1-5解析几何吕林根第四版
解析几何课件(吕林根许子道第四版)(精)

返回
第一章 向量与坐标
§1.3 数乘向量
表示与非零向量 设ea a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | ea
a . ea |a |
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页下一页ຫໍສະໝຸດ §1.2 向量的加法定 义1.2.1 设 已 知 矢 量 a、 b ,以空间任意一点 O为 始 点 接连作矢量 OA a, AB b得 一 折 线 OAB, 从 折 线 的 端 点 O到 另 一 端 点 B的 矢 量 OB c , 叫 做 两 矢 量 a与b的 和 , 记 做 cab
(2)结合律: a b c (a b ) c a (b c ). (3) a ( a ) 0.
上一页
下一页
返回
第一章 向量与坐标
§1.2 向量的加法
有限个矢量 a1 , a2 ,an 相 加 可 由 矢 量 的 三 角 求 形和 法则推广
解析几何课件(第四版)
吕林根 许子道等编
解析几何的基本思想是用代数的方法来研究 几何,为将代数运算引导几何中,采用的最根本最 有效的做法----有系统的把空间的几何结构代数 化,数量化.
第一章 第二章 第三章 第四章 向量与坐标 轨迹与方程 平面与空间直线 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
下一页
返回
第一章 向量与坐标
§1.4向量的线性关系与向量的分解
定理1.4.2 如果向量 e1 , e 2 不共线,那么向量 r与 e1 , e2 共面的充要条件是 r可以用向量 e1 , e2线性表示, 或者说向量 r可以分解成 e1 , e2的线性组合,即 r x e1 y e2 并且系数 x , y被 e1 , e2 , r唯一确定 . 这时 e1 , e 2叫做平面上向量的基底 . 定理1.4.3 如果向量 e1 , e 2 , e 3 不共面,那么空间 任意向量 r可以由向量 e1 , e 2 , e 3线性表示,或说空间 ( ) 1.4-2
解析几何第四版吕林根课后习题答案第五章

解析⼏何第四版吕林根课后习题答案第五章第五章⼆次曲线⼀般的理论§5.1⼆次曲线与直线的相关位置1. 写出下列⼆次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y .(1)22221x y a b +=;(2)22221x y a b -=;(3)22y px =;(4)223520;x y x -++=(5)2226740x xy y x y -+-+-=.解:(1)22100100001a A b ?? ?= - ;121(,)F x y x a =221(,)F x y y b=3(,)1F x y =-;(2)22100100001a A b ?? ?=- -;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -??= ? ?-??;1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020305022A ?? ?=-;15(,)2F x y x =+;2(,)3F x y y =-;35(,)22F x y x =+;(5)1232171227342A ??-- ? ? ?=---;11(,)232F x y x y =--;217(,)22F x y x y =-++;37(,)342F x y x y =-+-. 2. 求⼆次曲线22234630x xy y x y ----+=与下列直线的交点.(1)550x y --=(2)220x y ++=;(3)410x y +-=;(4)30x y -=;(5)2690x y --=.提⽰:把直线⽅程代⼊曲线⽅程解即可,详解略(1)15(,),(1,0)22-;(2??,??;(3)⼆重点(1,0);(4)11,26??;(5)⽆交点.3. 求直线10x y --=与222210x xy y x y -----=的交点. 解:由直线⽅程得1x y =+代⼊曲线⽅程并解⽅程得直线上的所有点都为交点. 4 .试确定k 的值,使得(1)直线50x y -+=与⼆次曲线230x x y k -+-=交于两不同的实点;(2)直线1,{x kt y k t=+=+与⼆次曲线22430x xy y y -+-=交于⼀点;(3)10x ky --=与⼆次曲线22(1)10xy y k y -+---=交于两个相互重合的点;(4)1,{1x t y t=+=+与⼆次曲线222420x xy ky x y ++--=交于两个共轭虚交点.解:详解略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4)4924k >. §5.2⼆次曲线的渐进⽅向、中⼼、渐进线1. 求下列⼆次曲线的渐进⽅向并指出曲线属于何种类型的(1)22230xxy y x y ++++=;(2)22342250x xy y x y ++--+=;(3)24230xy x y --+=.解:(1)由22(,)20X Y X XY Y φ=++=得渐进⽅向为:1:1X Y =-或1:1-且属于抛物型的;(2)由22(,)3420X Y X XY Y φ=++=得渐进⽅向为:(2:3X Y =-且属于椭圆型的;(3)由(,)20X Y XY φ==得渐进⽅向为:1:0X Y =或0:1且属于双曲型的.2. 判断下列曲线是中⼼曲线,⽆⼼曲线还是线⼼曲线.(1)22224630x xy y x y -+--+=;(2)22442210x xy y x y -++--=;(3)2281230y x y ++-=;(4)2296620x xy y x y -+-+=.解:(1)因为2111012I -==≠-,所以它为中⼼曲线;(2)因为212024I -==-且121241-=≠--,所以它为⽆⼼曲线;(3)因为200002I ==且004026=≠,所以它为⽆⼼曲线;(4)因为293031I -==-且933312--==-,所以它为线⼼曲线; 3. 求下列⼆次曲线的中⼼.(1)225232360x xy y x y -+-+-=;(2)222526350x xy y x y ++--+=;(3)22930258150x xy y x y -++-=.解:(1)由510,3302x y x y --=-++=??得中⼼坐标为313(,)2828-;(2)由5230,2532022x y x y ?+-=+-=??得中⼼坐标为(1,2)-;(3)由91540,15152502x y x y -+=??-+-=知⽆解,所以曲线为⽆⼼曲线. 4. 当,a b 满⾜什么条件时,⼆次曲线226340x xy ay x by ++++-=(1)有唯⼀中⼼;(2)没有中⼼;(3)有⼀条中⼼直线.解:(1)由330,2302x y b x ay ?++=++=??知,当9a ≠时⽅程有唯⼀的解,此时曲线有唯⼀中⼼;(2)当9,9a b =≠时⽅程⽆解,此时曲线没有中⼼;(3)当9a b ==时⽅程有⽆数个解,此时曲线是线⼼曲线.5. 试证如果⼆次曲线22111222132333(,)2220F x y a x a xy a y a x a y a =+++++= 有渐进线,那么它的两个渐进线⽅程是Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=式中00(,)x y 为⼆次曲线的中⼼.证明:设(,)x y 为渐进线上任意⼀点,则曲线的的渐进⽅向为00:():()X Y x x y y =--,所以Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=.6. 求下列⼆次曲线的渐进线.(1)226310x xy y x y --++-=;(2)2232340x xy y x y -++-+=;(3)2222240x xy y x y ++++-=.解:(1)由1360,2211022x y x y ?-+=--+=??得中⼼坐标13(,)55-.⽽由2260X XY Y --=得渐进⽅向为:1:2X Y =或:1:3X Y =-,所以渐进线⽅程分别为210x y -+=与30x y += (2)由310,22332022x y x y ?-+=-+-=??得中⼼坐标13(,)55-.⽽由22320X XY Y -+=得渐进⽅向为:1:1X Y =或:2:1X Y =,所以渐进线⽅程分别为20x y -+=与210x y --=(3)由10,10x y x y ++=??++=?知曲线为线⼼曲线,.所以渐进线为线⼼线,其⽅程为10x y ++=.7. 试证⼆次曲线是线⼼曲线的充要条件是230I I ==,成为⽆⼼曲线的充要条件是230,0I I =≠. 证明:因为曲线是线⼼曲线的充要条件是131112122223a a a a a a ==也即230I I ==;为⽆⼼曲线的充要条件是131112122223a a a a a a =≠也即230,0I I =≠. 8. 证明以直线1110A x By C ++=为渐进线的⼆次曲线⽅程总能写成111()()0A x By C Ax By C D +++++=. 证明:设以1110A x By C ++=为渐进线的⼆次曲线为 22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则它的渐进线为Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=,其中00(,)x y 为曲线的中⼼,从⽽有Φ00(,)x x y y --=111()()0A x By C Ax By C ++++= ,⽽Φ00(,)x x y y --=0 因为00(,)x y 为曲线的中⼼,所以有11012013a x a y a +=-,12022023a x a y a +=- 因此Φ000033(,)(,)(,)x x y y F x y x y a φ--=+-,令0033(,)x y a D φ-=-,代⼊上式得即111(,)()()F x y A x By C Ax By C D =+++++,所以以1110A x By C ++=为渐进线的⼆次曲线可写为111()()0A x By C Ax By C D +++++=.9.求下列⼆次曲线的⽅程.(1)以点(0,1)为中⼼,且通过(2,3),(4,2)与(-1,-3);(2)通过点(1,1),(2,1),(-1,-2)且以直线10x y +-=为渐进线. 解:利⽤习题8的结论即可得:(1)40xy x --=;(2)2223570x xy y x ---+=.§5.3⼆次曲线的切线1. 求以下⼆次曲线在所给点或经过所给点的切线⽅程.(1)曲线223457830x xy y x y ++---=在点(2,1);(2)曲线曲线223457830x xy y x y ++---=在点在原点;(3)曲线22430x xy y x y +++++=经过点(-2,-1);(4)曲线225658x xy y ++=经过点();(5)曲线222210x xy y x y -----=经过点(0,2).解:(1)910280x y +-=;(2)20x y -=;(3)10,30y x y +=++=;(4)1150,0x y x y +-=-+=;(5)0x =.2. 求下列⼆次曲线的切线⽅程并求出切点的坐标.(1)曲线2243530x xy y x y ++--+=的切线平⾏于直线40x y +=;(2)曲线223x xy y ++=的切线平⾏于两坐标轴.解:(1)450x y +-=,(1,1)和480x y +-=,(4,3)-;(2)20y ±=,(1,2),(1,2)--和20x ±=,(2,1),(2,1)--. 3. 求下列⼆次曲线的奇异点.(1)22326410x y x y -+++=;(2)22210xy y x +--=;(3)2222210x xy y x y -+-++=.解:(1)解⽅程组330,220x y +=??-+=?得奇异点为(1,1)-;(2)解⽅程组10,0y x y -=??+=?得奇异点为(1,1)-.4.试求经过原点且切直线4320x y ++=于点(1,-2)及切直线10x y --=于点(0,-1)的⼆次曲线⽅程. 解:利⽤(5.3-5)可得226320x xy y x y +-+-=.5.设有共焦点的曲线族2222221x y a h b h+=++,这⾥h 是⼀个变动的参数,作平⾏于已知直线y mx =的曲线的切线,求这些切线切点的轨迹⽅程. 解:设切点坐标为00(,)x y ,则由(5.3-4)得曲线的切线为0022221x x y ya hb h+=++,因为它平⾏与y m x =,所以有2220000x b my a h x my +=-+,代⼊220022221x y a h b h +=++整理得222220000(1)()0m x m x y m y m a b +----=,所以切点的轨迹为22222(1)()0mx m xy my m a b +----=.§5.4⼆次曲线的直径1. 已知⼆次曲线223754510x xy y x y +++++=.求它的(1)与x 轴平⾏的弦的中点轨迹;(2)与y 轴平⾏的弦的中点轨迹;(3)与直线10x y ++=平⾏的弦的中点轨迹.解:(1)因为x 轴的⽅向为:1:0X Y =代⼊(5.4-3)得中点轨迹⽅程6740x y ++=;(2)因为y 轴的⽅向为:0:1X Y =代⼊(5.4-3)得中点轨迹⽅程71050x y ++=;(3)因为直线10x y ++=的⽅向为:1:1X Y =-代⼊(5.4-3)得中点轨迹⽅程310x y ++=. 2.求曲线224260x xy x y +---=通过点(8,0)的直径⽅程,并求其共轭直径. 解:(1)把点(8,0)代⼊(2)(21)0X x Y y -+-= 得:1:6X Y =,再代⼊上式整理得直径⽅程为1280x y +-=,其共轭直径为122230x y --=.3.已知曲线22310xy y x y --+-=的直径与y 轴平⾏,求它的⽅程,并求出这直径的共轭直径. 解:直径⽅程为10x -=,其共轭直径⽅程为230x y -+=.4.已知抛物线28y x =-,通过点(-1,1)引⼀弦使它在这点被平分. 解:430x y ++=.5. 求双曲线22164x y -=⼀对共轭直径的⽅程,已知两共轭直径间的⾓是45度. 解:设直径和共轭直径的斜率分别为',k k ,则'23kk =.⼜因为它们交⾓45度,所以''11k k kk -=+,从⽽13k =-或2,'2k =-或13,故直径和共轭直径的⽅程为30x y +=和20x y -=或20x y +=和30x y -=.6.求证:通过中⼼曲线的直线⼀定为曲线的直径;平⾏于⽆⼼曲线渐进⽅向的直线⼀定为其直径. 证明:因为中⼼曲线直径为中⼼线束,因此过中⼼的直线⼀定为直径;当曲线为⽆⼼曲线时,它们的直径属于平⾏直线束,其⽅向为渐进⽅向,所以平⾏于⽆⼼曲线渐进⽅向的直线⼀定为其直径. 7.求下列两条曲线的公共直径.(1)223234440x xy y x y -+++-=与2223320x xy y x y --++=;(2)220x xy y x y ----=与2220x xy y x y ++-+=. 解:(1)210x y -+=;(2)5520x y ++=.8.已知⼆次曲线通过原点并且以下列两对直线 320,5540x y x y --=??--=?与530,210y x y +=??--=?为它的两对共轭直径,求该⼆次曲线的⽅程. 解:设曲线的⽅程为22111222132333(,)2220F x y a x a xy a y a x a y a=+++++=,则由(5.4-3)和(5.4-5)可得1112221323331111,,1,,,0222a a a a a a ==-=-=-=-=,所以曲线的⽅程为220x xy y x y ----=.§5.5⼆次曲线的主直径与主⽅向1.分别求椭圆22221x y a b +=,双曲线22221x y a b-=,抛物线22y px =的主⽅向与主直径.解:椭圆的主⽅向分别为1:0和0:1,主直径分别为0,0x y ==;双曲线的主⽅向分别为1:0和0:1,主直径分别为0,0x y==;抛物线的主⽅向分别为0:1和1:0,主直径分别为0y =. 2.求下列⼆次曲线的主⽅向与主直径. (1)22585181890x xy y x y ++--+=;(2)22210xy x y -+-=;(3)229241618101190x xy y x y -+--+=.解:(1)曲线的主⽅向分别为1:(-1)和1:1,主直径分别为0,20x y x y -=+-=;(2)其主⽅向分别为1:1和1:(-1),主直径分别为0,20x y x y +=-+=;(3)其主⽅向分别为3:(-4)和4:3,主直径分别为3470x y -+=;(4)任何⽅向都是其主⽅向,过中⼼的任何直线都是其主直径.3.直线10x y ++=是⼆次曲线的主直径,点(0,0),(1,-1),(2,1)在曲线上,求该曲线的⽅程.解:设⼆次曲线⽅程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,把点坐标(0,0),(1,-1),(2,1)分别代⼊上⾯⽅程同时利⽤直线10x y ++=为其主直径可得111222132333774,,4,,4,022a a a a a a ==-==-==,所以所求曲线⽅程为22474780x xy y x y -+-+=.4.试证⼆次曲线两不同特征根确定的主⽅向相互垂直.证明:设12,λλ分别曲线的两不同特征根,由它们确定的主⽅向分别为11:X Y 与22:X Y 则1111211112122111,,a X a Y X a X a Y Y λλ+=??+=?与1121222212222222,a X a Y X a X a Y Y λλ+=??+=?,所以11211211112121212212()()X X YY a X a Y X a X a Y Y λλ+=+++11212211222221221221()(),a X a Y X a X a Y X X X Y Y λλ=+++=+从有121212()()0X X YY λλ-+=,因为12λλ≠,所以12120X X YY +=,由此两主⽅向11:X Y 与22:X Y 相互垂直.§5.6⼆次曲线⽅程的化简与分类1. 利⽤移轴与转轴,化简下列⼆次曲线的⽅程并写出它们的图形.(1)225422412180x xy y x y ++--+=;(2)222410x xy y x y ++-+-=;(3)25122212190x xy x y +---=;(4)222220x xy y x y ++++=. 解(1)因为⼆次曲线含xy 项,我们先通过转轴消去xy ,设旋转⾓为α,则324ctg α=,即21324tg tg αα-=,所以12tg α=或-2.取2tg α=-,那么sin α=,cos α=,所以转轴公式为''''2),2).x x y y x y ?=+??=-+代⼊原⽅程化简再配⽅整理得新⽅程为''2''26120x y +-=;类似的化简可得(2)''2''250y +=;(3)''2''294360x y --=;(4)''2210x -=.2.以⼆次曲线的主直径为新坐标轴,化简下列⽅程,并写出的坐标变换公式与作出它们的图(1)22845816160x xy y x y +++--=;(2)22421040x xy y x y --++=;(3)22446830x xy y x y -++-+=;(4)2244420x xy y x y -++-=. 解:(1)已知⼆次曲线的距阵是 8242584816?? ?- ? ?--??, 18513I =+=,2823625I ==,所以曲线的特征⽅程为213360λλ-+=,其特征根为14λ=,29λ=,两个主⽅向为11:1:2X Y =-,22:2:1X Y =;其对应的主直径分别为8200x y -+=,7740x y +-=. 取这两条直线为新坐标轴得坐标变换公式'''')1,2) 2.x x y y x y ?=--??=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为 '2'294360x y +-=.(2)已知⼆次曲线的距阵是 225222520-?? ?- ? ???坐标变换公式''''2)1,) 2.x x y y x y ?=--??=++代⼊已知曲线⽅程并整理得曲线在新坐标系⽅程为'2'23210-+-=. (3)已知⼆次曲线的距阵是423214343----,坐标变换公式''''92),101).5 x x yy x y=--=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为'2' 50-=. (4)坐标变换公式''''22),51).5x x yy x y=--=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为'2510y-=.3.试证在任意转轴下,⼆次曲线的新旧⽅程的⼀次项系数满⾜关系式'2'222 13231313a a a a+=+.证明:设旋转⾓为α,则''131323cos sina a aαα=-,''231323sin cosa a aαα=+,两式平⽅相加得'2'22213231313a a a a+=+.4.试证⼆次曲线222ax hxy ay d++=的两条主直径为220x y-=,曲线的两半轴的长分别为. 证明:求出曲线的两主直径并化简即可得.§5.7应⽤不变量化简⼆次曲线的⽅程1. 利⽤不变量与半不变量,判断下列⼆次曲线为何种曲线,并求出它的化简⽅程与标准⽅程. (1)22 66210x xy y x y++++-=;(2)223234440x xy y x y-+++-=;(3)2243220x xy y x y-++-=;(4)22442210x xy y x y-++--=;(5)222246290x xy y x y-+--+=;(6);(7)22 22240x xy y x y++++-=;(8)22 4412690x xy y x y-++-+=.解:(1)因为12I=,213831I==-,13331116311=-,322II=-,⽽特征⽅程2280λλ--=的两根为124,2λλ==-,所以曲线的简化⽅程(略去撇号)为224220x y --=曲线的标准⽅程为 2221012x y --=,曲线为双曲线;类似地得下⾯:(2)曲线的简化⽅程(略去撇号)为 222480x y +-=,曲线的标准⽅程为 22142x y +=,曲线为椭圆;(3)曲线的简化⽅程(略去撇号)为22(2(20x y +=,曲线的标准⽅程为22011x y -=,曲线为两相交直线;(4)曲线的简化⽅程(略去撇号)为250y -=,双曲线的标准⽅程为2y =,曲线为抛物线;(5)曲线的简化⽅程(略去撇号)为2233((022x y +=,曲线的标准⽅程为220x y +=,曲线为⼀实点或相交与⼀实点的两虚直线;(6)曲线的简化⽅程(略去撇号)为220,0,0)y x a y a -=≤≤≤≤(,曲线的标准⽅程为2y =,0,0)x a y a ≤≤≤≤(曲线为抛物线的⼀部分;(7)曲线的简化⽅程(略去撇号)为 2250y -=,曲线的标准⽅程为 252y =,曲线为两平⾏直线;(8)曲线的简化⽅程(略去撇号)为 250y =,曲线的标准⽅程为 20y =,曲线为两重合直线.2. 当λ取何值时,⽅程 2244230x xy y x y λ++---= 表⽰两条直线.解:⽅程 2244230x xy y x y λ++---=表⽰两条直线当且仅当3222110213I λ-=-=---,即4λ=.3. 按实数λ的值讨论⽅程2222250x xy y x y λλ-+-++= 表⽰什么曲线.解:因为12I λ=,2(1)(1)I λλ=-+,3(53)(1)I λλ=+-,12(51)K λ=-,所以当λ的值变化时,1231,,,I I I K 也随着变化,它们的变化关系如下表:4. 设221112221323332220a x a xy a y a x a y a +++++= 表⽰两条平⾏直线,证明这两条直线之间的距离是d = . 证明:曲线的⽅程可简化为:这⾥当曲线表⽰两条平⾏的实直线时,10K <.所以这两条直线之间的距离是d =5. 试证⽅程 221112221323332220a x a xy a y a x a y a +++++= 确定⼀个实圆必须且只须212124,0I I I I =<.证明:当曲线 221112221323332220a x a xy a y a x a y a +++++=表⽰⼀个实圆的充要条件是其特征⽅程2120I I λλ-+=有相等实根且120I I <,即21240I I ?=-=且120I I <,从⽽⽅程确定⼀个实圆必须且只须212124,0I I I I =<.6. 试证如果⼆次曲线的10I =,那么20I <. 证明:因为111220I a a =+=即1122a a =-,所以1112222211221211121222()a a I a a a a a a a==-=-+,⽽11122,,a a a 不全0,所以有20I <. 7. 试证如果⼆次曲线的230,0I I =≠,那么10I ≠,⽽且120I I <.证明:当230,0I I =≠时,由5.2节习题7知,曲线为⽆⼼曲线,从⽽有10I ≠,⽽且120I I <.。
解析几何第四版吕林根课后习题答案一至三章

PA1 PO PA2 PO PAn PO 0
即
PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2
(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2
解析几何全册课件(吕林根版)

下一页
返回
当
或
除这些情况外,现分别按下面两种情况证明.
中有一个为零向量时,
显然成立,
1)
2)
和
平行.可以找到数
使得
这只需按
与
同向或相反,取
或
和
不平行.如图,
是以
向量为边的三角形,按相似比为
可得出相似
且
3)
由相似三角形对应边成比例的关系,可以得出
而
故
例1设AM是三角形ABC的中线,求证:
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
(2)结合律:
(3)
上一页
下一页
返回
O
A1
A2
A3
A4
An-1
An
这种求和的方法叫做多边形法则
上一页
下一页
返回
向量减法
上一页
下一页
返回
A
B
C
上一页
返回
例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.
证
方向角与方向余弦的坐标表示式
上一页
下一页
返回
非零向量 的方向角:
非零向量与三条坐标轴的正向的夹角称为方向角.
上一页
下一页
返回
由图分析可知
向量的方向余弦
方向余弦通常用来表示向量的方向.
上一页
下一页
返回
当 时,
向量方向余弦的坐标表示式
线为
的连
的中点
对边
一组
设四面体
证
e
e
e
AP
e
AD
e
AC
解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标§ 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21AC AB AL +=Θ )(21+=)(21CB CA CN +=0)(21=+++++=++∴7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL ++.[证明] LA OL OA +=Θ MB OM OB += NC ON OC +=)(OM +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++ ON OM OL OC OB OA ++=++∴ 从而三中线矢量,,构成一个三角形。
8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB ++OD =4OM .[证明]:因为OM =21(OA +), OM =21(OB +OD ), 所以 2=21(OA +OB +OC +) 所以OA +OB ++OD =4OM .10、用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§ 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =(-1),O 是空间任意一点,求证:OP =λλ++1[证明]:如图1-7,因为=-OA ,PB =OB -,所以 -OA = (OB -),(1+)OP =+,从而 OP =λλ++1OB.4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将分解为21,e e 的线性组合 解:(1)()12123131,e e e e -==-=-=Θ, 2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为||||TC ||11e e , 且 BT 与方向相同, 所以 BT ||21e e .由上题结论有AT ||||1||212211e e e e e +||||212112e e e e e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。
解析几何吕林根第四版

解析几何吕林根第四版简介《解析几何》是解析几何学的经典教材之一,已经出版了多个版本。
其中,《解析几何吕林根第四版》是该教材的最新版本。
本文将对该版本进行详细解析,介绍其内容和特点。
第一章探索解析几何本章从引入几何、解析几何的定义和发展历程开始,引导读者了解解析几何的基本概念和研究方法。
主要内容包括:•几何与解析几何的区别•坐标系的使用和意义•向量的基本性质和运算法则•点、线、面的表示和方程通过本章的学习,读者能够建立起对解析几何的基本认知,并具备了解几何对象解析性质的能力。
第二章坐标系和变换本章介绍了坐标系的不同类型和变换方法,为后续章节的学习打下坚实的基础。
主要内容包括:•直角坐标系、极坐标系、三维坐标系的概念和表示方法•坐标变换的基本原理和应用•坐标系的旋转、平移和缩放等变换方法通过学习本章,读者可以熟练使用不同类型的坐标系,并能够进行各种坐标变换操作。
第三章直线和曲线本章介绍了直线和曲线的解析几何表示以及相关性质。
主要内容包括:•直线的一般方程和参数方程•曲线的参数方程和隐式方程•圆、椭圆、双曲线和抛物线的解析几何表示和性质•椭圆的焦点和准线通过学习本章,读者可以准确地描述直线和曲线,并能够分析其性质和特点。
第四章曲面和空间曲线本章介绍了曲面和空间曲线的解析几何表示和性质。
主要内容包括:•曲面的方程和类型•空间曲线的参数方程和表示方法•平面、二次曲面、旋转曲面的解析几何特征和性质通过学习本章,读者可以了解不同类型的曲面和曲线,并能够进行相关分析和计算。
第五章空间直线和平面本章介绍了空间直线和平面的解析几何表示和性质。
主要内容包括:•空间直线的一般方程和参数方程•平面的一般方程和参数方程•直线和平面的位置关系和交点计算•点到直线和平面的距离计算通过学习本章,读者可以准确地描述空间中的直线和平面,并能够进行相关计算和分析。
第六章空间几何与向量代数本章介绍了空间几何和向量代数的关系和应用。
主要内容包括:•空间向量的模长、方向和运算法则•空间向量的线性相关性和线性独立性•向量的点积和叉积•向量在空间几何中的应用通过学习本章,读者可以将空间几何问题转化为向量代数问题,并能够进行向量相关的计算和分析。
解析几何课件(吕林根+许子道第四版)
从而得
AP1
1 2
1 2
e1
1 2
(e2
e3 )
1 4
(e1
e2
e3 ),
同理可得
APi
1 4
(e1
e2
e3 ),(i
2,3)
所以
AP1=AP2=AP3
上一页
从而知P1, P2 , P3三点重合,命题得证 .
下一页
返回
定义1.4.2 对于n(n 1)个向量a1 , a2 ,, an,如果存
叫 做 矢 量a1, a2 ,, an的 线 性 组 合. 定理1.4.1 如果矢量e 0,那么矢量r与矢量e共
线 的 充 要 条 件 是r可 以 用 矢 量e线 性 表 示 , 或 者 说r
是e的 线 性 组 合 , 即r=xe,
(1.4 1)
并且系数x被e, r唯一确定.
这时e称为用线性组合来表示共线矢量的基底.
向M量1为的起大点小,.M| a2|为或终| 点M的1M有2 |向线段.
下一页
返回
单位向量:模为1的向量.
零向量:模为0的向量.0
e
a
或
e
M1M2
相同,定那义a么1.叫1.做2 =相如等果向两量个b.向记量为的模a 相b等 且方向
所有的零向量都相等.
定义1.1.3 两个模相等,方向相反的向
返回
§1.3 数乘向量
定义1.3.1 实数与矢量a的乘积是一个矢量,记做 a,它的
模是 a a ;a的方向,当 0时与a相同,当 0时与a
相反.我们把这种运算叫做数量与矢量的乘法,简称为数乘.
解析几何课件(吕林根许子道第四版)(精)
空间中点与平面的关系
点在平面内:点 位于平面内满足 平面的定义和性 质
点在平面外:点 不在平面内与平 面平行或与平面 相交
点的轨迹:点按 照某种规律在平 面上移动形成轨 迹
点的射影:点在 平面上的投影与 原点连线与平面 的夹角关系
空间中直线与平面的关系
直线与平面的位置关系:直线要么在平面上要么与平面平行要么与平面相交 直线与平面的交点:直线与平面的交点称为直线在平面上的投影 直线与平面的角度:直线与平面之间的角度称为线面角可以通过几何或向量方法求解 直线与平面的距离:直线到平面的最短距离称为线到面的距离可以通过几何或向量方法求解
05
解析几何中的投影与透视
投影的基本概念
投影的定义:通过光线将物体投射到平面上生成影子。 投影的分类:中心投影、平行投影。 投影的应用:建筑设计、工程制图、动画制作等领域。 投影的性质:与光源、物体和投影面的位置关系有关。
透视的基本概念
透视的定义:通过透明平面观察物体研究物体在平面上的投影从而表现出物体的三维空间 感。
应用:在解析几何中坐标变换被广泛应用于解决各种实际问题如平面几何、 立体几何、曲线和曲面等。 意义:通过坐标变换可以深入理解几何图形的内在性质和规律进一步探索 几何图形的变换和对称等特性。
图形变换
平移变换:将图形在平面内沿某一方向移动一定的距离而不改变其形状和大小。 旋转变换:将图形绕某一点旋转一定的角度而不改变其形状和大小。 伸缩变换:将图形按一定的比例进行放大或缩小而不改变其形状和大小。 对称变换:将图形关于某一直线或点进行翻转或反射而不改变其形状和大小。
第四 版)(精).ppt
单击此处添加副标题
汇报人:
目录
01 课件概览 02 解析几何基础知识 03 解析几何中的曲线与方程 04 解析几何中的平面与空间 05 解析几何中的投影与透视 06 解析几何中的变换与对称
解析几何吕林根许子道第四版PPT课件
上一页 下一页
返回
定理1.4.6 两向量共线的充要条件 是它们线性相关 . 定理1.4.7 三个向量共面的充要条 件是它们线性相关 . 定理 1.4.8 空间任何四个向量总是 线性相关 .
上一页 下一页
第25页/共198页
返回
§1.5 标架与坐标
三个坐标轴的正方向 符合右手系.
z 竖轴
即以右手握住
定理 向量的加法满足下面的运算规律:
(1)交换律:
a
b
b
a.
(2)结合律:
a
b
c
(a
b)
c
a
(b
c ).
(3) a (a) 0.
上一页 下一页
第10页/共198页
返回
有限个矢量a1, a2 ,an相加可由矢量的三角形求和 法则推广
自 任 意 点O开 始 , 依 次 引OA1 a1 , A1 A2 a2 ,,
z 轴,当右手的四个 手指从正向 x轴以
2
角度转向正向 y 轴
时,大拇指的指向
就是 z 轴的正向.
定点 o •
y 纵轴
横轴 x 空间直角坐标系
下一页
第26页/共198页
返回
2、坐标面与卦限
Ⅲ
yoz面
Ⅳ
xoy面
Ⅶ
x
Ⅷ
z zox 面
Ⅱ
o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
上一页 下一页
返回
第27页/共198页
线 的 充 要 条 件 是r可 以 用 矢 量e线 性 表 示 , 或 者 说r
是e的 线 性 组 合 , 即r=xe,
(1.4 1)
并且系数x被e, r唯一确定.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为M1为P2 P3的中点,故M1(
x2
+ 2
x3
,y2
+ 2
y3 ,z2
+ 2
z3
),又因为G为重心,
故有P1G 2= GM1,即重心G把中线分成定比λ 2,
P1
利用定比分点坐标公式可得
x x= 1 + x2 + x3 ,y y= 1 + y2 + y3 ,z
3
3
z1 + z2 + z3 . G 3
e1, e2 , e3 两两相互垂直的笛卡尔标架叫做笛卡尔直角标架;简称直角标架;
在一般情况下,叫做仿射标架.
P
e3 r
e1 O
e2
e3 e1 O e2
e3 e1 O e2
注: (1) 标架{O; e1, e2 , e3}中的向量 e1, e2, e3 是有顺序的,交换它们
的次序将会得到另一标架.
(2) 空间标架有无穷多个.
e3
e1 O
e2
e3
e2 O
e1
右手(旋)标架
左手(旋)标架
二、坐标
{ } 定义 1.5.2 (1)式中的 x, y, z 叫做向量 r 关于标架 O;e1, e2, e3 的
坐标或称为分量,记做 r{x, y, z} 或{x, y, z} .
{ } 定义 1.5.3 对于取定了标架 O;e1,e2,e3 的空间中任意点 P ,向量 OP { } 叫做点 P 的向径,或称点 P 的位置向量,向径 OP 关于标架 O;e1,e2,e3 的坐 { } 标 x, y, z 叫做点 P 关于标架 O;e1,e2,e3 的坐标,记做 P ( x, y, z) 或 ( x, y, z).
§1.5 标架与坐标
一、标架 二、坐标 三、坐标系 四、向量的坐标运算
一、标架
定义 1.5.1 空间中的一个定点 O ,连同三个不共面的有序向量 e1, e2 , e3 的全体,
{ } 叫做空间中的一个标架,记做 O;e1, e2, e3 ,
{ } 如果 e1, e2 , e3 都是单位向量,那么 O; e1, e2 , e3 叫做笛卡尔标架;
每两条坐标轴所决定的平面叫做坐标面,分别叫做 xOy 平面, yOz 平面
与 xOz 平面.
z
e3
e1 O e2
y
x
Ⅲ
yoz面
Ⅳ
xoy 面
Ⅶ
x
Ⅷ
z
zox 面
Ⅱ
o
yⅠ
Ⅵ Ⅴ
坐标系共分八个卦限
Ⅲ
z
Ⅱ
Ⅳ
o
yⅠ
Ⅶ
x
Ⅷ
Ⅵ Ⅴ
卦限 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ
坐标
x
+- - + + - - +
y
++ - - + + - -
P2 M1
M2 P3
例2 四面体每一个顶点与对面重心所连的线段共点,且这点
到顶点的距离是它到对面重心距离的三倍,用四面体的顶点
坐标把交点坐标表示出来.
P2
解:设四面体P1P2 P3P4的的顶点坐标分别为
P(i xi,yi,zi),Pi的对面重心为Qi,分PiQi
定比λ 3= 的定比分点为Oi,i 1,2,3,4.
=x x= 1 + x2 , y y= 1 + y2 , z z1 + z2 .
2
2
2
例1 已知三角型三顶点为Pi ( xi , yi , zi ) ( i = 1, 2, 3), 求
∆P1P2 P3的重心(即三角型三条中心的公共点)的坐标.
解:设∆P1P2P3的三中线为Pi Mi (i = 1,2,3), 三中线的交点为G(x,y,z),
P2 ( x2 , y2 , z2 ),那么分有向线段P1P2成定比λ (λ ≠ -1)的分点
P的= 坐标是x x= 1 + λ x2 , y y= 1 + λ y2 , z z1 + λ z2 .
1+ λ
1+ λ
1+ λ
证:由已知P1P = λ PP2 , 而P1P = OP − OP1,PP2 = OP2 − OP,
则Q1为P2 P3P4的重心,
P1
故
Q(1
x2
+
x3 3
+
x4
,
y2
+
y3 3+来自y4,z2
+
z3 3
+
z4
).
Q1 P3
又O1分 P1Q1定比为3,由定比分点坐标公式可得O1的坐标为 P4
( x1 + x2 + x3 + x4 ,y1 + y2 + y3 + y4 ,z1 + z2 + z3 + z4 ).
λ X1 + µ X2 +ν X3 = 0 即 λ Y1 + µY2 +νY3 = 0
λ Z1 + µ Z2 +ν Z3 = 0
又因为λ,µ,ν 不全为零,
即上述齐次线性方程组有非零 X1 Y1 Z1
解,所以 X2 Y2 Z2 = 0 X3 Y3 Z3
(4)线段的定比分点坐标
定理1.5.6 设有向线段P1P2的始点为P1 ( x1, y1, z1 ),终点为
C(x,0, z)
o x P( x,0,0)
B(0, y, z)
• M(x, y, z)
y
Q(0, y,0) A( x, y,0)
z z
R(0,0, z)
k
r
o
i
j
o y x P( x,0,0)
x
• M(x, y,z)
y
Q(0, y,0)
N
以i, j , k分别表示沿 x, y, z 轴正向的单位向量.
充要条件是对应的坐标成比例,即 X=1 Y=1 Z1 . X 2 Y2 Z2
证:a与b共线的充要条件是其中一个向量可由另一个
向量来线性表示,不妨设a = λ b,
于是
{X1,Y1,Z1} = λ {X2,Y2,Z2},
即
= X1 λ= X2,Y1 λ= Y2,Z1 λ Z2,
所以有
X=1 Y=1 Z1 . X2 Y2 Z2
(2)用向量的坐标进行向量的线性运算 定理1.5.2 两向量和的坐标等于两向量对应的坐标的和. 定理1.5.3 数乘向量的坐标等于这个数与向量的对应坐标的积.
(3)两向量共线的条件,三向量共面的条件
定理1.5.4 两个非零向量a { X1 ,Y1 , Z1} , b { X2 ,Y2 , Z2}共线的
定理1.5.4 三个非零向量a {X1,Y1, Z1}, b {X2,Y2, Z2},
X1 Y1 Z1
c {X3,Y3, Z3}共面的充要条件是 X2 Y2 Z2 = 0.
X 3 Y3 Z3
证:三向量a, b, c共面的充要条件是它们线性
相关,即存在不全为零的实数λ,µ,ν,使得 λ a + µ b +ν c = 0,
r = OM = OP + PN + NM = OP + OQ + OR
设= OP xi= , OQ y= j , OR zk.
r = xi + yj + zk
称为向量 r的坐标分解式.
四、向量的坐标运算
(1)用向量的始点和终点的坐标表示向量的坐标 定理1.5.1 向量的坐标等于其终点的坐标减去其始点的坐标.
4
4
4
同理可得O2,O3,O4的坐标均与O1相同,命题得证.
z
++ + + - - - -
点的坐标
Ⅳ
Ⅲz
z
Ⅱ
Ⅰ
M (x,y,z)
M → (x,y,z)
x
Ⅷ
0 x
y y
N
Ⅵ Ⅴ
点的坐标
z
(x,y,z) → M
z (x,y,z)
M
00
y
y
x
N
x
.
z
00
(-x,-y,-z) R
x
Q
(x,-y,-z)
x
M(x,y,z)
M点的对称点
关于xoy面:
(x,y,z)→ (x,y,-z)
( ) 所以OP − OP=1
λ OP2 − OP ,从而有 OP=
OP1 + λOP2 ,P1
1+ λ
将OP1,OP2,OP 的坐标代入可得P的坐标为
=x x= 1 + λ x2 ,y y= 1 + λ y2 ,z z1 + λ z2
1+ λ
1+ λ
1+ λ
o
P P2
推论 设Pi ( xi , yi , zi ) ( i = 1, 2) , 那么线段P1P2的中点坐标是
P
e3
r
e1
O
e2
三、坐标系
{ } 空间取定标架 O;e1, e2, e3
空间向量 r 1-1对应 三元有序数组{x, y, z}
空间点 P 1-1对应 三元有序数组 ( x, y, z)
这种一一对应的关系叫做空间向量或点的一个坐标系.
{ } 空间坐标系也常用标架 O;e1, e2, e3 来表示,这时点 O 叫做
坐标原点;向量 e1, e2 , e3 都叫做坐标向量.
右手坐标系 ;左手坐标系 ; 仿射坐标系;笛卡尔坐标系;直角坐标系.