直线电机位置控制算法及仿真

直线电机位置控制算法及仿真
直线电机位置控制算法及仿真

直线电机位置控制算法及仿真

1 绪论

1.1 研究背景及意义

随着工业机械自动化程度的不断升级,有力的带动了上游直线电机在中国的快速成长,国外品牌纷纷加大对中国市场的投入力度,永磁同步直线电机是一种将电能直接转化是动能的转化装置,省去了中间的转换机构,消除了机械转动链的影响,具有速度快,推力大,精度高等诸多优点,因此,广泛应用于精密和高速运行等领域。但是永磁同步直线电机是一个典型的非线性多变量系统,许多非线性因素的存在都会影响到永磁同步直线电机系统的控制性能,如没有知的负载和摩擦等。传统的PID控制方法已经不能满足于永磁机电动机的高精度场合,因此如何设计高性能的直线电机位置控制算法一直以来都是控制领域的热点问题之一。

因此,在传统PID控制方式下,针对多变量、非线性、强耦合的永磁同步直线电机系统设计了一种滑模位置控制器,弥补了常规PID控制跟踪精度不高的缺点。滑模控制具有控制精度高、抗干扰能力强、适用范围广的等优点,因此滑模控制方法已经成是永磁同步直线电机领域重点关注问题,相关研究人员对此进行了深入研究。

1.2 国内外研究现状

直线电机的研究现状

1840年Wheatsone开始提出与制作了略具雏形的直线电机。从那时至今,在160多年的历史记载中,直线电机经历了三个时期。

1840-1955年是探索实验时期:

从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。自从Wheatsone提出和试制了直线电机以后,最早明确的提到直线电机文章的是1890年美国匹兹堡市的市长,在

他写的一篇文章中,首先明确的提到了直线电机以及它的专利。然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的顽强努力后,最终却没有能获得成功。

至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨道上,另一种建议是将初级放在车辆底部。这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。1917年出现了第一台圆筒形直线电动机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作是导弹发射装置,但其发展并没有超出模型阶段。

至此,从1930-1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。

从1940-1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用工作。1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW的直线电动机是动力,成功的用4.1s的时间将一架重4535kg的喷气式飞机在165m的行程内由静止加速的188km/h的速度,它的试验成功,使直线电动机可靠性好等的优点受到了应有的重视,随后,美国利用直线电机制成的、用作抽汲钾、钠等液态金属的电磁泵,是的是核动力中的需要。1954年,英国皇家飞机制造公司利用双边扁平型直流直线电机制成了发射导弹的装置,其速度可达1600km/h。在这个阶段中,尤需值得一提的是,直线电机作是高速列车的驱动装置得到了各国的高度重视并计划予以实施。

在1840-1955年期间,是直线电机探索实验和部分实验应用时期,在直线电机与旋转电机的相互竞争中,由于直线电机的成本和效率方面没有能够战胜旋转电机,或者说,直线电机还没能找到它的专属领域,以及直线电机在设计方面也没有突破性的成功,所以直线电机在这一时期始终没有能得到有效的推广。

1956-1970年是开发应用时期:

自1955年以来,直线电机进入了全面的开发阶段,特别是该时期的控制技术和材料的惊人发展,更加助长了这种势头。在这段时期,申请直线机的专利件数也开始急速增加,该时期直线电机专利的增长率超过了所有其他技术领域的平

均增长率。

到1965年以后,随着控制技术和材料性能的显著提高,应用直线电机的实用设备被逐步开发出来,例如采用直线电机的MHD泵、自动绘图仪、磁头定位驱动装置、电唱机、缝纫机、空气压缩机、输送装置等。

1971年至今是实用商品时期

从1971年开始到目前的这个阶段,直线电机终于进入了独立的应用时代,在这个时代,各类直线电机的应用得到了迅速的推广,制成了许多具有实用价值的装置和产品,例如直线电机驱动的钢管输送机、运煤机、起重机、空压机、冲压机、各种电动门、电动窗、电动纺织机等等。特别可喜的是利用直线电机驱动的磁悬浮列车,其速度已超500km/h,接近了航空的飞行速度,且试验行程共计数十万千米。

在这个时期,直线电机领域的研究人员通过对直线电机在历史发展中多次起落的分析,终于选择了一条适合直线电机自身发展的独特思路,它不再与旋转电机直接对抗,不以单机的形式与旋转电机竞争,而以直线电机系统与旋转电机系统相比,从而找到适合于自己的系统与旋转电机展开竞争,在旋转电机无能是力的的方寻找自己的位置。例如,直线电机应用于磁悬浮列车,液态金属的输送和搅拌,电子缝纫机和磁头定位装置,直线电机冲压机等等。直线电机走自己的道路,在满足人类需求的过程中求得自身的发展。在世界上一些发达国家,许多人和不少著名电气企业均在研究和开发直线电机产品,例如美国的西屋公司、德国的西门子公司、英国、法国、瑞典,特别是日本,其人员之多和范围之广是世界首屈的。我国直线电机的研究和应用发展是从20世纪70年代初开始的。主要成果有工厂行车、电磁锤、冲压机、摩擦压力机、磁分选机、玻璃搅拌、拉伸机、送料机、粒子加速器、邮政分拣机、矿山运输系统、计算机磁盘定位系统、自动绘图仪、直线电机驱动遥控窗帘机、直线电机驱动门、炒茶机等,我国直线电机研究虽然也取得了一些成绩,但也国外相比,其推广应用方面尚存在很大差距。国内外PI控制算法的发展

国际全球工业电子温度控制器市场近些年来增长缓慢,因为温度控制器环节已经被纳入为分布式控制系统,个人电脑(PC)和可编程逻辑控制器。VDC发现工业电子温度控制器全球市场的增长率在2003年为3.6%,2004年为3.5%,2005

年为2.5%。我们预计2006全球工业电子温度控制器市场的增长率仅为1.25,而预测2010年的综合年度增长率仅为0.7%。

欧洲和北美工业电子温度控制器市场受到这一趋势的影响最大。这两个较大地区的市场预计将在2010年出现负增长。然而,亚太市场,较小的拉丁美洲和其他地区的市场预计仍将保持增长。中国作为一个主要的制造中心和市场的崛起是工业电子温度控制器增长的驱动因素。工业电子温度控制器OEM厂商以及众多的终端工业厂商已经开始转移到中国大陆,以获得低成本的劳动力和原料优势。日本经济的复苏同样推动该地区走出了停滞发展时期。OEM厂家和主要终端工业公司将制造业务向中国的转移,以及温度控制器价格的下降,是欧洲和北美市场预测下降的主要原因。这两个地区的市场都已非常成熟,因此弥补现有OEM和其他生产商的新行业或新公司的发展空间不大。

此外,许多位于欧洲和北美的工业电子温度控制器供应商已经表明一旦准备充分,他们将很快在中国展开他们的工业电子温度控制器制造业务。通过在中国生产,供应商不但可以获得更便宜的劳动力和原料的竞争优势,而且他们这样更接近主要的发展市场。较小的拉丁美洲市场预计在2010年电子温度控制器的增长率最高(CAGR为4.8%),因为该地区很多经济领域的发展继续实行自动化操作。受到资本投资流入更慢的影响,其他地区的出货额预计增长缓慢,综合年度增长率仅为0.9%。

一些研究文章陈述了当前工业控制的状况,如日本电子测量仪表制造协会在1989年对过程控制系统做的调查报告。该报告表明90%以上的控制回路是PID 结构。另外一篇有关加拿大造纸厂的统计报告表明典型的造纸厂一般有2000多个控制回路,其中97%以上是PI控制,而且仅仅有20%的控制回路工作比较满意。控制回路性能普遍差的原因中参数整定不合适占30%,阀门问题占30%。而另外的20%的控制器性能差有多种原因,如传感器的问题、采样频率的选择不当以及滤波器的问题等。Ender也给出了相似的统计结果:在已安装的过程控制器中30%是处在手动状态;20%的回路是采用厂家的整定参数,即控制器制造商预先设定的参数值;30%的控制回路由于阀门和传感器的问题导致控制性能较差。

滑模控制算法的发展

20世纪50年代前苏联学者提出变结构控制,变结构控制起源于继电器控制和Bang-Bang控制,它与常规控制的区别在于控制的不连续性。滑模控制是变结构控制的一个分支。它是一种非线性控制,通过切换函数来实现,根据系统状态偏离滑模的程度来切换控制器的结构,从而使系统按照滑模规定的规律运行的控制方法。滑模控制已形成一套比较完整的理论体系,并已广泛应用到各种工业控制对象之中。滑模控制得到广泛应用的主要原因是,对非线性系统的良好控制性能,对多输入多输出系统的可应用性,对离散时间系统的建立良好的设计标准。滑模控制的重要的优点是鲁棒性,当系统处于滑动模型,对被控对象的模型误差、对象参数的变化以及外部干扰有极佳的不敏感性。

1.3 直线电机原理及其结构

直线电机可以认为是旋转电机在结构方面的一种演变,它可看作是将一台旋转电机沿径向剖开,然后将电机的圆周展成直线,如图所示。这样就得到了由旋转电机演变而来的最原始的直线电机。由定子演变而来的一侧称为初级或原边,由转子演变而来的一侧称为次级或副边。

图中演变而来的直线电机,其初级和次级长度是相等的,由于在运行时初级与次级之间要作相对运动,如果在运动开始时,初级与次级正巧对齐,那么在运动中,初级与次级之间互相耦合的部分越来越少,而不能正常运动。为了保证在所需的行程范围内,初级与次级之间的耦合能保持不变,因此实际应用时,是将初级与次级制造成不同的长度。在直线电机制造时,既可以是初级短、次级长,也可以是初级长、次级短,前者称作短初级长次级,后者称为长初级短次级。但是由于短初级在制造成本上,运行的费用上均比短次级低得多,因此,目前除特殊场合外,一般均采用短初级,见图所示。

上述介绍的直线电机称为扁平型直线电机,是目前应用最广泛的,除了上述扁平型直线电机的结构形式外,直线电机还可以做成圆筒型(也称管型)结构,它也可以看作是由旋转电机演变过来的。

旋转电机通过钢绳、齿条、皮带等转换机构转换成直线运动,这些转换机构在运行中,其噪音是不可避免的,而直线电机是靠电磁推力驱动装置运行的,故整个装置或系统噪声很小或无噪声,运行环境好。

图.a中表示一台旋转式电机以及定子绕组所构成的磁场极性分布情况,

图.b表示转变为扁平型直线电机后,初级绕组所构成的磁场极性分布情况,然后将扁平型直线电机沿着和直线运动相垂直的方向卷接成筒形,这样就构成图.c 所示的圆筒型直线电机。

此外,直线电机还有弧型和盘型结构。所谓弧型结构,就是将平板型直线电机的初级沿运动方向改成弧型,并安放于园柱形次级的柱面外侧,如图所示。图是圆盘型直线电机,该电机把次级做成一片圆盘(铜或铝,或铜、铝与铁复合),将初级放在次级圆盘靠近外缘的平面上,盘型直线电机的初级可以是双面的,也可以是单面的。弧型和盘型直线电机的运动实际上是一个圆周运动,如图中的箭头所示,然而由于它们的运行原理和设计方法与扁平型直线电机结构相似,故仍归入直线电机的范畴。

1.4 直线电机的发展趋势

一、技术日趋成熟

机床中的直线电机配合驱动控制技术已经越来越成熟,具有传统装置无法逾越的屏障。随着电机制造技术的不断完善,选用匹配的直线电机和驱动控制系统,配合合理的机床构图,完全可以制造出高性能,高可靠性的机床。高速线性电机驱动已广泛应用于加工中心,数控铣床,车床,磨床,复合加工机,激光加工机和重型机床。

二、成本逐渐降低

线性电机系统的成本不断向下探底,在机床成本的比例大幅下降。但目前使用的直线电机驱动仍然高于传统的传输价格。因此,线性电机的应用仍然集中在高性能机床上,特别是精密高速加工机床、特殊加工机床、大型机床解决传统传动方式无法排除的问题。

三、技术趋于产业化

直线电机在机床上的应用不再是样品。据相关数据统计,近些年来,尽管各国加强了生产的规模结构,但仍然无法满足市场庞大的需求量,具有很强的市场潜力,未来几十年世界将有三分之一数控机床采用直线电机进给驱动,高端机床的采用无疑是比重最大的,其工业化前景是不言而喻的。直线电机模组平台发展至今,已经被广泛应用到各种各样的设备当中。当前已普遍运用于测量、激光焊接、激光切割、涂胶机、喷涂机、打孔机、点胶机、小型数控机床、雕铣机、样

本绘图机、裁床、移载机、分类机、试验机及适用教育等场所。老式的电机结构及驱动模式组合已远远不能跟上现代化控制系统的脚步,直线电机更多的受到现代化生产模式的青睐,直线电机的技术研究愈发成熟致使在各领域中的地位举足轻重。

1.5 PI控制及滑模控制各自的优缺点

PID控制器成为应用最广泛的控制器,它具有以下优点:

(1)PID算法蕴涵了动态控制过程中过去、现在、将来的主要信息,而且其配置几乎最优。其中,比例(P)代表了当前的信息,起纠正偏差的作用,使过程反应迅速。微分(D)在信号变化时有超前控制作用,代表将来的信息。在过程开始时强迫过程进行,过程结束时减小超调,克服振荡,提高系统的稳定性,加快系统的过渡过程。积分(I)代表了过去积累的信息,它能消除静差,改善系统的静态特性。此3种作用配合得当,可使动态过程快速、平稳、准确,得到良好的效果。

(2)PID控制适应性好,有较强的鲁棒性,对各种工业场合,都可在不同的程度上应用。特别适于“一阶惯性环节+纯滞后”和“二阶惯性环节+纯滞后”的过程控制对象。

(3)PID算法简单明了,各个控制参数相对较为独立,参数的选定较为简单,形成了完整的设计和参数调整方法,很容易为工程技术人员所掌握。

(4)PID控制根据不同的要求,针对自身的缺陷进行了不少改进,形成了一系列改进的PID算法。例如,为了克服微分带来的高频干扰的滤波PID控制;为克服大偏差时出现饱和超调的PID积分分离控制;为补偿控制对象非线性因素的可变增益PID控制等。这些改进算法在一些应用场合取得了很好的效果。同时当今智能控制理论的发展,又形成了许多智能PID控制方法。

PID的缺陷,概括起来就是信号处理太简单、未能充分发挥其优点,具体说来,有四个方面:

(1)产生误差的方式不太合理控制目标v在过程中可以“跳变”,但是被控对象输出Y的变化都有惯性,不可能跳变,要求让缓变的变量y来跟踪能够跳变的变量v,初始误差很大,易引起超调,很不合理。

(2)误差的微分信号的产生没有太好的办法由于微分器物理不可实现,只能

近似实现,常用的近似微分器的形式为

(3)误差积分反馈的引入有很多负作用在PID控制中,误差积分反馈的作用是消除静差,提高系统响应的准确性,但同时误差积分反馈的引入,使闭环变得迟钝,容易产生振荡,易产生由积分饱和引起的控制量饱和。

(4)线性组合不一定是最好的组合方式PID控制器给出的控制量是误差的现在、过去、将来三者的线性组合。大量工程实践表明,线性组合不一定是最好的组合方式,能否在非线性领域找到更合适的组合方式是值得探索的。

滑模控制的优点是能够克服系统的不确定性,对干扰和未建模动态具有很强的鲁棒性,尤其是对非线性系统的控制具有良好的控制效果。由于变结构控制系统算法简单,响应速度快,对外界噪声干扰和参数摄动具有鲁棒性,在机器人控制领域得到了广泛的应用,也有学者将滑模变结构方法应用于空间机器人控制。变结构控制作为非线性控制的重要方法近年来得到了广泛深入的研究,其中一个重要的研究分支是抑制切换振颤,这方面已取得了不小的进展,提出了等效控制、切换控制与模糊控制的组合模糊调整控制方法,其中等效控制用来配置极点,切换控制用来保证不确定外扰存在下的到达过程,模糊调整控制则用来提高控制性能并减少振颤。研究了一类非线性系统的模糊滑模变结构控制方法,设计了滑模控制器和PI控制器的组合模糊逻辑控制器,充分发挥了各控制器的优点。提出了基于有限时间机理的快速Terminal滑模控制方法并给出了与普通Terminal

滑模控制性能的比较。设计了针对参数不确定与外干扰的非奇异Teminal滑模控制方法,并提出了分等级控制结构以简化控制器设计。上述这些方法在实际系统中虽然得到了有效应用,但无论是自适应滑模控制还是模糊神经网络控制,均增加了系统复杂性与物理实现难度。显然,寻找具有良好效能并易于实现的控制。

滑模控制的缺点:当状态轨迹到达滑动模态面后,难以严格沿着滑动模态面向平衡点滑动,而是在其两侧来回穿越地趋近平衡点,从而产生抖振——滑模控制实际应用中的主要障碍。

1.6 本文的主要研究内容

本文通过对大量文献的查阅与研究,了解了永磁同步直线电机的具体结构、工作原理以及滑模控制系统的各部分结构,概念以及原理等。掌握PID控制算法以及滑模控制算法,建立直线电机位置控制系统。针对直线电机控制系统不同的

控制算法,比较两种控制算法下的控制效果,并通过仿真软件进行验证。仿真分析永磁同步直线电机在不同运行曲线的控制速度和精度,通过对比得到电机的最佳运行特性曲线,要求电机控制精度达到1%,在负载扰动下系统超调小于10%。

2 永磁同步直线电机的数学建模

2.1 永磁同步直线电机的基本原理

直线电机可以假设是将一台旋转电机沿半径的方向切开,然后沿电机的轴向展开排列到一条直线上而形成[7]。下图2.1所示,我们可以先将旋转电机的定子切开,然后将其按照直线展开,展开后就是直线电机的初级。而切开后的旋转电机转子就是直线电机的次级。旋转电机一旦展开之后,电机的内部磁场就会发生本质的变化,由圆周式转变成直线式,如此一来便会生成行波磁场。永磁体和行波磁场所产生的励磁磁场相互作用,从而产生电磁推动力。根据牛顿第三定律,我们只要固定住直线电机的定子,这时动子就会受力逆着行波磁场运动的方向做直线运动,这就是永磁同步直线电机的工作原理。永磁同步直线电机的运行速度和精度一般情况下都要高于旋转电机,备受社会各业的亲睐,这也得益于永磁同步直线电机的特殊运行原理。在某些需要直线驱动的应用场的,例如矿井或者电梯再或者传送带等直线运输场合,采用直线同步电机控制更加方便,精确度更高,整体的效率更高。永磁同步直线电机可以认是是将一台旋转电机沿着半径的方向剖开,然后沿电机的圆周展开是直线而形成的。永磁同步直线电机中,相当于旋转电机定子的,叫初级;相当于旋转电机转子的,叫次级。旋转电机展开成永磁同步直线电机后,工作原理也发生了变化。绕组产生的磁场由原来的圆周分布变是直线分布,形成行波磁场。永磁体的励磁磁场与行波磁场相互作用,便会产生电磁推力;在电磁推力的作用下,由于定子固定不动,那么动子就会沿行波磁场运动的相反方向作直线运动,这便是永磁同步直线电机的基本工作原理。

2.2 永磁同步直线电机的结构分析

永磁同步直线电机既可以把初级做得很长,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动。但是,由于短初级在制造成本上、运行的费用上均比短次级低得多。

根据初级和次级的结构,永磁同步直线电机有单边平板式、双边平板式和圆筒形。单边平板式永磁同步直线电机结构简单、成本较低,又可以实现较高的精度,所以本文的永磁同步直线电机选用单边平板形结构。

永磁同步直线电机的整体结构:在其次级上,均匀的、间隔的安装有纵向充

磁的N 、S 永磁体,以形成励磁磁场:初级铁芯上开有齿槽,在齿槽里安装电枢绕组,通电时产生永磁同步直线电机运动所需的行波磁场;直线导轨被固定安装在永磁同步直线电机的次级上,初级铁芯可以与工作台及负载,沿着直线导轨做直线运动;光栅尺固定安装在永磁同步直线电机的次级上,以测量PMSLM 初级铁芯的运动位移。

2.3 永磁同步直线电机的数学模型

根据永磁体上转子位置的不同,可以共分是表贴式和内置式,本文建立的是表贴式电机模型。因是其结构简单,制造工艺也较简单,易于实现优质控制系统的设计,是了本文更加简单明了设计控制系统,我们需要假设电机是理想电机[8]:

(1)电机必须始终工作在线性区域;

(2)忽略初级铁芯的磁滞和涡流效应;

(3)次级铁芯和初级铁芯之间的气隙呈现均匀分布;

(4)初级线圈均匀分布;

(5)永磁体磁场呈现正弦波分布。

首先在满足理想条件的情况下,我们可以查阅相关资料列出三相绕组的端电压方程和初级磁链的方程[9]:

?????+=+=+=c c c c

b b b b a a a a p i r u p i r u p i r u ψψψ (2.1) 上式子中各个符号代表的物理量:初级三相绕组的电压a u 、b u 、

c u ;初级三相绕组的绕组a r 、b r 、c r ;初级的三相绕组磁链c b a ψψψ、、;初级三相绕组的电流a i 、b i 、c i 。

初级磁链方程与三个物理量有关,分别是励磁强度,初级绕组侧电流的大小,还有次级的位置。可以表示是如下方程:

?????+++=+++=+++=cm c cc b cb a ca bm c bc b b a bc am c ac b ab a aa i L i M i M i M i L i M i M i M i L ψψψψψψc

b b a (2.2) 上式子中各个符号代表的物理量:三相的绕组自感aa L 、bb L 、c

c L ;

两项绕组互感ab M 、ac M 、c M a 、bc M 、ba M 、ca M ;初级绕组与永磁体间的磁链am ψ、bm ψ、cm ψ。

其中初级绕组与定子永磁体之间的关系:

??????????+-=????

??????)/3π2cos()/3π2cos(cos 0θθθψψψf cm bm am I M (2.3)

上式子种各个符号代表的物理量:次级和初级之间的互感幅值

0M ;永磁体上的等效电流值f I 电流值θ;f 0I M 是直线电机的特有属

性定值。

其中22)k (w f 0av w

w B S N I M π=。

在上式种各个符号代表的物理量:w k N w 是初级绕组的匝数;w S 是永磁体中的磁通的总面积;v B a 平均磁密。

在式(2.3)中?+=0dt θωθ。

其中:0θ是初始的相位角;ω是电角速度。

结合前文中式(2.1)、(2.2)和(2.3)我们可以得到整个回路的电压方程表示是如下形式:

????

??????+--????????????????????+????????????????????=??????????)3/2sin()3/2sin(sin 0000

000πθπθθωf c b a cc cb ca bc bb ba

ac ab aa c b a c b a c b a I M i i i L M M M L M M M L p i i i r r r u u u (2.4)

相励磁电势方程:

)

3/2sin()3/2sin()

sin(000000πθωωψπθωωψθωωψ++-==-+-==+-==t I M p u t I M p u t I M p u f cm c f bm b f am a (2.5)

电动势方程:

)3/2sin()3/2sin()3/2sin()3/2sin()sin()sin(000000000000πθτ

πτππθωωπθτπτππθωωθτπτπθωω++-=++-=-+-=-+-

=+-=+-

=vt I vM t I M v v e vt I vM t I M v v e vt I vM t I M v v e f f s c f f s b f f s a (2.6) 电磁功率方程:

)3/2sin()]3/2sin()sin([0000em πθτ

ππθτ

πθτπτπ+++-+++-=++=vt i vt i vt i I vM i e i e i e P c b a f c

c b b a a (2.7) 电磁推力方程:

)]3/2sin()3/2sin()sin([0000πθτ

ππθτπθτπτπ+++-+++-==vt i vt i vt i I M v P F c b a f em em (2.8)

结合上文(2.1)—(2.8)各式,我们可以得到电机的运动学方程:

Bv f F dt

dv M em --= (2.9) 上式子中各个符号代表的物理量:次级的运行速度v ;次级的质量M ;摩擦系数B ;负载f 。

根据Clark 变换后在βα-坐标系下的电压方程:

θωψθ

ωψαββββαβαααcos sin f s s f s s L pi i R u L pi i R u ++=-+= (2.10)

上式子中各个符号代表的物理量:

绕组的电阻s R ;绕组的电感s L ;βα-轴上的电压αu 、

βu ;βα-轴上的电流αi 、βi 。

在βα-坐标系下的电磁推力方程:

)(23em αββαψψτ

πi i p F n -= (2.11) 根据Park 变换后在d-q 坐标系下:

000ψωψψωψψp i R u p i R u p i R u s d d q s q q

d d s d +=-+=-+= (2.12)

磁链方程:

00

d d d f

q q q 0s L i L i L i ψψψψ=+== (2.13)

在d-q 坐标系下的的状态方程:

ωψωq f d q q q s d q d q

d

d

q d q d d s d L L u i L R i L L dt di L u i L L i L R dt di -+--=++-= (2.14)

输入的电功率方程:

)(2

3)(23)2(2320220dq d q q d q q d d q d s i i p i p i i i i R P ψψωψψ-+++++= (2.15)

电磁功率方程:

])([2

3e q d q d q f m i i L L i P ++=ψω (2.16) 电磁推力方程:

])([230em q d q d q f n i i L L i I M p F -+=τ

π (2.17) 结合(2.1)——(2.17),我们可以在旋转坐标系d-q 坐标系下的建立永磁同步直线电机的数学模型:

Bv Mpv f F i p P i R L pi i L u i L L pi i R u em f q n em f q s q q d d q q

q d d d s d ++==-++=-+=ψτ

πωψ

ωω23 (2.18)

2.4 本章小结

本章主要介绍了电机的原理和结构,在了解电机运行方式后,通过数学公式的推导,对其进行数学建模分析。查阅相关资料之后,对直线电机的运行有了更加深厚的理解,是下面的控制系统的设计做足前期准备。

3 永磁同步直线电机不同控制算法及其对比

3.1 PI控制器仿真电路及分析

PI控制器简介

PI调节器是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例和积分通过线性组合构成控制量,对被控对象进行控制。

比例调节作用:按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:使系统消除稳态误差,提高无误差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决于积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

简单说来,PI控制器各校正环节的作用如下:

1.比例环节即时成比例的反映控制系统的偏差信号,偏差一旦产生,控制器立即产生控制作用,以减少偏差。通常随着值的加大,闭环系统的超调量加大,系统响应速度加快,但是当增加到一定程度,系统会变得不稳定。

2.积分环节主要用于消除静差,提高系统的无差度。[1]积分作用的强弱取决于积分常数,积分常数越大,积分作用越弱,反之越强。闭环系统的超调量越小,系统的响应速度变慢。

总的来说,在控制工程实践中,PI控制器主要是用来改善控制系统的稳态性能。

设定初始输入值是1000转每分钟,现在解释仿真图的原理,由设定值与转速反馈值叠加输入PI控制器,由PI控制器输出控制信号经由双PI再经过Park 变换将静止坐标系下的相关电量值转化是旋转坐标系下的相关电量值,输入矢量控制器SVPWM,然后再由桥式逆变电路对电机实现精确控制,这张仿真图是电流环与转速环构成的双闭环控制系统可以考察控制系统的稳定性和快速性。在0.05秒时加入外界干扰,可以考察控制系统的抗干扰能力。

从上述仿真曲线中,可以分析一下PI控制系统的性能,首先,从输出转速曲线我们可以看出,在PI控制器的作用下,转速可以在短时间内到达设定的转速,但是曲线有所超调,快速性会好一点,但是系统的稳定性肯定有所影响,在0.05秒时,我们对控制系统加入一些干扰,可以看出PI控制系统的转速在一定时间内到达新的稳态。其次,观察转矩输出曲线,我们可以得到这样的结论,在电机启动后,输出转矩能快速回到零值附近,当突加负载时,也可以重新恢复新的稳态。问题也明显,系统最大的缺点就是超调量较大。

3.2 滑模控制器仿真电路及分析

滑模控制器简介

滑模控制也叫变结构控制,本质上是一类特殊的非线性控制,且非线性表现为控制的不连续性。这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中,根据系统当前的状态有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动。由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得滑模控制具有快速响应、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。

滑模变结构控制的原理,是根据系统所期望的动态特性来设计系统的切换超平面,通过滑动模态控制器使系统状态从超平面之外向切换超平面收束。系统一旦到达切换超平面,控制作用将保证系统沿切换超平面到达系统原点,这一沿切换超平面向原点滑动的过程称为滑模控制。由于系统的特性和参数只取决于设计的切换超平面而与外界干扰没有关系,所以滑模变结构控制具有很强的鲁棒性。超平面的设计方法有极点配置,特征向量配置设计法,最优化设计方法等,所设计的切换超平面需满足达到条件,即系统在滑模平面后将保持在该平面的条件。控制器的设计有固定顺序控制器设计、自由顺序控制器设计和最终滑动控制器设计等设计方法[1]。以N维状态空间模型为例,采用极点配置方法得到M(N

到最终的滑模,系统在将在达到条件下保持在该平面,使系统得到期望的性能。

设定初始输入值是1000转每分钟,该仿真图原理与上文类似:由我们设定的转速值与转速反馈的值叠加输入滑模控制器SMC,然后由滑模控制器SMC输出控制信号经由双PI再经过Park变换将静止坐标系下的相关电量值转化是旋转坐标系下的相关电量值,输入矢量控制器SVPWM,然后再由桥式逆变电路对电机实现精确控制,该仿真图是电流环与转速环构成的双闭环控制系统,可以考察控制系统的稳定性和快速性。我们在0.05秒时加入外界干扰,可以考察控制系统的抗干扰能力。

和上文分析PI控制系统的性能类似,应该从控制系统的稳定性和快速性两点下手,首先,仔细观察仿真曲线就可以得到,滑模控制系统相较于PI控制系统超调量明显下降,滑模控制系统在稳定性方面比传统的控制方法更胜一筹,滑模控制系统电机启动和外界扰动作用下,均能快速达到预定的目标。

3.3 PI控制器仿真曲线与滑模控制器仿真曲线对比分析

单纯从分开的图形上我们难以察觉PI控制系统和滑模控制系统精确的对比分析结果,不妨将系统输出转速和输出转矩加载到一个示波器里面,这样可以更加清晰明了的对比两种控制方法的控制效果。

如此一来,可以看出无论在降低超调量进而提升系统稳定性方面,还是快速达到我们预先设定的指标。滑模控制系统均优于传统的PI控制系统。同时由仿真曲线可以看出本次设计较是合理,无论从稳定性,快速性还是准确性上来讲,都要比传统的控制方法要优秀,滑模控制方法可以满足一般工业的要求。

3.4 PI控制器(带SMO)仿真电路及分析

初始输入值是2000转每分钟,该仿真图原理是,由设定值与转速反馈值叠加输入PI控制器,由PI控制器输出控制信号经由双PI再经过Park将静止坐标系下的相关电量值转化是旋转坐标系下的相关电量值,输入矢量控制器SVPWM,控制电机运行,然后由SMO构建电机的转速反馈。该仿真图是电流环与转速环构成的双闭环控制系统。在0.025秒时加入负载,可以考察控制系统的抗干扰能力。

由上图的仿真曲线可以看出在控制器选择PI控制器(带SMO)之后,可以在短时间内达到预定的转速目标,输出转矩也可以在迅速的回到零值附近。说明

系统的快速性还好,可以满足一般的要求。当我在电机启动后的0.025s时突然加入外界干扰之后,转速能够在一定时间内回复成一个新的稳态,输出转矩也可以回稳。

3.5 滑模控制器(带SMO)仿真电路及分析

设定初始输入值是2000转每分钟,该仿真图原理是,由设定值与转速反馈值叠加输入滑模控制器SMC,由滑模控制器SMC输出控制信号经由双PI再经过Park将静止坐标系下的相关电量值转化是旋转坐标系下的相关电量值,输入矢量控制器SVPWM,实现对电机运行的控制,由设定的电流和反馈回来的电流做减法,来设计SMO以实现滑模观测器的作用。该仿真图是电流环与转速环构成的双闭环控制系统。在0.025秒时加入负载,可以考察控制系统的抗干扰能力。

根据PI控制器(带SMO)和滑模控制器(带SMO)的仿真曲线来看,先从输出转速曲线说起,滑模控制器下虽然超调量稍小,系统稳定性更好,调节时间也会更短,系统快速性更强。突然添加外界扰动后,可以从仿真曲线上对比发现,在PI控制器在负载发生变化时,输出的转矩变化更大,而滑模控制下的输出转矩变化较小,抗干扰能力更强。

3.6 本章小结

本章对永磁同步直线电机驱动器的控制算法进行了选择和设计,我们预定的目标是滑模控制系统的超调量小于10%,稳态误差精度小于2%。由本节的各个系统的仿真曲线可以得到,该文设计的两种滑模控制系统均满足设计要求。本文方案有两种,第一种就是先行设计传统控制器来控制直线电机的运转。建模后设定输入值,然后观察系统的运行情况。第二种是设计滑模控制器,建立永磁无铁芯直线电机的滑模控制系统。也需要进行建模,然后将仿真结果展现在示波器上。通过对两种控制方法的研究和设计,进行图表式的直观分析,既可以达到本文要设计永磁无铁芯直线电机的滑模控制系统的目的,也可以进一步检验滑模控制系统的优越之处。仿真的结果也展示了滑模控制算法较之于传统控制算法的先进性和优越性。

结论

本文在了解滑模控制的工作原理和发展现状之后,通过建立永磁同步电机的数学模型,并搭配矢量控制伺服系统,设计了速度环和电流环的双闭环控制系统。在速度环采用对照研究策略,先采用PID控制器再替换滑模控制器,将模型搭建在Matlab中,并将输出的仿真曲线进行对比,来研究滑模控制的优缺点。并由仿真曲线可以得到,滑模控制系统的超调量式小于10%的,稳态精度也小于2%。本文设计的滑模控制系统满足预定的要求。

本文是根据永磁无铁芯直线电机的数学模型,在Maltab中搭建了四控制系统,通过仿真曲线的对比和分析,可以看出对于同一个电机,滑模控制系统的控制效果更好。滑模控制系统稳定性优于传统PID控制系统,而且在快速性和抗干扰能力方面,滑模控制系统的品质也是较高的,而且设计起来并不麻烦,物理实现简单,经济适用。但是也有它的缺点,即抖振问题,这是因是本质上讲滑模控制系统具有不连续的开关特性。这可能破坏系统的运行状态,稳定性变差甚至不稳定,也会对电机造成磨损甚至损坏等。处理方法可以选用滤波器对控制信号进行滤波,使得信号变得平滑,可以有效抑制抖振现象。把滑模控制系统应用于永磁无铁芯直线电机的控制,可以提高系统的稳定性,加快调节电机转速,对于电机突加负载具有很好的抗干扰能力,可以提升控制电机的精度。有效的克服了传统PID控制系统的缺点,大大提升了系统的控制品质。滑模控制器+的概念和设计并不难理解也不难操作,适合目前一般的工业和企业的需求。

滑模控制系统仍存在难以解决的问题,我们需要不断的进行改进。例如抖振问题需要滤波器的抑制。在高阶非线性系统和强耦合系统等系统的控制方法的设计中,单一的滑模控制很难达到预期的效果,需要进一步将滑模控制方法与现如今先进的控制方法如神经网络算法、遗传算法、模糊算法等相糅合,设计更加稳定,精度更高,鲁棒性更好的系统。

自动控制系统位置随动系统课程设计

摘要 随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。在现代计算机集成制造系统(CIMC)、柔性制造系统(FMS)等领域,位置随动系统得到越来越广泛的应用。 位置随动系统要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性为位置随动系统的主要特征。 本次课程设计研究的是位置随动系统的超前校正,并对其进行分析。 关键词:随动系统超前校正相角裕度

目录 1 位置随动系统原理 (1) 1.1 位置随动系统原理图 (1) 1.2 各部分传递函数 (1) 1.3 位置随动系统结构框图 (4) 1.4 位置随动系统的信号流图 (4) 1.5 相关函数的计算 (4) 1.6 对系统进行MATLAB仿真 (5) 2 系统超前校正 (6) 2.1 校正网络设计 (6) 2.2 对校正后的系统进行Matlab仿真 (8) 3 对校正前后装置进行比较 (9) 3.1 频域分析 (9) 3.2 时域分析 (9) 4 总结及体会 (10) 参考文献 (12)

位置随动系统的超前校正 1 位置随动系统原理 1.1 位置随动系统原理图 图1-1 位置随动系统原理图 系统工作原理: 位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系及绳轮等组成,采用负反馈控制原理工作,其原理图如图1-1所示。 在图1-1中测量元件为由电位器Rr 和Rc 组成的桥式测量电路。负载固定在电位器Rc 的滑臂上,因此电位器Rc 的输出电压Uc 和输出位移成正比。当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc ,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。当偏差ΔU=0时,电动机停止转动,负载停止移动。此时δ=δL ,表明输出位移与输入位移相对应。测速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。 1.2 各部分传递函数 (1)自整角机: 作为常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。自整角机作为角位移传感器,在位置随动系统中是成对使用的。与指令轴相连的是发送机,与系统输出轴相连的是接收机。 12()(()())()u t K t t K t εεθθθ=-=? (1-1) 零初始条件下,对上式求拉普拉斯变换,可求得电位器的传递函数为

线性马达(直线电机)的工作原理

所谓线性马达又称为直线电机,是一种将传统的旋转电机沿轴线方向切开后,将旋转电机的初 级展开作为直线电机(线性马达)的定子,次级通电后在电磁力的作用下沿着初级做直线运动,成为直线电机(线性马达)的动子。 我们常说的磁悬浮,往往和直线电机(线性马达)驱动有着很大联系。磁浮运输系统通常采用“线性马达”也就是直线电机作为推进系统的。 线性马达的构成原理 设靠三相交流电力励磁的移动用电磁石 (作为定子),分左右两排夹装在铝板两旁 (但不接触),磁力线与铝板垂直相交,铝板即感应而生电流,因而产生驱动力。由于线性感应马达的定子装在列车上,较导轨短,因此线性感应马达又称为“短定子线性马达”(Short-stator Motor);线性同步马达的原理则是将超导电磁石装于列车上 (当作转子),轨道上则装有三相电枢线圈 (作为定子),当轨道上的线圈供应以可变周波数的三相交流电时,即能驱动车辆。由于车辆移动的速度系依与三相交流电周波数成比例的同步速度移动,故称为线性同步马达,而又 由于线性同步马达的定子装于轨道上,与轨道同长,故线性同步马达又称为“长定子线性马 达”(Long-stator Motor)。 传统轨道运输系统由于使用专用轨道,并以钢轮作为支撑与导引,因此随着速度的增加, 行驶阻力会递增,而牵引力则递减,列车行驶阻力大于牵引力时即无法再加速,故一直无法突 破地面运输系统理论上最高速度每小时375公里的瓶颈。虽然法国TGV曾创下传统轨道运输系统时速515.3公里的世界纪录,但因轮轨材料会有过热疲乏的问题,故现今德、法、西、日等 国之高铁商业营运时速均不超过300公里。

因此,如要进一步提升车辆速度,必须放弃传统以车轮行驶之方式,而采用“磁力悬 浮”(Magnetic Levitation,简称“磁浮”Maglev) 的方式,使列车浮离车道行驶,以减少摩 擦力、大幅提高车辆的速度。此一浮离车道的作法,除不会造成噪音或空气污染外,并可增进 能源使用之效率。另外采用“线性马达”(Linear Motor) 亦可加快该磁浮运输系统的速度, 因此使用线性马达的磁浮运输系统应运而生。 所谓磁浮运输系统就是利用磁力相吸或相斥的原理,使列车浮离车道,此磁力的来源可分 为“常电导磁石”(Permanent Magnets) 或“超导磁石”(Super Conducting Magnets, SCM)。所谓的常电导磁石就是一般的电磁铁,即只有通电时才具有磁性,电流一切断则磁性消失,由 于列车在极高速时集电困难,故常电导磁石仅能适用于采用磁力相斥原理、速度相对较慢 (约300kph) 的磁浮列车;至于速度高达500kph以上的磁浮列车 (利用磁力相吸原理),就非使用 通一次电就永久具有磁性 (因此列车可以不用集电) 之超导磁石不可。 因磁浮运输系统是利用磁力相吸或相斥的原理,故导致其分为“电动悬 浮”(Electrodynamic Suspension, EDS) 与“电磁悬浮”(Electromagnetic Suspension, EMS) 两种型态。电动悬浮 (EDS) 是利用同性相斥的原理,当列车经由外力而移动,装置于列车上的常电导磁石产生移动磁场,而在轨道上的线圈产生感应电流,此电流再生磁场,由于此二磁场 方向相同,故列车与轨道间产生互斥力,列车随即由此互斥力举升而悬浮。因列车的悬浮是靠 两磁场作用力相互平衡而达成,故其悬浮高度可固定不变 (约10 ~ 15mm),列车即因此具有相 当之稳定性。此外,列车必须先以其他方式启动,其所带之磁场才能产生感应电流与磁场,车 辆才会悬浮;因此,列车必须装置车轮以便“起飞”与“降落”之用,当速度达40kph以上时,列车开始悬浮 (即“起飞”),车轮自动收起;同理当速度渐减不再悬浮时,车轮自动放下以便滑行 (即“降落”)。通常采用电动悬浮 (EDS) 的系统,只能以“线性同步马达”(Linear Synchronous Motor, LSM) 作为推进系统,且其速度相对较慢 (约300kph)。 电动悬浮系统 (EDS) 与线性同步马达 (LSM) 的组合 电磁悬浮 (EMS) 则是利用异性相吸的原理,列车两侧向导轨环抱 (类似跨座式单轨系统),列车环抱的下部装有电磁石,导轨的底部装有钢板代替线圈,此时导轨之钢板在上,而列车之 电磁石在下,当通电励磁时,电磁石产生之磁场吸引力吸引列车向上,列车因重力而下沉,两

位置随动控制系统设计与实现

位置随动控制系统设计与实现 王桂霞, 李 媛 (中国船舶重工集团公司第704研究所,上海 200031) 摘 要:计算机控制系统是保证位置随动系统功能和性能的重要部分,文中结合船用仿真 转台阐述了多机集散控制结构形式的位置随动转台的计算机控制系统方案,并以某位置随动转台为背景,对系统工程实现中的接口电路设计、电机、伺服放大器以及采样频率选取、程序设计等一系列问题进行了讨论,设计结果在位置随动试验样机中应用取得了良好效果. 关键词:位置随动;控制系统;采样频率;设计 中图分类号:T M571,TP273 文献标识码:A 文章编号:100528354(2007)1220029204 Desi gn and reali zati on of control syste m of rando m positi on WANG Gui 2Xia,L I Yuan (No .704Research I nstitute,CSI C,Shanghai 20031,China ) Abstract :The co m puter control syste m is an i m portant part of guaranteeing perfor m ance of control syste m of rando m position .Co m bining the m arine si m ulation turntable,this paper set forth the co m puter control syste m sche m e on the rando m position turntable w ith m ulti 2co m puter distributes control structure .Then taking a certain turntable of rando m position as background,it respectively discussed such key proble m s of syste m engineering re 2alization as the interface circuit design,choice of m otor ,servo am plifier and sam ple frequency and the program design .The design sche m e is applied in a rando m position proto type and gets a good result . Key words :rando m position;control syste m;sam ple frequency;design 收稿日期:2007211219 作者简介:王桂霞(19772),女,工程师,主要从事自动控制的工作位置随动控制系统设计与实现 0 引言 位置随动转台系统由机械台体和计算机控制系统两个重要部分组成,前者是实现仿真功能的基础,而后者是保证转台系统功能和性能的核心部分.转台既要满足一定的动态、静态指标要求,也要为试验提供方便的操作界面和数据采集、处理手段,计算机控制系统不仅要具有实时控制功能,而且应具备监控管理功能,因此,计算机控制系统设计就成为仿真转台设计和工程实现的重要内容. 当前在各种控制系统中计算机已得到非常广泛的应用,根据不同的情况,控制系统的结构形式各不相同,一般分为操作指示系统、直接数字控制系统(DDC )和集散控制系统(DCS )等类型,在下文中将讨论集散控制结构形式的计算机控制系统的设计问题,其中主 要包括结构设计、系统工程实现中的接口线路设计、采样频率选择、程序设计等内容,并给出设计结果. 1 结构设计 本仿真转台采用多机集散控制形式,即采用上下位机的两级式结构.图1 为集散控制系统应用于本转 图1 原理框图

直线电机原理

,提高系统精确度,所以得到广泛的应用。直线电动机的种类按结构形式可分为;单边扁平型、双边扁平型、圆盘型、圆筒型(或称为管型)等;按工作原理可分为:直流、异步、同步和步进等。下面仅对结构简单,使用方便,运行可靠的直线异步电动机做简要介绍。 直线异步电动机的结构主要包括定子、动子和直线运动的支撑轮三部分。为了保证在行程范围内定子和动子之间具有良好的电磁场耦合,定子和动子的铁心长度不等。定子可制成短定子和长定子两种形式。由于长定子结构成本高、运行费用高,所以很少采用。直线电动机与旋转磁场一样,定子铁心也是由硅钢片叠成,表面开有齿槽;槽中嵌有三相、两相或单相绕组;单相直线异步电动机可制成罩极式,也可通过电容移相。直线异步电动机的动子有三种形式: (1)磁性动子动子是由导磁材料制成(钢板),既起磁路作用,又作为笼型动子起导电作用。 (2)非磁性动子,动子是由非磁性材料(铜)制成,主要起导电作用,这种形式电动机的气隙较大,励磁电流及损耗大。 (3)动子导磁材料表面覆盖一层导电材料,导磁材料只作为磁路导磁作用;覆盖导电材料作笼型绕组。 因磁性动子的直线异步电动机结构简单,动子不仅作为导磁、导电体,甚至可以作为结构部件,其应用前景广阔。 直线异步电动机的工作原理和旋转式异步电动机一样,定子绕组与交流电源相连接,通以多相交流电流后,则在气隙中产生一个平稳的行波磁场(当旋转磁场半径很大时,就成了直线运动的行波磁场)。该磁场沿气隙作直线运动,同时,在动子导体中感应出电动势,并产生电流,这个电流与行波磁场相互作用产生异步推动 直线异步电动机主要用于功率较大场合的直线运动机构,如门自动开闭装置,起吊、传递和升降的机械设备,驱动车辆,尤其是用于高速和超速运输等。由于牵引力或推动力可直接产生,不需要中间连动部分,没有摩擦,无噪声,无转子发热,不受离心力影响等问题。因此,其应用将越来越广。直线同步电动机由于性能优越,应用场合与直线异步电动机相同,有取代趋势。直线步进电动机应用于数控绘图仪、记录仪、数控制图机、数控裁剪机、磁盘存储器、精密定位机构等设备中。

单轴位置控制系统设计

1.单轴位置控制系统设计 1.1. 基本控制要求 该单元有电机带动轴运动,气泵产生气体带动气缸(用气缸模拟机械手)上下运动和吸附物块组成。电机带动轴的左移Y0和右移Y1。轨道有三个接近开关(1、2、 3)定位三个工位, 气缸由电磁阀控制进气和出气,实现气缸的上升和下降(Y2), 吸附开关X3控制吸附物块(Y3),设计有手动和自动控制部分,可以通过开关X14选择控制方式。 1.1.1.手动控制要求 通过X14开关选择手动控制方式,通过控制面板来控制,手柄控制气缸向左X16、向右X17移动,气缸的上X4和X5下通过面板旋钮控制,物块的吸附通过面板旋钮 X3控制,来完成物块在三个工位上的移动。 1.1. 2.自动控制要求 通过X14开关选择自动控制方式,按复位按钮,气缸回到工位1,按启动按钮后,气缸下降吸附物块,然后上升,再从工位1移动到工位2,再下降,释放物块回升气缸,4秒过后气缸下降吸附物块从工位2移动到工位3,再下降释放物块回升气缸,4秒后再下降吸附物块从工位3移动到工位1,下降释放物块回升气缸,工作全部完成,气缸停止在工位1。

1.2.硬件设计 1.2.1 I/O地址分配表 根据对单轴运动控制系统的分析,分配对应的I/O口,I/O地址分配表如表XO 急停按钮X11 停止按钮X1 位置1 X12 右移 X2 位置2 X13 手动 X3 位置3 X14 吸附 X5 吸附/松开X15 上移 X6 上位X16 下移 X7 下位X17 左移 X10 启动按钮 表1.2.1.1 PLC输入设备 Y4 吸附控制 Y10 上升控制 Y11 下降控制 Y2 左移控制 Y3 右移控制 Y6 启动控制 Y5 停止控制 Y7 复位控制 表1.2.2.2PLC输出设备

位置随动系统设计与仿真

中文摘要:随动系统,通常也被称为伺服系统,是一种反馈控制系统。它是用来控制被控对象的某种状态,使被控对象的输出能自动、连续、精确地复现输入信号变化规律的一种控制系统,随动系统的控制对象通常为角度或机械位置,该系统最初用于船舶的操舵系统、火炮控制以及指挥仪中,后来慢慢推广到众多领域,尤其多见于自动车床、天线位置的控制还有导弹和飞船的制导等。如今随动系统的应用几乎扩展到了民用、工业、军事等各个领域,随着家用电器的普及和全自动化,它在生活中的应用也越来越广泛。而位置随动系统的被控量是位置,一般用线位移或角位移表示。当位置给定量作某种变化时,该系统的主要任务就是使输出位移快速而准确地复现给定量位移。

第一章绪论 1.1课题研究背景 1.1.1随动系统现状及历史 随动系统,通常也被称为伺服系统,是一种反馈控制系统。它是用来控制被控对象的某种状态,使被控对象的输出能自动、连续、精确地复现输入信号变化规律的一种控制系统,其衡量指标主要有超调量、稳态误差、峰值时间等时域指标以及相角域度、幅值域度、频带宽度等频域指标,其输入是一种变化规律未知的时间函数。随动系统中的驱动电机应该具有响应速度快、定位准确、转动惯量大等特点,这类专用的电机称为伺服电机。早在二十世纪三十年代,伺服机构这个词便进入人们的视线了。到二十世纪中期,在自动控制理论的发展下随动系统也得到了极大的发展,其应用领域进一步扩大。近几十年,伺服技术更是取得飞跃发展,其应用也迅速扩展到民用、工业和军事领域中。在冶金行业,它用于多种冶金炉的电极位置控制,机器的运行控制等;在运输行业中,水路陆路空中三方的运输工作也都用到了伺服系统,比如,飞机的驾驶,电力机车的调速,船舶的操舵等,一定程度上都实现了“自动化”控制;如今,军事领域也充分运用到了伺服系统,比如雷达天线的自动瞄准的跟踪控制,导弹和鱼雷的自动控制等等。另外,随着空调、洗衣机等各类家用电器在家庭中的普及,伺服系统的应用也走入到了我们的日常生活中。 1.1.2随动系统的应用 随动系统的控制对象通常为角度或机械位置,该系统最初用于船舶的操舵系统、火炮控制以及指挥仪中,后来慢慢推广到众多领域,尤其多见于自动车床、天线位置的控制还有导弹和飞船的制导等。如今随动系统的应用几乎扩展到了民用、工业、军事等各个领域,随着家用电器的普及和全自动化,它在生活中的应用也越来越广泛。 人们应用随动控制系统主要是为了达到下面几个目的: ⒈用较小的功率指令信号来控制很大功率的负载,比如火炮控制、船舵控制等。 2.在没有机械连接的情况下,利用输入轴控制远处的输出轴,从而实现远距离的同步传动控制。

智能控制算法及其用于结构振动控制的实践

智能控制算法及其用于结构振动控制的实践 发表时间:2016-07-25T14:37:52.590Z 来源:《电力技术》2016年第4期作者:郝志伟[导读] 本文着重的概述智能控制领域中正在热门研究的模糊算法、人工智能算法和遗传算法等各个研究的方向。 新疆华隆油田科技股份有限公司新疆克拉玛依 834000 摘要:在智能控制的领域里有很多的研究方向可以供科研工作者们进行探索,而在土木工程的领域里结构振动的相关研究方向里,结构振动控制一直都是其中的热点。本篇文章主要是论述了智能控制算法的有关现状和发展的方向,并且还探讨了目前国内对于智能控制算法及其用于结构振动控制的实践上的发展前景。总的来说,在某种程度上智能控制算法的不断进化为土木工程的不断发展提供了充分的科学和技术支持,并且目前结构控制的热门研究方向就是结构智能控制【1】。本文着重的概述智能控制领域中正在热门研究的模糊算法、人工智能算法和遗传算法等各个研究的方向,也会对目前国内的智能控制算法在结构振动控制上的发展进行探讨。关键词:结构控制;智能算法;模糊推理;人工智能 国内的现代结构主动控制相关研究是在70年代的时候在国内刚刚兴起,目前已处于不断成熟的阶段,在国内的许多机械化的领域之内都十分的成功的应用了现代的控制理论,所以目前的结构控制的相关研究就是这样打下基础的。通过研究我们可以发现,在抗风和抗震程度上只有结构控制是能够得到的明显有效的效果。所以在国内的工程学一线领域里,结构控制是一个十分热门的研究方向。新兴的智能控制系统是一个十分新颖的理论技术,其具有十分强大的对整个局面的控制能力,即使面对复杂的系统操作也能进行有效的运算,容错能力显著,并且对于数学模型的处理能力很精通。 一、智能控制理论的起源 近百年以来各种新式技术不断的被发明发现,日新月异的更新着我们的生活和思想,而近十几年以来高新技术的迅速发展让越来越多的复杂数据需要更为精尖的科学技术理论和设备来进行操作处理,所以人工智能是顺应时代而生的产物。首次提出将人工智能和自动控制系统有效结合创新了这一领域的研究方向。从此以后,国内的相关领域便逐渐的转移到智能控制的高阶领域之中。除此之外,计算机领域的高速发展尤其是微计算机的研发和应用也为智能控制的研究提供了支持【2】。随着技术的不断进步和研究的逐渐深入,智能控制系统也在不断的完备。而智能控制算法和相关的智能控制结构也是以这个为基础得以被研究。 二、智能控制发展的相关方向 (一)模糊控制科研者通过制定一系列的控制策略和相关的数据规则总成一个控制规则并加给被操纵者和操作过程就是模糊控制的基本内容。模糊控制的鲁棒性较强,使用的时候不需要输入和建立具体的模型,在处理时滞或者时变等复杂程度较强的系统时易于给出专家的知识。然而模糊算法也有其短板,如果模糊处理的操作选择简单的处理时容易出现所控制的品质出现问题不易提高系统的精度,这种较大的局限性导致了模糊控制的系统性缺失。 (二)人工智能算法在某种程度上被称为机器智能的人工智能算法是一门较为边缘性的学科。通常被研发出来用于进行各种模拟替代人类行为,其研究前景极为广泛,在现阶段的发展范围之内,已经融入了多种学科并且涵盖了极为丰富的人文信息。并且根据现在科技的发展程度来看,其算法具有极强的可靠性和独立性。在进行运算的时候并不需要十分详细的具体参数数据和抗干扰能力十分了得。并且将人工智能算法用于产品的设计时,对于产品的设计整体性能都有更好的提升,其科学性设计理念和运算方式都对产品研发的效率大有裨益。 (三)优化算法优化算法是结合新式理论发展起来的应用前景十分广泛的热门研究,优化算法的出现成功的解决了神经网络应用中的短板和不足,对于神经网络的高效学习的有关算法和拓扑结构的优化设计的改善起到了十分关键的地步。而优化算法中的遗传算法是其中发展较为领先的方向。其通过模拟生物本身拥有的搜索功能和自身的优化算法,建立了一套独特的机制。现阶段的科研者们也在逐步的采用将遗传算法逐步的与神经网络控制和模糊控制相结合,通过将这三种各有优势和长处的智能控制算法相互取其长处的融在一起,在性能上既可以将模糊算法的推理规则和隶属的函数结构进行优化,还可以让神经控制算法的计算量得到有效的减少,对于实时控制的应用能够起到有效的实践作用【3】。 三、结构振动控制的实践 我国在早期就已经开始运用神经网络于智能控制的研究中,并且通过研究发现在非线性的建模中,神经网络算法的实际应用具有很强的作用。并且在近些年以来随着我国工业技术的不断革新,工业管理体系也在逐步的发展。在传统的研究方法之中,科研工作者们常常将神经网络和模糊算法的部分研究方向结合在一起,而在隶属函数的获取上应用更为广泛【4】。采用遗传算法来对隶属函数的参数进行操作节,可以较好的获得理想的实验数据。 到目前为止的国际上的结构振动控制相关的研究之中,智能控制一直是持续获得关注的研究热点。而目前,在无数科学家和相关科研人员们的努力之下,已经成功的将现代控制理论成功的转变为智能控制理论,该理论融合了大量的模糊识别和人工智能相关的理论知识,并且这一理论已经总结出了一系列成果例如结构智能控制等。近些年来由于智能控制系统的研发不断在进步,引起了我国许多社会部门和机械研究学科的相关领域的注意。例如在工业化生产中的油田开采就是极为重要的一项,所以现阶段国内的油田自动化技术与之前相比进步很大,尤其是油田自动化监控系统。在具体的生产运作中都是各个系统相互独立进行运作,但是彼此之间又是联系密切,共同组成一个完整综合的管理系统。基本上是可以实现从开采之前的数据采集研究到最后的生产管理都能在有效的自动体系之下进行运作【5】。除此之外还能实现数据的实时更新,方便企业对完成对数据库的完全掌握。而这些技术的革新,都会使油田的管理方式更加科学化和符合人工智能技术的要求,并且最终会带领着我国的油田工业在迈向更好更快发展的道路上,稳定前进。而现目前也有许多学者也对此提出了切实有效的研究策略和实验结果,例如以张顺宝为带头人的科研小组就实现了通过为结构的主动控制系统提供了时间差以便于能够缩短时迟的问题等。

直线电机位置控制算法及仿真

直线电机位置控制算法及仿真 1 绪论 1.1 研究背景及意义 随着工业机械自动化程度的不断升级,有力的带动了上游直线电机在中国的快速成长,国外品牌纷纷加大对中国市场的投入力度,永磁同步直线电机是一种将电能直接转化是动能的转化装置,省去了中间的转换机构,消除了机械转动链的影响,具有速度快,推力大,精度高等诸多优点,因此,广泛应用于精密和高速运行等领域。但是永磁同步直线电机是一个典型的非线性多变量系统,许多非线性因素的存在都会影响到永磁同步直线电机系统的控制性能,如没有知的负载和摩擦等。传统的PID控制方法已经不能满足于永磁机电动机的高精度场合,因此如何设计高性能的直线电机位置控制算法一直以来都是控制领域的热点问题之一。 因此,在传统PID控制方式下,针对多变量、非线性、强耦合的永磁同步直线电机系统设计了一种滑模位置控制器,弥补了常规PID控制跟踪精度不高的缺点。滑模控制具有控制精度高、抗干扰能力强、适用范围广的等优点,因此滑模控制方法已经成是永磁同步直线电机领域重点关注问题,相关研究人员对此进行了深入研究。 1.2 国内外研究现状 直线电机的研究现状 1840年Wheatsone开始提出与制作了略具雏形的直线电机。从那时至今,在160多年的历史记载中,直线电机经历了三个时期。 1840-1955年是探索实验时期: 从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。自从Wheatsone提出和试制了直线电机以后,最早明确的提到直线电机文章的是1890年美国匹兹堡市的市长,在

他写的一篇文章中,首先明确的提到了直线电机以及它的专利。然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的顽强努力后,最终却没有能获得成功。 至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨道上,另一种建议是将初级放在车辆底部。这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。1917年出现了第一台圆筒形直线电动机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作是导弹发射装置,但其发展并没有超出模型阶段。 至此,从1930-1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。 从1940-1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用工作。1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW的直线电动机是动力,成功的用4.1s的时间将一架重4535kg的喷气式飞机在165m的行程内由静止加速的188km/h的速度,它的试验成功,使直线电动机可靠性好等的优点受到了应有的重视,随后,美国利用直线电机制成的、用作抽汲钾、钠等液态金属的电磁泵,是的是核动力中的需要。1954年,英国皇家飞机制造公司利用双边扁平型直流直线电机制成了发射导弹的装置,其速度可达1600km/h。在这个阶段中,尤需值得一提的是,直线电机作是高速列车的驱动装置得到了各国的高度重视并计划予以实施。 在1840-1955年期间,是直线电机探索实验和部分实验应用时期,在直线电机与旋转电机的相互竞争中,由于直线电机的成本和效率方面没有能够战胜旋转电机,或者说,直线电机还没能找到它的专属领域,以及直线电机在设计方面也没有突破性的成功,所以直线电机在这一时期始终没有能得到有效的推广。 1956-1970年是开发应用时期: 自1955年以来,直线电机进入了全面的开发阶段,特别是该时期的控制技术和材料的惊人发展,更加助长了这种势头。在这段时期,申请直线机的专利件数也开始急速增加,该时期直线电机专利的增长率超过了所有其他技术领域的平

机器人抓取装置位置控制系统校正装置设计

自动控制原理课程设计题目:机器人抓取装置位置控制系统校正装置设计 专业:电气工程及其自动化 姓名: 班级:学号: 指导老师:职称:

初始条件: 一个机器人抓取装置的位置控制系统为一单位负反馈控制系统,其传递函数为()()() 15.013 0++=s s s s G ,设计一个滞后校正装置,使系统的相 角裕度?=45γ。 设计内容: 1.先手绘系统校正前的bode 图,然后再用MATLAB 做出校正前系统的bode 图,根据MATLAB 做出的bode 图求出系统的相角裕量。 2.求出校正装置的传递函数 3. 用MATLAB 做出校正后的系统的bode 图,并求出系统的相角裕量。 4.在matlab 下,用simulink 进行动态仿真,在计算机上对人工设计系统进行仿真调试,确使满足技术要求。 5.对系统的稳定性及校正后的性能说明 6.心得体会。

1频率法的串联滞后校正特性及方法 1.1特性:当一个系统的动态特性是满足要求的,为改善稳态性能,而又不影响其动态响应时,可采用此方法。具体就是增加一对靠的很近并且靠近坐标原点的零、极点,使系统的开环放大倍数提高β倍,而不影响开环对数频率特性的中、高频段特性。 1.2该方法的步骤主要有: ()1绘制出未校正系统的bode 图,求出相角裕量0γ,幅值裕量g K 。 ()2在bode 图上求出未校正系统的相角裕量εγγ+=期望处的频率 2c ω,2c ω作为校正后系统的剪切频率,ε用来补偿滞后校正网络2c ω处的 相角滞后,通常取??=15~5ε。 ()3令未校正系统在2c ω的幅值为βlg 20,由此确定滞后网络的β值。 ()4为保证滞后校正网络对系统在2c ω处的相频特性基本不受影响,可 按10 ~ 2 1 2 2 2c c ωωτ ω= =求得第二个转折频率。 ()5校正装置的传递函数为()1 1 ++= s s s G C βττ ()6画出校正后系统的bode 图,并校验性能指标 2确定未校正前系统的相角裕度 2.1先绘制系统的bode 图如下:

MATLAB电液位置伺服控制系统设计及仿真教案资料

M A T L A B电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设 计及仿真 姓名:雷小舟 专业:机械电子工程 子方向:机电一体化 武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理 数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。 系统物理模型如图1所示。 图1 数控机床工作台位置伺服系统物理模型 系统方框图如图2所示。 图2 数控机床工作台位置伺服系统方框图 数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。 2数控工作台的数学模型 2.1 工作台负载分析 工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为: a f c L F F F F ++=

直线电机的PID控制器设计

基于MATLAB的直线电机PID控制器设计 摘要 随着现代工业的飞快发展,控制对象日益复杂,对其的性能控制要求也不断提高,致使人们寻找更好的控制方法,其中以改进PID控制最为典型。PID控制器具有结构简单、容易实现、控制效果好、鲁棒性强等特点,是目前最稳定的控制方法之一。它所涉及的参数物理意义明确,理论分析体系完整,并为工程界所熟悉,因而在工业过程控制中得到了广泛应用。 直线电机是近年来国内外积极研究发展的新型电机之一,凭借自身的特性在以直线运动的工业控制中,有比旋转电机巨大的优越性。可广泛应用于交通运输、起重搬运、物流传输装置、国防及煤矿运输、车床进给等方面,发展前景十分广阔。 传统的比例积分微分( PID) 控制器参数往往因整定不良、性能欠佳,对运行状况的适应性很差。简单的控制又不能很好地适应对象系统特性变化时的最佳控制要求。因此,鉴于控制方法目前仍有广泛应用,对参数整定方法的研究将具有很好的应用价值。本文根据稳定边界法则及Ziegler-Nichol算法,以直线电机控制模型为例介绍如何在MATLAB 工具帮助下整定并验证PID 控制器参数,使参数的整定变得简单、易行,使整定效果更优化。 关键词:直线电机PID控制 MATLAB 控制系统参数整定系统仿真

Abstract: With the fast development of modern industry, more complicated control object, its performance control requirements improve continuously, cause people looking for better control method, which to improve PID control is the most typical example. The PID (Proportional-Integral-Derivative) control is one of the most common control methods at present. Its structure is simple and easy to implement, however, the control effect is perfect and it has a strong robust characteristics. The physical parameters is, meaning of ,theoretical analysis of system is integrity, and it is familiar by the engineering sector, which in the industrial process control has been widely used. Linear motor is one of the studied new motor. Because of its peculiarity, the linear motor performed better than rotary motor in the control systems when the moving route is linear. Its application range extends widely and widely. And it has been applied in many fields. However, the traditional parameter adaptability of proportion-integral-differential (PID) controller to the operating situation is very bad sometimes because the reduction and performance isn't good. Simple control and can't well adapt to changes in the system characteristics of the object of optimal control requirements. Therefore, in view of the control method is currently there are still widely used, to the study of the method of parameter setting will have a good application value. According to the stable boundary principle and Ziegler-Nichol algorithm, this paper introduces how to reduce and validate the PID controller parameter with the help of MATLAB tool taking the linear motor control model as an example. Making the parameters set becomes simple, easy to operate, and make the setting effect more optimization. Key words:Linear motor,PID control, Matlab, Control system, Parameters setting, System simulation

步进电机定位控制系统设计

学生学号 课程设计 题目步进电机定位控制系统设计 学院信息工程学院 专业 班级 姓名 指导老师

2013~2014学年6月20日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:步进电机定位控制系统设计 初始条件: 1. 具备电子电路的基础知识及查阅资料和手册的能力; 2. 熟悉ISE 仿真软件的操作与运用; 3. 掌握步进电机的工作原理。 要求完成的主要任务: 1. 设计一个基于FPGA 的4 相步进电机定位控制系统,包括步进电机方向设定 电路模块、步进电机步进移动与定位控制模块和编码输出模块。 2.撰写符合学校要求的课程设计说明书。 时间安排: 1、2014 年06月11日,布置课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年06月12日至2014年06月17日,设计说明书撰写。 3、2014年06月18日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 摘要........................................................................................................................ I Abstract ................................................................................................................. II 1 设计目标及简介 (1) 1.1设计目标 (1) 1.2 步进电机简介 (1) 2 VHDL语言介绍 (2) 3 Quartus Ⅱ介绍 (3) 4 系统组成 (4) 4.1 四相步进电机工作原理 (4) 4.2 系统组成 (6) 5 模块设计 (7) 5.1 FPGA模块图及信号说明 (7) 5.2 系统模块构成 (7) 5.3 各模块间整体共享的电路内部传递信号 (7) 5.4 电机方向设定电路模块 (8) 5.5 步进电机步进移动与定位控制模块 (9) 5.6 编码输出模块 (9) 6 程序设计与仿真 (10) 7 仿真结果 (16) 8 实验总结 (18) 参考文献 (19)

直线电机的工作原理

直线电机的工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成,如图1所示。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。 直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。 直线电机的优缺点介绍

直线电机是一种将电能转化为动能的机械装置,通常应用于工业生产当中。与直线电机相对应的一种装置是旋转电机,两者的工作原理类似。但是直线电机是进行直线运动的电机,而旋转电机是进行旋转运动的电机。直线电机可以直接将电能转化为动能,而不需要中间装置。 直线电机的优点 直线电机一般有平板式、U型式、管式几种。直线电机的工作系统是通过内部直线导轨来完成工作,用环保材料将线圈压缩成电路板的动子和电热调节器连接,然后在稀土磁铁的磁轨上进行动力推动,不需要像旋转电机一样,将动子固定在旋转轴承的支撑架上来保证相

对运动部分的稳定,通过直接反馈位置的直线编码器装置,就可以直接测量负载位置,从而保证负载位置的精确度。 由上看出,直线电机因为不需要中间转换装置,所以操作简单,非常适合进行非离心力的运动。直线电机的优势主要有以下几点: 首先,结构简洁。直线电机直接产生直线运动,位置精确度高,更为节省成本、稳定可靠、操作和维护简便。 第二,运动效率高。直线电机的气垫和磁垫中间存在缝隙,在运动时,不会出现机械接触,也不会出现摩擦和噪音,对零部件的损伤较小,从而具有较高的工作效率,可以进行高速直线运动。

永磁直线电机精确相变量建模方法(精)

第29卷第9期中国电机工程学报V ol.29 No.9 Mar.25, 2009 98 2009年3月25日 Proceedings of the CSEE ?2009 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2009 09-0098-06 中图分类号:TM 351;TM 359 文献标志码:A 学科分类号:470?40 永磁直线电机精确相变量建模方法 曾理湛1,陈学东1,李长诗2,农先鹏1,伞晓刚1 (1. 数字制造装备与技术国家重点实验室(华中科技大学,湖北省武汉市 430074; 2. 郑州轻工业学院机电工程学院,河南省郑州市 450002 Accurate Phase Variable Modeling of PM Linear Motors ZENG Li-zhan1, CHEN Xue-dong1, LI Chang-shi2, NONG Xian-peng1, SAN Xiao-gang1 (1. State Key Laboratory of Digital Manufacturing Equipment & Technology (Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China; 2. College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, China ABSTRACT: This paper proposes a general finite element (FE based phase variable modeling method of permanent magnet (PM linear motors for the accurate dynamic simulation of drive systems. A general phase variable model of PM linear motors is established taking account of the effects of the nonideal geometrical structure on the thrust force, in which the mover position dependent variables are obtained from FE

相关文档
最新文档