高等数学重要定理及公式

合集下载

全部高等数学计算公式

全部高等数学计算公式

全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。

每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。

一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。

高等数学重要公式(必记)

高等数学重要公式(必记)

高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学概念定理推论公式

高等数学概念定理推论公式

高等数学概念、定理、推论、公式※ 函数及图形·和的绝对值不大于各项绝对值的和; ·差的绝对值不小于各项绝对值的差; ·乘积的绝对值等于各项绝对值的乘积;·商的绝对值等于被除数及除数的绝对值的商。

·假设自变量x 在定义域X 内每获得一确定值时,函数只有一个确定值与之对应,这种函数叫单值函数;否那么就是多值函数。

·假设函数y=f(x)当x 改变符号时函数值也只改变符号,即F(-x)=-f(x),此函数叫奇函数,奇函数对称于原点;假设x 改变符号,函数值不变,即f(-x)=f(x),即为偶函数,偶函数对称于y 轴。

·反函数的图形与直接函数(原函数)的图形对称于直线y=x※ 数列的极限及函数的极限·假如数列收敛,必然是有界的; ·有界的数列不必然都是收敛的; ·无界数列必然是发散的。

·假如0lim ()x x f x A →=,而且A >0(或A <0),那么就存在着点x 0的某一邻域,当x 在该领域内,但x ≠x 0时,f(x)>0(或f(x )<0)。

·假如f(x)≥0(或f(x)≥0),而且0lim ()x x f x A →=,那么A ≥0(或A ≤0)。

·函数f(x)当x →x0时极限存在的充分必要前提是左右极限都存在且相等。

·假如函数()f x 为无穷大,那么1()f x 为无穷小;反之亦然(()f x ≠0)。

·具有极限的函数可表示为等于其极限的一个常数及无穷小的和;反之,假如函数可表示为常数及无穷小,那么该常数就是函数的极限。

·有限个无穷小的和(代数和)也是窥小。

·有界函数与无穷小的乘积是无穷小,(常数乘以无穷小为无穷小,有限个无穷小的积是无穷小)。

·以极限不为零的函数除无穷小所得的商是无穷小。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

高数公式大全

高数公式大全

高等数学公式汇总第一章一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos )cos()]21sin sin )cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x x x xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x -----==++==±+-+===+-双曲正弦双曲余弦;反双曲余弦双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++= 22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,lim 1n a >=;lim 1n →∞=ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan ;1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x na x a e x x ax x x--++++3、连续:定义:00lim 0;lim ()()x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或第二章导数与微分1、基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (co t )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ) (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====-222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n xn x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x -----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑ 3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

高等数学十大定理公式

高等数学十大定理公式

高等数学十大定理公式高等数学十大定理公式有有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。

1、有界性|f(x)|≤K2、最值定理m≤f(x)≤M3、介值定理若m≤μ≤M,∃ξ∈[a,b],使f(ξ)=μ4、零点定理若f(a)⋅f(b)<0∃ξ∈(a,b) ,使f(ξ)=05、费马定理设f(x)在x0处:1,可导2,取极值,则f′(x0)=06、罗尔定理若f(x)在[a,b] 连续,在(a,b) 可导,且f(a)=f(b) ,则∃ξ∈(a,b) ,使得f′(ξ)=07、拉格朗日中值定理若f(x)在[a,b] 连续,在(a,b) 可导,则∃ξ∈(a,b) ,使得f(b)−f(a)=f′(ξ)(b−a)8、柯西中值定理若f(x)、g(x)在[a,b] 连续,在(a,b) 可导,且g′(x)≠0 ,则∃ξ∈(a,b) ,使得f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)9、泰勒定理(泰勒公式)n阶带皮亚诺余项:条件为在$x_0$处n阶可导$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\ ,x\xrightarrow{} x_0$ n阶带拉格朗日余项:条件为n+1阶可导$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0 )^{n+1}\ ,x\xrightarrow{} x_0$10、积分中值定理(平均值定理)若f(x)在[a,b] 连续,则∃ξ∈(a,b),使得∫baf(x)dx=f(ξ)(b−a)。

高数定理名称大全

高数定理名称大全

高数定理名称大全高等数学(高数)是数学的一个重要分支,它包括微积分、线性代数、概率论和数值分析等内容。

在这些领域中,有许多重要的定理和原理,下面列出一些基本的、常考的高数定理名称,这些定理是理解和掌握高等数学的基础。

1.极限的保号性定理。

2.极限的唯一性定理。

3.无穷小比较定理。

4.无穷小移项定理。

5.函数的连续性定理。

6.函数的可导性定理。

7.函数的罗尔定理。

8.拉格朗日中值定理。

9.柯西中值定理。

10.积分中值定理。

11.微分中值定理。

12.泰勒公式。

13.洛必达法则。

14.夹逼定理。

15.单调有界定理。

16.有界函数极大值定理。

17.有界函数极小值定理。

18.拉格朗日乘数法。

19.斯托克斯定理。

20.高斯定理。

21.泊松定理。

22.费马小定理。

23.欧拉定理。

24.范德蒙德定理。

25.矩阵的可逆性定理。

26.矩阵的秩定理。

27.线性方程组的解定理。

28.线性空间的基本定理。

29.内积空间的基本定理。

30.测度论中的基本定理。

31.微分方程的解定理。

32.偏微分方程的基本定理。

33.最大值原理和最小值原理。

34.变分法的基本定理。

这些定理是高等数学中的基石,掌握它们对于理解复杂的数学概念和解决问题至关重要。

在学习和应用这些定理时,要注意理解它们的条件和适用范围,以及如何灵活运用它们解决实际问题。

高等数学公式定理(全)

高等数学公式定理(全)

·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sin β·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sin β·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tan α·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sin α/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A +B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)部分高等内容[编辑本段]勒级数易得):·高等代数中三角函数的指数表示(由泰sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学重要定理及公式作者:电子科技大学 通信学院 张宗卫说明:本文档是笔者在考研过程中花费将近一个月的时间,总结得出的数学(一)重要公式及一些推论,并使用word 及MathType 输入成文,覆盖了微积分、线性代数、概率论这些课程。

因为时间有限,难免存在一些输入错误,请读者仔细对照所学知识,认真查阅。

线性代数重要公式1.矩阵与其转置矩阵关系:E A AA =*2.矩阵行列式:*11A A A =- 1*-=n A A *1*)(A k kA n -= ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=-=-<=n A r n n A r n A r A r )(,1)(,11)(,0)(*3.矩阵与其秩:{}()min (),()()()()(,)()()(,)max(()())r AB r A r B r A B r A r B r A B r A r B r A B r A r B ≤+≤+≤+≥+4.齐次方程组0=Ax :非0解⇔线性相关⇔n A R =)(5.非齐次方程组b Ax =:有解⇔⇔=)()(A R A R 线性表出6.相似与合同:相似—n 阶可逆矩阵A,B 如果存在可逆矩阵P 使得B AP P =-1则A 与B 相似,记作:B A ~;合同—A,B 为n 阶矩阵,如果存在可逆矩阵C 使得AC C B T=则称A与B 合同。

(等价,A 与B 等价—A 与B 能相互线性表出。

)7,特征值与特征向量:λαα=A ,求解过程:求行列式0=-A E λ 中参数λ即为特征值,再求解0)(=-x A E i λ即可求出对应的特征向量。

矩阵A 的特征值与A 的主对角元及行列式之间有以下关系:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==∑∑A a n nii n i λλλλ...2111。

上式中∑==n i ii a A 1)(tra 称为矩阵的迹。

8.特征值特征向量、相似之间的一些定理及推论:实对称矩阵A 的互异特征值对应的特征向量线性无关;若n 阶矩阵的特征值都是单特征根,则A 能与对角矩阵相似;n 阶矩阵A 与对角矩阵相似的充分必要条件是对于A 的每一个i k 重特征根,齐次方程组0)(=-x A E i λ的基础解析由i k 个解向量组成即对应每一个i k 重特征根i λi i k n A E R -=-)(λ。

9.实对称矩阵的特征值都是实数,如果A 为一个实对称矩阵,那么对应于A 的不同特征值的特征向量彼此正交。

任意n 阶实对称矩阵A 都存在一个n 阶正交矩阵C ,使得AC C AC C T 1-=为对称矩阵。

10.施密特正交矩阵化方法:一般地,把线性无关向量组s ααα...,21化为与之等价的标准正交向量组的施密特正交过程如下:111122221111222231111333111122211),(),(...),(),(),(),(..........),(),(),(),(),(),(--------=--=-==s s s s s s s s s ββββαββββαββββααβββββαββββααβββββααβαβ再令:i ii ββγ1=则s γγγ...,21是一组与s ααα...,21等价的标准正交向量组。

11.正交矩阵的定义:如果实矩阵A 满足:E AA A A TT ==则称A 为正交矩阵。

12.设A ,B 为n 阶方阵,如果存在可逆矩阵C ,使得AC C B T=,则称A 与B 合同。

13.用正交变换化二次型为标准型步骤:a) 写出二次型对应的对称矩阵A ;b) 求A 的特征值i λ和特征向量,(0=-A E λ)i α;c) 将特征向量i α正交化(实对称矩阵的不同特征值对应的特征向量彼此正交,多重特征根在取特征向量时尽量取正交向量,方便计算)、单位化得i βd) 令⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=n x x x X ...21 , []n C βββ,...,21=,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n y y y Y ...21则CY X =,是正交变换,且222221121...),...,,(n n n y y y x x x f λλλ+++=。

14.如果任一非零向量X 都使得二次型0>AX X T,则称之为正定二次型,对应的矩阵A 为正定矩阵。

二次型为正定矩阵的充要条件是矩阵A 的特征值全部为正实数、正惯性指数是n 、矩阵A 与E 合同、矩阵A 的顺序主子式全大于零,且以上条件等价。

概率论与数理统计重要知识点及公式: 1.条件概率:)()()|(B P AB P B A P =如果(|)()()P A B P A P B =,则A 与B 独立。

2.常用概率公式:()()()()()()()()()(|)()P A B P A P B P A B P A B P AB P A P AB p AB P A B P B ⋃=+-⋂⎧⎪-==-⎨⎪=⎩(对于给定如:A B ⊂这样的条件,常常通过画图(如下图)来解决,直观明了)()()()()()()p AB p B p AB p AB p A p AB ⎧=-⎪⎨=-⎪⎩3.全概率公式:1()()(|)niii P A P A P A B ==∑4.贝叶斯公式:1()()()(|)()()(|)i i i i ni jjj p AB p B p B A p B A p B p B p A B ===∑(结合条件概率公式和全概率公式推导而出) 5.几个重要分布:a) 二项分布(n 次重复,伯努利类型):()(1)n nm n m p A C p p -=-b) 泊松分布:二项分布当m,很大,p很小且np λ=时,{}~(),,0,1,2...!kX p p x k e k k λλλ-===c) 均匀分布:1,~(,),()0,a x b X U a b f x b a otherelse ⎧⎫<<⎪⎪=-⎨⎬⎪⎪⎩⎭d) 指数分布:,0()0,0x e x f x x λλ-⎧⎫>=⎨⎬≤⎩⎭e)正态分布:22()22~(,),(;,)x X N u f x u μδδδ--=6.随机变量的数字特征:A )数学期望:存在前提1nii i xp =∑,()x f x dx +∞-∞⎰要绝对可积,那么1()ni i i E x x p ==∑,()()E x x f x dx +∞-∞=⎰;B )方差:{}222()(())()()()D XE x E x D X E x E x ⎧=-⎪⎨=-⎪⎩C )期望性质:()()()()()()E C CE cX cE X E X Y E X E Y =⎧⎪=⎨⎪+=+⎩,X ,Y 独立则()()()E XY E X E Y =D )方差性质:2()0()()()()()2cov(,)D C D cX c D x D X Y D X D Y X Y =⎧⎪=⎨⎪±=+±⎩,若X ,Y 相互独立则()()()D X Y D X D Y ±=+.。

7. 常用分布数字特征:a) (0,1)分布();()(1)E z p D z p p ==-b) b (n ,p )二项分布();()(1)E z np D z np p ==-c) 泊松分布,(),();!ke E z D z k λλλλ-==d) 均匀分布:[]2(),,(),();212a b b a U a b E z D z +-== e) 指数分布:2,011,(),();0,x e x E z D z otherelse λλλλ-⎧⎫>==⎨⎬⎩⎭f)正态分布:22(,),(),();N E z D z μδμδ==8.协方差: 定义式[][]{}cov(,)()()X Y Ex E x y E y =--计算式cov(,)()()()X Y E xy E x E y =-性 质 : 1212cov(,)cov(,)cov(,)cov(,)cov(,)cov(,)()X Y Y X Y X Y aX bY ab X Y Z Z D Z +=+⎧⎪=⎨⎪=⎩9.相关系数:1;xy ρρ=≤10.几种特殊函数的分布问题:a) 极值分布12max(,),min(,)Z X Y Z X Y ==12()(max(,))(,)()()()()()(min(,))1(min(,))1()()1[1{}][1{}]1[1()][1()]Z x y Z x y F z P X Y z P X z Y z P X z P Y z F z F z F z P X Y z P X Y z P X z P Y z p x z p y z F z F z =≤=≤≤=≤≤==≤=->=->>=--≤-≤=---b )和的分布:Z=X+Y 分分布函数是`(){}(,);()()(,)()(,)z x y zz zz F z P X Y z f x y dxdy f z F z f z y y dyf z f x z x dx+≤+∞-∞+∞-∞=+≤===-=-⎰⎰⎰⎰一般的X与Y相互独立,且221122~(,),~(,)X N Y N μδμδ,则221212~(,)Z X Y N μμδδ=+++,其概率密度公式为:2122211(())2()221211(;,)x f z μμσδμμσδ-+-+++=。

c )商的分布 XZ Y =分布函数是:/0()()(,)()(,)(,)(,)z x y zz F z P Z z f x y dxdyf z yf zy y dy yf zy y dy y f zy y dy≤+∞+∞-∞-∞=≤==-=⎰⎰⎰⎰⎰11.参数估计:a) 矩估计方法:构造关于参数组成的k 阶原地矩与样本k 阶原点矩之间的等式关系:1211(,,...)n kk n i i x n γθθθ==∑,解此方程组解为12(,,...)k k n x x x θθ=就作为k θ的矩估计。

b ) 极大似然估计方法:基本思想是按照最大可能性的准则进行推断,把已经发生的事件,看成最可能出现的事件,即认为它具有最大的可能性。

求法,写出最大似然函数,并求最大似然函数的最大值点,一般取最大似然函数的 对数方便运算,即求解如下的似然方程组ln 0,1,2,3...,kLk m θ∂==∂,似然方程组 的解可能不唯一,这时需要微积分知识进一步的判定哪一个是最大值点,若似然函 数关于参数的导数不存在时,就无法得到似然方程组,因此必须回到极大似然股及的定义式直接求解。

13.矩估计的优良性:若()E θθ=则称θ是θ的无偏估计量,若12,θθ是θ的无偏估计量,且12()()D D θθ≤则称1θ为θ的最小无偏估计量。

相关文档
最新文档