UDEC模拟实例与解析
《udec版本版》课件

软件下载与安装
从udec官网下载最新版本,按照安装向导逐步完成安装过程。
配置参数
根据实际需求,配置udec版本的相关参数,如端口号、数据库连 接等。
udec版本的团队协同工作流程
团队协作平台搭建
01
建立团队协作平台,包括项目管理、任务分配、进度跟踪等功
面对激烈的市场竞争,udec版本需要不断提升产品品质和服务 水平,以赢得用户信任和支持。
新兴市场拓展
拓展新兴市场,发掘潜在用户需求,为udec版本的发展提供更 多机遇。
udec版本的未来发展方向
拓展应用领域
将udec版本的应用领域不断拓展,满足更多行业和用户的需求。
提升用户体验
持续优化udec版本的用户界面和功能,提高用户满意度和忠诚度 。
开发效率。
持续集成
udec支持持续集成功能,能够将 项目的构建、测试和部署等环节 集成在一起,实现自动化和持续
化的软件开发流程。
自动化测试
udec支持自动化测试功能,能够 自动执行测试用例并生成测试报 告,帮助开发者及时发现和修复
问题。
03
udec版本的实施 与部署
udec版本的安装与配置
安装环境要求
代码导航
代码重构
udec支持代码重构功能,能够帮助开 发者优化和改进代码结构,提高代码 的可维护性和可读性。
udec提供了代码导航功能,方便用户 快速找到和跳转到代码的特定部分, 提高代码阅读和编辑的便捷性。
自动化构建功能
自动化构建
udec支持自动化构建功能,能够 根据项目的需求自动完成项目的 编译、打包和部署等任务,提高
UDEC4.0使用说明

菜单驱动模式运行离散元1、菜单驱动模式运行离散元对于Itasca加码图形界面是一个菜单驱动的图形界面开发,以协助助用户掌握Itasca代码。
在UDEC中,UDEC—GIIC很容易与点和点击式操作,以访问所有的命令和设施。
该GIIC结构是专门用来模拟预期的Windows功能,并允许显示的项目相对应的离散元操作的一般性鼠标性操作。
你可以能够立即使用UDEC解决问题,无须通过命令来选择你需要的分析。
本节提供了一个GIIC的介绍,并包括一个简单的教程,以帮助您开始。
你会注意到在GIIC主菜单栏中一个帮助菜单。
帮助按钮还包括在GIIC中的每一个工具,并且帮助窗格可以通过在模型工具标签上右击打开。
咨询帮助意见可以得到具体的GIIC功能的详细信息。
图1-1 UDEC—GIIC主窗口在利用UDEC进行全面的项目分析之前,我们强烈建议你阅读离散元用户指南和核查问题和示例应用程序,从而对离散元模型、分配材料特性、模型的初始条件和计算程序获得一个一般性的认识和理解。
1.1进入GIIC并选择分析选项在开始/程序/Itasca/udec菜单中,当UDEC加载时,你可以选择“UDEC 4.01 with GIIC”,自动启动GIIC。
或者,您可以在打开UDEC时,如果你在文本模式下,你可以在“udec>”提示下键入“giic”命令。
GIIC主窗口如图1.1所示。
该代码名称和当前版本号印在标题栏中的窗口顶部,主菜单栏位于标题栏下方的位置。
在主菜单栏下方有两个窗口:一个资源窗口和一个模型视图窗口。
资源窗口包括四个以文本为基本信息的标签。
“console”(控制台)标签显示文本输出和允许命令行输入(在窗口的底部)。
“record”窗口显示生成当前模型项目状态的命令的记录。
该记录以“项目树”的形式,显示保存文件之间的变化。
保存状态显示在树状结构。
数据可以作为离散元组命令形式导出到数据文件,命令组代表所分析的问题。
“FISH”窗口可以打开FISH编辑器,能方便执行FISH的功能。
udec模拟实例

6.4喷射混凝土UDEC模拟6.4.1 UDEC简介刚体离散单元法一般认为Cundall于1971年提出来的。
该法适用于研究在准静力或动力条件下的节理系统或块体集合的力学问题,最初用来分析岩石边坡的运动。
该法是在牛顿第二定律的基础上建立起来的, 假设块体为准刚度体,块体运动主要受节理或弱面控制。
刚性块体的假设对于应力水平较低的问题,如边坡稳定是合理的。
将节理岩体视为由裂隙切割的非连续介质,相互切割的裂隙将岩体分成相互独立的块体单元,单元之间可以看成是角-角接触、角-边接触或边-边接触。
块体间的边-边接触可分解为由两个角-边接触而成,并且随着单元的平移和转动,允许调整各个单元之间的接触关系,最终块体单元可能达到平衡状态,也可能一直运动下去。
这些块体在平衡条件发生变化时,块体之间就产生相互作用力,从而导致块体产生一定的加速度和位移,使块体的空间位置和状态发生变化。
运动的块体之间,由于差异位移矢量的存在,从而使块体之间又发生新的作用力,根据新的力系,又可以计算出来各个块体在新的力系下的加速度、位移及新的运动位置。
如此反复迭代直到整个体系在新的力系作用下达到平衡状态为止,这样整个岩体的破坏运动过程就被真实的模拟出来。
离散单元法可以对由不同块体构成的整体进行应力、应变的分析计算,各不同块体之间通过接触点的耦合而互相连接在一起。
就大多数岩体来说,其构造弱面的刚度和强度均比岩石本身要小得多,从这点出发,为了减少研究对象的不确定性(自由度)的数量,通常假定各不同岩石块体为刚性,结构产生的总位移仅仅是由各接触点(面)的变形所引起。
这里的研究对象被认为是各种离散块体的堆砌,块体之间的相互作用力可根据位移和力的关系式来求解,单个块体的运动遵循牛顿运动定律,即力和力矩的平衡。
数值分析模型的建立必须满足平衡方程、变形协调方程和本构方程,此外,还需要满足一定的边界条件。
但离散元块体之间不存在变形协调的约束,因为块体之间是彼此互不约束的,因而仅需满足物理方程和运动方程。
UDEC模拟

5.3.1 采高 1m 时,采空区下坚硬顶板覆岩运动特征 在采深为 400m 的条件下,采高为 1m 时分别对采空区下部煤层采动引起的塑性区、
垂直应力和采动位移等覆岩运动参数的变化情况进行了详细的数值模拟计算,随着工作 面的不断推进,工作面在模拟开挖第 12 步(L=120m)时出现初次来压,之后在 160m、
工作面推进 100m 时,出现了大面积的塑性和拉伸破坏单元,工作面初次来压。当工作
面继续推进到 200m 时,顶板岩层在工作面随后的推进过程中呈现出缓慢的整体弯曲下
沉,并根据三次周期来压时工作面塑性区的分布统计可以发现,采空区上部的采动影响
形成的塑性区和拉伸破坏单元在空间上呈现层次性。
在工作面开采初期,下煤层工作面的应力集中依旧不明显,当工作面初次来压时,
2730
2.34
1.76
2.4
2620
1.93
1.45
2.2
2560
1.74
1.25
1.8
2500
1.56
1.12
1.48
1350
1.05
0.65
1.2
2730
2.34
1.76
2.4
2620
1.93
1.45
2.2
2560
1.74
1.25
1.8
1350
1.05
0.65
1.2
2500
1.56
1.12
1.48
(a) L=20m 时塑性区图
(b) L=60m 时塑性区图
(c) L=100m 时塑性区图
(d) L=200m 时塑性区图
UDEC_数值模拟(入门学习)

UDEC_数值模拟(⼊门学习)UDEC ⼊门;new 是刷新udec窗⼝,从新调⽤⼀个程序;title 与heading代表标题,后⾯紧跟标题的名称。
如:titlehang dao mo ni;round 指块体与块体之间的圆⾓半径,默认值是0.5,其值要求⼩于模型中最⼩块体的最短那条边长的⼆分之⼀。
如:round 0.05set ovtol=0.5;此命令是指层与层之间的嵌⼊厚度block x1,y1 x2,y2 x3,y3 x4,y4;建⽴模型框架,crack x1,y1 x2,y2;两点划⼀线jregion id n x1,y1 x2,y2 x3,y3 x4,y4 deletejset 90,0 4,0 4,0 6,0 0,-50 range jreg 3;jset 倾⾓,0 线段长,0 线段与线段轴向间隔长,0 垂向间距,0 xm,ym range jregion n;其中xm,ym为起始点坐标,n为设置的区域标号gen quad 10 range xl xu yl yu;在指定的区域⽣成⼀定宽度的单元(xu为x⽅向的取值)zone model mo range xl xu yl yu;使指定的区域材料采⽤摩尔--库仑本构关系计算(即弹塑性)change jcons=2 range xl xu yl yu;使指定的区域节理遵循摩尔--库仑准则计算(即弹塑性)change mat=1 range xl xu yl yuchange mat=2 range xl xu yl yuchange mat=3 range xl xu yl yu;指定各岩层的材料标号change jmat=1 range xl xu yl yuchange jmat=2 range xl xu yl yuchange jmat=3 range xl xu yl yu;指定各岩层的节理标号prop mat=1 dens=2000prop mat=2 dens=2650prop mat=3 dens=2700;指定各材料的密度,⽐如1号材料dens=2000,即1⽴⽅⽶重2吨zone k=0.15e9,g=0.1e9,fric=10.00,coh=0.19e6,ten=0.09e6 range mat=1zone k=2.8e9,g=2.2e9,fric=30.00,coh=1.5e6,ten=0.4e6 range mat=2zone k=6.9e9,g=6.6e9,fric=38.62,coh=5.63e6,ten=3.20e6 range mat=3;k为材料的法向刚度,g为材料的切向刚度,friction为材料的内摩擦⾓,;cohesion为材料的内聚⼒,tension为材料的抗拉强度prop jmat=1 jkn=0.2e8,jks=0.1e7,jcoh=0,jfric=4,jten=0prop jmat=2 jkn=8e8,jks=5e7,jcoh=0.1e6,jfric=8,jten=0prop jmat=3 jkn=20e8,jks=16e7,jcoh=0.4e6,jfric=15,jten=0;jkn为节理的法向刚度,jks为节理的切向刚度,jfriction为节理的内摩擦⾓,;jcohesion为节理的内聚⼒,jtension为节理的抗拉强度set gravity 0,-9.81;设置重⼒加速度,x⽅向为0,y⽅向为-9.8bound xvel=0 range -0.1 3.00 -60.1 20.1bound xvel=0 range 97 100.1 -60.1 20.1bound yvel=0 range 0.1 100.1 -60.1 -58;采⽤位移法固定边界solve\step 5000\cycle 5000;执⾏计算save pingheng.sav;保存⽂件,⽂件的后缀为.sav,⽂件名可以⾃⼰命名。
udec数值方法

5. 有平面-应变、平面-应力及轴对称三种问题模型。
6. 具有用来描述岩石-结构相互作用的结构单元模型,如锚
剪切力:由于块体所受的剪切力与块体运动和加载的历史或
路径有关,所以对于剪切力要用增量△Ft来表示。设两块体
之间的相对位移为δt,则:Ft=Ktδt, Kt为切向刚度系数, δt为两块体之间的相对位移。
破坏条件:法向力和切向力所表示的力与位移关系 为弹性,但在某些情况下弹性关系是不成立的,需
要考虑破坏条件。如当岩块受到张力分离时,作用
t t
时刻
Fn (t t ) Fn (t ) Fn (t ) Ft (t t ) Ft (t ) Ft (t )
对于块体间不允许出现拉力,故
Fn 0
对于剪切力,其稳定状态有库仑-莫尔定量:
Ft Ft
式中
max
Fn tan j c j
Ft Fn tan Ft max
该模型的力与位移关系分别如下图所示:
(a)法向力与法向位移
(b)切向力与切向位移
刚度系数的确定:对于如图所示的两个接触块体,其 长度和宽度分别为a、b,弹性常数为E、μ。可得其法 向刚度系数为:
E K n n
2
S b 设块体厚度为 1个单位,则 Sa
二维和三维的离散元程序UDEC和3DEC。我国有2D-BLOCK和
3D-BLOCK。
应用领域:边坡、巷道与采场、地下开采、地震、爆炸、核废 料储存、散体介质运动、断裂、地下水渗流、热传导等。
地震作用对采空区塌陷的UDEC模拟

地震作用对采空区塌陷的UDEC模拟500kV输电线路、59 条 220kV输电线运 4 条前言随着我国西电东送战略的实施,输础的破坏十分严重,而由于陡峭的地形、区域地路、122条 110kV输电线路。
严重损毁变电站 16 电线路质构造、岩体风化破碎等引发的滑坡、崩塌及泥的电压等级越来越高,超高压、特高压交、直流输座,其中 500kV1座、220kV3座、110kV5座。
四石流等地震地质次生灾害对电网工程的破坏更川全网损失负荷近 400 万 kW,负荷损失率为电已成为主电网调配区域能源的主要手段。
由为严重。
于我国西部地区受到印度板块向北推移挤压, 31.8,,6 市州负荷损失率达75.7,。
在复杂的区域地质构造及地质地震背景青藏高原强烈变形,高原内部及其边缘的活断重灾区主要受损的线路有:220kV 平回线、下,线路路径及塔位选择时,如何合理利用地形 220kV福回一线、220kV 福回二线、220kV 耿山层上经常发生强烈地震,我国西部地区已经是地质条件并考虑地震地质作用,将是线路勘测世界大陆内部活跃的强烈地震区,因此很多西南(北)线、220kV 映山线、220kV 渔山东(西)线、设计中地质工作者的重要任务。
220kV平山线、220kV源山南(北)线、220kV 丹 1,汶川大地震对震区输电线路的破坏现状部山区输电线路将从强震区穿过,跨越可能的 2008年 5 月 12 日 14 点 28 分,汶川发生山线、110kV 映灌线、220kV 福银线、220kV 竹发震断层不可避免。
确保西部山区输电线路的了举世震惊的里氏 8.0 级特大地震。
地震不但给茂线、220kV 红薛线、220kV 薛州线、220kV 州地震安全十分重要,不仅可以避免造成巨额的经济损失,还可以确保其他基础设施如通讯、交茂线共 5 条线路、500kV 茂谭一二线及220kV 上百万家庭带来巨大灾难,也摧毁了大量的电通、供水等的正常运行,避免次生灾害的发生,并茂永线等。
UDEC 数值模拟(入门学习)

UDEC 入门;new 是刷新udec窗口,从新调用一个程序;title 与heading代表标题,后面紧跟标题的名称。
如:titlehang dao mo ni;round 指块体与块体之间的圆角半径,默认值是0.5,其值要求小于模型中最小块体的最短那条边长的二分之一。
如:round 0.05set ovtol=0.5;此命令是指层与层之间的嵌入厚度block x1,y1 x2,y2 x3,y3 x4,y4;建立模型框架,crack x1,y1 x2,y2;两点划一线jregion id n x1,y1 x2,y2 x3,y3 x4,y4 deletejset 90,0 4,0 4,0 6,0 0,-50 range jreg 3;jset 倾角,0 线段长,0 线段与线段轴向间隔长,0 垂向间距,0 xm,ym range jregion n;其中xm,ym为起始点坐标,n为设置的区域标号gen quad 10 range xl xu yl yu;在指定的区域生成一定宽度的单元(xu为x方向的取值)zone model mo range xl xu yl yu;使指定的区域材料采用摩尔--库仑本构关系计算(即弹塑性)change jcons=2 range xl xu yl yu;使指定的区域节理遵循摩尔--库仑准则计算(即弹塑性)change mat=1 range xl xu yl yuchange mat=2 range xl xu yl yuchange mat=3 range xl xu yl yu;指定各岩层的材料标号change jmat=1 range xl xu yl yuchange jmat=2 range xl xu yl yuchange jmat=3 range xl xu yl yu;指定各岩层的节理标号prop mat=1 dens=2000prop mat=2 dens=2650prop mat=3 dens=2700;指定各材料的密度,比如1号材料dens=2000,即1立方米重2吨zone k=0.15e9,g=0.1e9,fric=10.00,coh=0.19e6,ten=0.09e6 range mat=1zone k=2.8e9,g=2.2e9,fric=30.00,coh=1.5e6,ten=0.4e6 range mat=2zone k=6.9e9,g=6.6e9,fric=38.62,coh=5.63e6,ten=3.20e6 range mat=3;k为材料的法向刚度,g为材料的切向刚度,friction为材料的内摩擦角,;cohesion为材料的内聚力,tension为材料的抗拉强度prop jmat=1 jkn=0.2e8,jks=0.1e7,jcoh=0,jfric=4,jten=0prop jmat=2 jkn=8e8,jks=5e7,jcoh=0.1e6,jfric=8,jten=0prop jmat=3 jkn=20e8,jks=16e7,jcoh=0.4e6,jfric=15,jten=0;jkn为节理的法向刚度,jks为节理的切向刚度,jfriction为节理的内摩擦角,;jcohesion为节理的内聚力,jtension为节理的抗拉强度set gravity 0,-9.81;设置重力加速度,x方向为0,y方向为-9.8bound xvel=0 range -0.1 3.00 -60.1 20.1bound xvel=0 range 97 100.1 -60.1 20.1bound yvel=0 range 0.1 100.1 -60.1 -58;采用位移法固定边界solve\step 5000\cycle 5000;执行计算save pingheng.sav;保存文件,文件的后缀为.sav,文件名可以自己命名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛UDEC 实例翻译与命令解析翻译:珠穆朗玛1 地震诱发地层坍塌 Seismic-Induced Groundfall1.1 问题描述本例展示使用 UDEC 模拟分析地震诱发地层坍塌的一类的问题,模型见图 1.1,该模型基 于加拿大安大略省萨德伯里市鹰桥公司弗雷则矿 34-1-554 切割断面的一个剖面图的结构和 尺寸. 用二维平面应变模型代表垂直于超采轴向方向的平面效应,超采面高 5m,宽 10m.假定两个连续节理交叉平面分析:一个角度为 45 度,另一个为-9 度,两者节理间距均为 5m,为了演示的目的,一个近似垂直的“虚拟节理”也被添加到块体内开挖面顶部以增强不稳 定性。
围岩参数来自试验室平均测试数值,假定岩石块体参数如下:假定块体仅具有弹性行为,节理假定符合库伦滑动准则,选择典型的教课书数值作为节 理参数,如下:初始应力状态按各向同性估计为24Mpa(假定垂直荷载由覆盖深度大约800m 的岩层产生)。
1.2 UDEC 分析UDEC 模拟顺序分三个阶段,首先,模型在初始应力状态下进行无超采固结.其次,进行开挖并且模型循环至平衡状态.本阶段超采面周围的应力分布见图1.2.超采正上方和下方的块体滑动后稳定.在第三阶段.估计了两个不同的峰值速度的地震事件.对所有地震模拟,在问题域的外周边界引入粘滞边界用以消除波的反射.从而模拟有限的岩体,地震事件用施加到模型顶部y 方向的正弦应力波表现.应力波被叠加到已存在的初始地应力上.在第一个模拟中,施加1.25Mpa 的峰值应力,应当注意的是,由于粘滞边界条件实际是在模型顶部, 施加的有效影响应力应该是1.25 MPa/2, or 0.625 MPa.0.02 秒后的开挖面拱顶的应力分布见图1.3,两点的位移被监测,1 点位于开挖面的左角,点2 位于拱顶块体的右角, 图1.4 的位移时间曲线显示两点本质上是弹性反应.本例关心的问题是在模型顶部施加的速度和计算速度的对比,下面的公式可以用以估计施加的波速.使用这个方程,施加的最大波速大概是0.04m/sec,图1.5 显示的峰值波速小于0.06m/sec. 估计的波速和监测波速的不同在于使用的围岩模量.而是没有考虑节理变形的相等变形模量.在第二个案例中,施加应力波峰值12.5 Mpa(有效应力6.25Mpa).0.02 秒后的开挖拱顶应力分布见图1.6.该图显示出拱顶岩体不受力,表面该块体已经松散并正在下落.对于关心的问题,后来三个时间的几何体和应力分布见图1.8 至图1.10.在问题的顶部预测的波速(从上面的方程)是0.4m/sec.从模型中计算的波速见图1.11,再次,由于使用的是原岩弹性模量而不是岩体的变形模量导致预测和监测的波速之间的差异.1.3 节包含了该模型的数据列表,该列表包含了一个FISH 函数(show)被用来创建坍塌的动画文件,每隔0.02 秒俘获一个显示的图片.通过改变FISH 参数time_int 可以改变动画帧的间隔.视图的总数也可以通过改变snap_shot 的数值进行改变.为了显示80 帧的显示图片而创建的该电影文件需要大概13MB 的硬盘空间.1.3 数据文件列表Example 1.1 SEISMIC.DATtitleSEISMIC INDUCED ROOF COLLAPSE 地震诱发拱顶坍塌;round 0.01; define original boundary of modeled region 定义模型区域的原始边界block -25,-20 -25,20 25,20 25,-20; generate joint pattern over entire original region 在整个原始区域生成节理形态jregion id 1 -25,-25 -25,25 25,25 25,-25jset 45,0 200,0 0,0 5.0,0 (0,0) range jreg 1jset -9,0 200,0 0,0 5.0,0 (0,0) range jreg 1; put in joints needed for the later excavation 为了后面开挖而设置的节理crack -5.01,-2.51 5.01,-2.51crack -5.01, 2.51 5.01, 2.51crack -5,-2.5 -5,2.5crack 5,-2.5 5,2.5crack 2.25,2.5 1.93,5.0; generate fdef zones and assign joint properties (mat=1 & jmat=1;default) 生成单元和设置节理参数generate edge 9.0 range -30,30 -30,30prop mat=1 d=0.00300 k=39060 g=31780prop jmat=1 jkn=20000 jks=20000prop jmat=1 jf=30.0; apply boundary conditions and initial conditions to 在地应力下施加边界条件和初始条件; consolidate model under field stressesbound stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3insitu stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3bound yvel 0.0 range -26,26 -21,-19grav 0.0 -10.0; track the x-displacement, and y-displacement over time 追踪位移hist solvehist xdis=0,7 ydis=0,7 type 1solve rat 1e-5; save consolidated statesave seismic1.sav; make excavationdelete range -5,5 -2.5,2.5solve rat 1e-5; save excavated statesave seismic2.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.04 m/sec);; set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -1.25 yhist=cos(100.0,0.0195) range -26 26 19 21;reset time hist disp rothist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 mass; 0.02 sec.cyc time 0.02save seismic3.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.4 m/sec); set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -12.5 yhist=cos(100.0,0.0195) range -26 26 19 21reset time hist disphist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 masssave seismov.sav;; 0.02 sec. —————————————————————————————————————UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛cyc time 0.02save seismic4.sav; 0.25 sec.cyc time 0.23save seismic5.sav; 0.50 sec.cyc time 0.25save seismic6.sav; 0.75 seccyc time 0.25save seismic7.sav;rest seismov.sav; make a movie of the groundfall;wind -12 12 -12 12set ovtol 0.05plot block vel max 2.0 blue stress max 50movie onmovie file = seismic.dcxmovie step 1000step 400003 隧道支护荷载Tunnel Support Loading3.1 问题陈述本例模拟展示了UDEC 在检查衬砌隧道方面的应用,着重强调了荷载在混凝土衬砌中的发展,本例也解释了模拟连续建造操作中独立阶段的模拟程序.隧道系统的理想几何体见图3.1.系统包含在海床下大约70m(中线)深度,中线间距12m 的两个隧道, 初始水位在隧道中线上方110m 处.服务隧道直径5.24m,衬砌厚度37cm.主隧道直径8.22m,衬砌厚度46cm.服务隧道先于主隧道开挖和衬砌.随后设置主隧道衬砌,水位上升增加到100m.—————————————————————————————————————UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛施工顺序是:(1)开挖服务隧道excavation of the service tunnel;(2)衬砌服务隧道lining of the service tunnel; (3)开挖主隧道excavation of the main tunnel; (4)衬砌主隧道lining of the main tunnel; and (5)升高水位raising of the water level.分析的目的是评价每个施工阶段服务隧道和主隧道支护状况.本例的材料参数见下:岩体——开挖隧道的围岩参数为:弹性模量elastic modulus 0.89 GPa泊松比Poisson’s ratio 0.35单轴抗压强度uniaxial compressive strength 3.5 MPa粘聚力cohesion 1 MPa密度density 1340 kg/m3混凝土衬砌——弹性模量为24 GPa ,泊松比为0.19. 假定衬砌为线弹性材料。