到45CDE PDE ∠=∠=o ,在DEC 中,()18075DEC CDE C ∠=-∠+∠=o o .故答案为:75°.【点睛】本题主要考查了菱形的性质,等边三角形的性质与判定,折叠的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF.【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A C AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.14.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB//CD,然后证明得到BE=CD,BE//CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证.(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【详解】(1)∵四边形ABCD是菱形,∴AB=CD,AB//CD.又∵BE=AB,∴BE=CD,BE//CD.∴四边形BECD是平行四边形.∴BD=EC.(2)∵四边形BECD是平行四边形,∴BD//CE,∴∠ABO=∠E=50°.又∵四边形ABCD是菱形,∴AC丄BD.∴∠BAO=90°﹣∠ABO=40°.【点睛】本题主要考查了,勾股定理,矩形的性质,菱形的判定和性质,熟练掌握相关知识点是解题的关键.。

人教版八年级数学下册 菱形 同步课时练习(解析版)

人教版八年级数学下册 菱形 同步课时练习(解析版)

人教版八年级下册18.2.2 菱形 同步课时练习一、选择题1.萎形不一定具备的性质是( ) A .对边平行且相等 B .对角相等 C .对角线互相平分D .对角线相等2.矩形和菱形都一定具有的性质是( ) A .对角线互相垂直 B .对角线互相平分 C .对角线长度相等D .对角线平分一组对角3.如图,下列条件中,能使平行四边形ABCD 成为菱形的是( )A .AB CD = B .AD BC = C .AB BC =D .AC BD =4.在平行四边形ABCD 中,添加下列条件能够判定平行四边形ABCD 是菱形的是( ) A .AC ⊥BDB .AB =CDC .AB ⊥BCD .AC =BD5.下列命题中,假命题是( ) A .对角线垂直的平行四边形是菱形 B .对角线互相平分且垂直的四边形是菱形 C .对角线互相平分且平分一组内角的四边形是菱形 D .对角线相等且垂直的四边形是菱形6.如图,在菱形ABCD 中,点E 、F 分别是AB 、AC 的中点,如果4EF =,那么菱形ABCD 的周长是( )A .16B .24C .28D .327.若菱形ABCD 的边长为2,其中∠ABC =60°,则菱形ABCD 的面积为( ) A .4B .3C .2D .238.如图,已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是( )A .5B .10C .6D .8二、填空题9.在菱形ABCD 中,AB =2,则菱形的周长是___.10.菱形两条对角线长为8cm 和6cm,则菱形面积为_______cm 2.11.命题“对角线互相垂直的四边形是菱形”,这是个______命题.(填“真”、“假”)12.如图,在ABC 中,已知E 、F 、D 分别是AB 、AC 、BC 上的点,且//DE AC ,//DF AB ,请你添加一个________条件,使四边形AEDF 是菱形.13.如图,在菱形ABCD 中,∠BAD =45°,DE 是AB 边上的高,BE =2,则AB 的长是____.14.如图,在菱形ABCD 中,6BC =,点E 是AD 的中点,连接OE,则OE=_____________.15.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且=+EF AE FC ,则边BC 的长为______.16.如图,菱形ABCD 中,E 、F 分别在BC CD 、边上,AB AE =,且AEF 是等边三角形,则C ∠=_______.三、解答题17.如图,平行四边形ABCD 中,对角线BD 平分ABC ∠.求证:平行四边形ABCD 是菱形.18.如图,在▱ABCD 中,点O 是对角线BD 的中点,过点O 作EF ⊥BD ,垂足为点O ,且交AD ,BC 分别于点E ,F . 求证:四边形BEDF 是菱形.19.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD =23,DE =2,求四边形OCED 的面积.20.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作CE AB ⊥交AB 的延长线于点E .(1)求证:四边形ABCD 是菱形; (2)若8AC =,6BD =,求CE 的长.21.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)试判断四边形AEBO 的形状,并说明理由; (2)若5OE =,8AC =,求菱形ABCD 的面积.22.如图,在菱形ABCD 中,AE ⊥BC 于点E .(1)如图1,若∠BAE=30°,AE=3,求菱形ABCD的周长及面积;(2)如图2,作AF⊥CD于点F,连接EF,BD,求证:EF∥BD;(3)如图3,设AE与对角线BD相交于点G,若CE=4,BE=8,四边形CDGE和△AGD的面积分别是S1和S2,求S1﹣S2的值.参考答案1.D【解析】【分析】本题考查菱形的性质,菱形两组对边平行,四条边相等,两组对角相等,对角线互相垂直平分,以此可以求解.【详解】解:A、菱形的对边平行且四边相等,此选项说法正确,不符合题意;B、菱形的两组对角相等,此选项说法正确,不符合题意;C、菱形的对角线互相垂直平分,此选项说法正确,不符合题意;D、菱形的对角线不相等,此选项说法错误,符合题意.故选:D.【点睛】本题考查菱形的性质,熟悉菱形的性质是解题的关键.2.B【解析】【分析】根据菱形和矩形的性质对各选项分别进行判断.【详解】解:A、菱形的对角线互相垂直平分,而矩形的对角线互相平分且相等,所以A选项错误;B、菱形和矩形的对角线都互相平分,所以B选项正确;C、菱形的对角线互相垂直平分,而矩形的对角线互相平分且相等,所以C选项错误;D、菱形的对角线互相垂直平分且平分每组对角,而矩形的对角线互相平分且相等,所以D选项错误.故选B.【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了矩形的性质.解题关键是掌握菱形的性质及矩形的性质.3.C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可.【详解】解:A、▱ABCD中,本来就有AB=CD,故本选项错误;B、▱ABCD中本来就有AD=BC,故本选项错误;C、▱ABCD中,AB=BC,可利用邻边相等的平行四边形是菱形判定▱ABCD是菱形,故本选项正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形,故本选项错误.故选:C.【点睛】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.4.A【解析】【分析】根据对角线互相垂直的平行四边形是菱形判定,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故选:A..【点睛】本题考查了菱形的判定.熟记判定定理是解此题的关键.5.D【解析】【分析】利用菱形的判定定理分别对每个选项逐一判断后即可得到正确的选项.【详解】解:A、正确,是真命题;B、正确,是真命题;C、正确,是真命题;D、对角线相等且垂直的四边形也可能是等腰梯形,故错误,是假命题,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解菱形的判定定理,属于基础题,比较简单.6.D根据三角形的中位线定理易得BC=2EF,那么菱形的周长等于4BC【详解】解:点E、F分别是AB、AC的中点,4EF=,∴==,BC EF28四边形ABCD是菱形,∴菱形ABCD的周长是:4832⨯=.故选:D.【点睛】本题考查三角形的中位线定理和菱形周长,掌握这两个知识点是关键.7.D【解析】【分析】过点A作AE⊥BC于E,由含30°角的直角三角形的性质得BE=1,再求出AE的长,然后由菱形的面积公式即可得解.【详解】解:如图,过点A作AE⊥BC于E,则∠AEB=90°,∵菱形ABCD的边长为2,∠ABC=60°,∴∠BAE=90°﹣60°=30°,AB=1,∴BE=12∴AE33∴菱形的面积=BC×AE=2×33故选:D.【点睛】本题考查了菱形的性质,解直角三角形,作辅助线构造出直角三角形是解题的关键.8.A作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,此时MP +NP 的值最小,连接AC ,求出CP 、BP ,根据勾股定理求出BC 长,证出MP +NP =QN =BC ,即可得出答案. 【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,此时MP +NP 的值最小,连接AC ,则P 是AC 中点,∵四边形ABCD 是菱形, ∴AC ⊥BD ,∠QBP =∠MBP , 即Q 在AB 上, ∵MQ ⊥BD , ∴AC ∥MQ , ∵M 为BC 中点, ∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形, ∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形, ∴PQ ∥AD ,而点Q 是AB 的中点,故PQ 是△ABD 的中位线,即点P 是BD 的中点, 同理可得,PM 是△ABC 的中位线, 故点P 是AC 的中点,即点P 是菱形ABCD 对角线的交点, ∵四边形ABCD 是菱形, 则△BPC 为直角三角形, 113,422CP AC BP BD ====, 在Rt △BPC 中,由勾股定理得:BC =5, 即NQ =5,∴MP +NP =QP +NP =QN =5, 故选:A .本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.9.8cm【解析】【分析】根据菱形的性质可直接进行求解.【详解】解:由菱形的四条边相等可得:菱形的周长为2×4=8cm,故答案为:8cm.【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.10.24【解析】【分析】根据菱形的面积等于两对角线乘积的一半求其面积即可.【详解】解:菱形面积是6×8÷2=24cm2;故答案为24.【点睛】本题考查的是菱形的面积的计算,掌握“菱形的面积等于两条对角线乘积的一半”是解本题的关键.11.假.【解析】【分析】利用菱形的判定定理判断后即可确定正确的答案.【详解】对角线互相平分且垂直的四边形是菱形,故错误,是假命题.故答案为:假.【点睛】本题考查了命题与定理的知识,解题的关键是了解菱形的判定方法,难度不大.12.AE AF(不唯一)【解析】先根据平行四边形的判定可得四边形AEDF是平行四边形,再根据菱形的判定即可得.【详解】DE AC DF AB,解://,//∴四边形AEDF是平行四边形,则当AE AF=时,平行四边形AEDF是菱形,故答案为:AE AF=(不唯一).【点睛】本题考查了平行四边形和菱形的判定,熟练掌握菱形的判定方法是解题关键.13.4+【解析】【分析】设AB=x,根据勾股定理列方程为:AD2=AE2+DE2,则x2=(x−2)2+(x−2)2,解方程可解答.【详解】解:设AB=x.∵四边形ABCD是菱形,∴AD=AB=x.∵DE是AB边上的高,∴∠AED=90°.∵∠BAD=45°,∴∠BAD=∠ADE=45°,∴AE=ED=x﹣2,由勾股定理得:AD=AE2+DE2,∴x2=(x﹣2)2+(x﹣2)2,解得:x1,x2=4﹣∵BE=2,∴AB>2,∴AB=x故答案为:【点睛】本题考查了菱形的性质,等腰直角三角形的性质和勾股定理,熟练掌握菱形的性质是解题的关键.14.3【分析】由菱形的性质可得出AC ⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半即可得出结论. 【详解】解:∵四边形ABCD 为菱形, ∴AC ⊥BD,AB=BC=CD=DA=6, ∴△AOD 为直角三角形. ∵点E 为线段AD 的中点,AD=6, ∴OE=3. 故答案为:3. 【点睛】本题考查了菱形的性质以及直角三角形的性质,本题属于基础题,难度不大.15.【解析】 【分析】根据矩形和菱形的性质可利用“HL ”间接证明ABE CDF ≅,即得出AE =CF .由=+EF AE FC ,即可证明AE =OE ,继而可再次利用“HL ”证明ABE OBE ≅,即得出ABE OBE ∠=∠,从而可求出1303ABE DBE DBC ABC ∠=∠=∠=∠=︒,最后由含30角的直角三角形的性质即可求出答案. 【详解】∵四边形ABCD 是矩形, ∴AB =CD ,90A C ∠=∠=︒. ∵四边形BEDF 是菱形,∴BE =DF ,OE =OF ,DBE DBC ∠=∠∴在ABE △和CDF 中AB CDBE DF=⎧⎨=⎩ ,∴()ABE CDF HL ≅, ∴AE =CF .∵=+EF AE FC ,即OE OF AE FC +=+ ∴AE =OE ,∴在ABE △和OBE △中AE OEBE BF =⎧⎨=⎩,∴()ABE OBE HL ≅,∴ABE OBE ∠=∠∴1303ABE DBE DBC ABC ∠=∠=∠=∠=︒.∴26BD CD ==,∴BC ===故答案为: 【点睛】本题考查矩形、菱形的性质,全等三角形的判定和性质,含30角的直角三角形的性质以及勾股定理,综合性强.掌握各知识点,利用数形结合的思想是解答本题的关键. 16.100︒ 【解析】 【分析】根据菱形性质可得AB =AD =BC =CD ,∠C =∠BAD ,∠B +∠BAD =180°,由AEF 是等边三角形,可得∠EAF =60°,AE =AF ,由AB =AE ,可得∠B =∠BEA =∠AFD =∠D ,可求∠BAE =∠DAF ,设∠BAE =∠DAF =m °,根据两直线平行同旁内角互补可列方程()11802m ︒-︒+60°+2m °=180°求解即可. 【详解】解:在菱形ABCD 中,AB =AD =BC =CD ,∠C =∠BAD ,∠B +∠BAD =180°, ∵AEF 是等边三角形, ∴∠EAF =60°,AE =AF , ∵AB =AE , ∴AD =AF =AB =AE ,∴∠B =∠BEA =∠AFD =∠D ,∴∠BAE =180°-∠B -∠AEB =180°-∠AFD -∠D =∠DAF , 设∠BAE =∠DAF =m °, ∴∠B =()11802m ︒-︒,∠BAD =60°+2m °, ∴()11802m ︒-︒+60°+2m °=180°, 解得m =20°, ∴∠C =∠BAD =60°+40°=100°. 故答案为100°. 【点睛】本题考查菱形性质,等边三角形性质,等腰三角形性质,平行线性质,利用同旁内角互补建构方程是解题关键.17.证明见解析 【解析】 【分析】根据题意可得:13∠=∠,从而AB AD =,即可解答. 【详解】 证明:如图,∵四边形ABCD 是平行四边形, ∴//AD BC , ∴23∠∠=. 又∵BD 平分ABC ∠, ∴12∠=∠, ∴13∠=∠, ∴AB AD =,∴平行四边形ABCD 是菱形. 【点睛】本题主要考查了菱形的判定,平行四边形的性质,解题的关键是熟练掌握菱形的判定定理,平行四边形的性质定理,并能灵活运用相关知识进行证明. 18.证明见解析 【解析】 【分析】证△DOE ≌△BOF (ASA ),得OE =OF ,再证四边形EBFD 是平行四边形,然后由EF ⊥BD 即可得出结论. 【详解】证明:∵四边形ABCD 是平行四边形,O 为对角线BD 的中点, ∴BO =DO ,AD ∥BC , ∴∠EDB =∠FBO ,在△EOD 和△FOB 中,EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DOE ≌△BOF (ASA );又∵OB =OD ,∴四边形BEDF 是平行四边形, ∵EF ⊥BD ,∴平行四边形BEDF 为菱形. 【点睛】本题主要考查了菱形的判定,平行四边形的判定与性质以及全等三角形的判定与性质等知识,证明△DOE ≌△BOF 是解题的关键. 19.23 【解析】 【分析】连接OE ,与DC 交于点F ,只要证明四边形ODEC 是菱形,四边形ADEO 是平行四边形即可解决问题. 【详解】解:∵CE //BD ,DE //AC , ∴四边形OCED 是平行四边形. ∴OD =EC ,OC =DE .∵矩形ABCD 的对角线AC 与BD 相交于点O , ∴OD =OC .∴平行四边形OCED 是菱形. 连接OE , ∵DE =2,∴AC =2OC =2DE =4, ∵AD =23,∴DC =22224(23)2AC AD -=-=, ∵DE ∥AC ,AO =OC =DE , ∴四边形AOED 是平行四边形. ∴OE =AD =23.∴四边形OCED 的面积为2 3.2DC OE⨯=本题考查矩形的性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是学会添加常用辅助线,利用菱形的性质解决问题. 20.(1)见解析; (2)245【解析】 【分析】(1)先判断出OAB DCA ∠=∠,进而判断出DAC DCA ∠=∠,得出CD AD AB ==,此题得证; (2)根据菱形的性质得到OA OC =,BD AC ⊥,132OB OD BD ===,由勾股定理可以求出AB 的长,然后通过菱形的面积公式可以求出CE 的长. (1)证明:∵//AB DC , ∴OAB DCA ∠=∠, ∵AC 平分∠BAD , ∴OAB DAC ∠=∠, ∴DAC DCA ∠=∠, ∴CD AD =, ∵AB=AD , ∴AB CD =, ∵//AB DC ,∴四边形ABCD 是平行四边形, 又∵AB AD =,∴四边形ABCD 是菱形; (2)∵四边形ABCD 是菱形,BD =6,AC =8,∴118422OA OC AC ===⨯=,BD AC ⊥,116322OB OD BD ===⨯=, ∴90AOB ∠=︒,在Rt AOB △中,根据勾股定理可知,5AB =,∴菱形的面积11862422S AC BD ==⨯⨯=, ∵CE AB ⊥,∴菱形面积524S AB CE CE ===, ∴245CE =. 【点睛】本题考查了菱形的判定与性质,平行四边形的判定与性质,等腰三角形的判定,勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.21.(1)四边形AEBO 是矩形,理由见解析; (2)24. 【解析】 【分析】(1)根据//BE AC ,//AE BD 可先证明四边形AEBO 是平行四边形,再利用菱形对角线互相垂直平分可得90AOB ∠=︒,即可证明四边形AEBO 是矩形;(2)利用菱形对角线互相平分的性质可知4OA =,利用勾股定理可求出3AE =,进一步得6BD =,利用菱形面积等于对角线乘积的一半即可求出菱形的面积. (1)解:四边形AEBO 是矩形,理由如下: ∵//BE AC ,//AE BD ,∴四边形AEBO 是平行四边形, ∵ABCD 是菱形, ∴BD AC ⊥, ∴90AOB ∠=︒,∴四边形AEBO 是矩形. (2)解:∵8AC =, ∴4OA =,∵5OE =且90OAE ∠=︒, ∴3AE OB ==, ∴6BD =,∴菱形ABCD 的面积1=242BD AC =. 【点睛】本题考查菱形的性质和面积,矩形的判定定理,勾股定理解三角形,掌握矩形的判定定理:有一个角等于90︒的平行四边形是矩形,是解本题的关键之一,另一个关键是掌握菱形面积等于对角线乘积的一半.22.(1)周长为,面积为(2)见解析【解析】 【分析】(1)根据直角三角形的性质可得2AB BE = ,再由勾股定理可得BE =,从而得到BC AB == ,即可求解; (2)根据菱形的性质和AE ⊥BC ,AF ⊥CD ,可得△ABE ≌△ADF ,从而得到BE =DF ,进而得到CE =CF ,则有∠CBF =∠CBD =12(180°-∠C ),即可求证;(3)连接CG ,可先证明△ADG ≌△CDG ,可得到AG =CG ,△ADG 和△CDG 的面积相等,从而得到S 1﹣S 2=S △CEG ,再由勾股定理可得AE =,然后设EG x = ,则CG AG x == ,根据勾股定理可得EG =,即可求解. (1)解:∵AE ⊥BC ,∠BAE =30°, ∴2AB BE = , ∵AE =3,∴()222222233AB BE BE BE BE -=-== ,∴BE =, ∴AB =,∵四边形ABCD 是菱形,∴BC AB ==,∴菱形ABCD 的周长为4=,面积为3AE BC ⨯=⨯; (2)证明:∵四边形ABCD 是菱形, ∴∠ABE =∠ADF ,AB =AD =BC =CD , ∵AE ⊥BC ,AF ⊥CD , ∴∠AEB =∠AFD =90°, 在△ABE 和△ADF 中,∵∠ABE =∠ADF ,∠AEB =∠AFD ,AB =AD , ∴△ABE ≌△ADF (AAS ), ∴BE =DF ,∵BC =CD , ∴CE =CF ,∴∠CBF =∠CBD =12(180°-∠C ),∴EF ∥BD ; (3)解:连接CG ,∵四边形ABCD 是菱形, ∴∠ADG =∠CDG ,AD =CD , 在△ADG 和△CDG 中,∵AD =CD ,∠ADG =∠CDG , DG =DG , ∴△ADG ≌△CDG ,∴AG =CG ,△ADG 和△CDG 的面积相等, ∴S 1﹣S 2=S △CEG , ∵CE =4,BE =8, ∴AB =BC =CE +BE =12, ∵AE ⊥BC ,∴222212845AE AB BE -=-=, 设EG x = ,则45CG AG x == , ∵222EG CE CG += , ∴()22245x x += , 解得:855x,即85EG =, ∴121185165422CEGS S S CE EG -==⨯=⨯=. 【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,熟练掌握菱形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.2.2 菱形第1课时菱形的性质一.选择题(共4小题)1.(如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.(菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.二.填空题(共15小题)5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_________度.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=_________度.10题图12题13题图14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C ﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________点.13.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.14.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.17题图18题图19题图18.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________度.三.解答题(共7小题)20.如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________;(2)猜想:_________=_________;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4)D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质。

专题:数形结合。

分析:此题可过P作PE⊥OM,根据勾股定理求出OP的长度,则M、N两点坐标便不难求出.解答:解:过P作PE⊥OM,∵顶点P的坐标是(3,4),∴OE=3,PE=4,∴OP==5,∴点M的坐标为(5,0),∵5+3=8,∴点N的坐标为(8,4).故选A.点评:此题考查了菱形的性质,根据菱形的性质和点P的坐标,作出辅助线是解决本题的突破口.2.菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.考点:菱形的性质;等边三角形的判定。

分析:根据菱形的性质,求出菱形的边长,由菱形的两边和较短的对角线组成的三角形是等边三角形,进而求出较短的对角线长.解答:解:如图,∵四边形ABCD为菱形,且周长为4,∴AB=BC=CD=DA=1,又∵∠B=60°,∴△ABC是等边三角形,所以AC=AB=BC=1.故选C.点评:本题既考查了菱形的性质,又考查了等边三角形的判定,是菱形性质应用中一道比较典型的题目.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:1考点:菱形的性质;含30度角的直角三角形。

分析:根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.解答:解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.点评:此题主要考查的知识点:(1)直角三角形中,30°锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补.4.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.考点:菱形的性质。

分析:先求出∠A等于60°,连接BD得到△ABD是等边三角形,所以BD等于菱形边长.解答:解:连接BD,∵∠ADC=120°,∴∠A=180°﹣120°=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AB=15.故选A.点评:本题考查有一个角是60°的菱形,有一条对角线等于菱形的边长.二.填空题(共15小题)5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.考点:菱形的性质。

分析:由知菱形的两条对角线长分别为2cm,3cm,根据菱形的面积等于对角线乘积的一半,即可求得答案.解答:解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).故答案为:3.点评:此题考查了菱形的性质.注意菱形的面积等于对角线乘积的一半.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.考点:菱形的性质;点到直线的距离;勾股定理。

分析:因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.解答:解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.点评:本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为2cm2.考点:菱形的性质;勾股定理。

分析:因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出BD的长,菱形的面积=底边×高,从而可求出解.解答:解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.∴菱形的面积为:2×=2cm2.故答案为:2.点评:本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为60.考点:菱形的性质;勾股定理。

专题:数形结合。

分析:因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB,然后利用平行四边形的判定及性质就可以求出△BDE的周长.解答:解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=13,AC⊥BD,OB=OD,OA=OC=5,∴OB==12,BD=2OB=24,∵AD∥CE,AC∥DE,∴四边形ACED是平行四边形,∴CE=AD=BC=13,DE=AC=10,∴△BDE的周长是:BD+BC+CE+DE=24+10+26=60.故答案为:60.点评:本题主要利考查用菱形的对角线互相垂直平分及勾股定理来解决,关键是根据菱形的性质得出AC⊥BD,从而利用勾股定理求出BD的长度,难度一般.9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=65度.考点:菱形的性质。

专题:计算题。

分析:因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.解答:解:∵ABCD是菱形,∴AB=AD.∴∠ABD=∠ADB.∵∠BAD=80°,∴∠ABD=×(180°﹣80°)=50°.又∵BE=BO,∴∠BEO=∠BOE=×(180°﹣50°)=65°.故答案为:65.点评:此题考查了菱形的性质和等腰三角形的性质以及三角形内角和定理.属基础题.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=120度.考点:菱形的性质。

相关文档
最新文档