色谱分析法概论
色谱分析法概论

差速迁移 色谱分离。
1. 气相色谱分离过程
当试样由载气携带进入色 谱柱与固定相接触时,被固定 相溶解或吸附; 随着载气的不断通入,被 溶解或吸附的组分又从固定相 中挥发或脱附; 挥发或脱附下的组分随着 载气向前移动时又再次被固定 相溶解或吸附; 随着载气的流动,溶解、 挥发,或吸附、脱附的过程反 复地进行。
第二节 色谱过程
一、色谱过程
实现色谱操作的基本条件是必须具备相对 运动的两相,固定相(stationary phase)和流 动相(mobile phase)。
色谱过程是组分的分子在流动相和固定相 间多次“分配”的过程。
色谱过程
• 组分的结构和性质微小差异
与固定
相作用差异 随流动相移动的速度不
等
• 设正常峰,W1≈W2= 4σ , • 则R=1.5时,99.7%面积(tR ±3σ)被分开,
∆ tR =6 σ ,称 6 σ分离 。
R<1, 峰重叠,未分开
R = 1, 认为基本分开,4σ分 离
R = 1.5, 两峰完全分离,6σ分 离
三、分配系数与色谱分离
(一) 分配系数和容量因子
• 分配系数 (distribution coefficient;K) 是在 一定温度和压力下,达到分配平衡时,组分 在固定相 (s) 与流动相 (m) 中的浓度 (C) 之比。
(2)不同物质在同一色谱柱上的分配系数不同,用有效塔 板数和有效塔板高度作为衡量柱效能的指标时,应指明测定 物质。
(3)柱效不能表示被分离组分的实际分离效果,当两组分
的分配系数K相同时,无论该色谱柱的塔板数多大,都无法分
离。
(4)塔板理论无法解释同一色谱柱在不同的载气流速下柱 效不同的实验结果,也无法指出影响柱效的因素及提高柱效 的途径。
第十七章 色谱分析法概论

在流动相和固定中具有不同的分配系数,分配系数的大小
反映了组分在固定相上的溶解-挥发 或 吸附-解吸的能力。
分配系数大的组分在固定相上溶解或吸附能
力强,因此在柱内的移动速度慢;分配系数小的
组分在固定相上溶解或吸附能力弱,因此在柱内 的移动速度快。
经过一定时间后,由于分配系数的差别,使
各组分在柱内形成差速移行,达到分离的目的。
空间总和)
当色谱柱载气流速为F0(ml/min)时,它与死时间的 关系为:
V0(M) = tM· 0 F
(VM 大,色谱峰展宽,柱效低)
4. 保留值:定性参数,是在色谱分离过程中,试样中各组分
在色谱柱内滞留行为的一个指标。 (它可用保留时间、保留体积和相对保留值等表示) (1)保留时间 tR (retention time): 从进样到柱后出现待测组分浓度最大值时(色谱峰顶点) 所需要的时间,称为该组分的保留时间。如图中tR(1)、 tR(2) 所示,
把这些色 带称为 “ 色谱图 ” (chromatography), 相
应的方法叫作“色谱法”
色谱法是一种分离技术:
其中的一相固定不动,称为固定相 另一相是携带试样混合物流过此固 定相的流体(气体或液体),称为 流动相
各组分被分离后,可进一步进行定性和定量
分析: 经典:分离过程和其含量测定过程是离线的,即 不能连续进行 现代:分离过程和其含量测定过程是在线的,即 能连续进行
p tR tM t 'R k q tM tM
任一组分的 k 值可由实验测得,即为调整保留时间 tR’与 不被固定相吸附或溶解的组分的保留时间tM 的比值。可将k 看
作色谱柱对组分保留能力的参数,k 值越大,保留时间越长。
色谱分析法概论

§1.1 概述
色谱法也叫层析法,它是一种
高效能的物理分离技术,将它用于
分析化学并配合适当的检测手段,
就成为色谱分析法。
色谱法的最早应用是用于分 离植物色素,其方法是这样的: 在一玻璃管中放入碳酸钙,将含 有植物色素(植物叶的提取液) 的石油醚倒入管中。
此时,玻璃管的上端立即出现几 种颜色的混合谱带。然后用纯石油醚 冲洗,随着石油醚的加入,谱带不断 地向下移动,并逐渐分开成几个不同 颜色的谱带,继续冲洗就可分别接得 各种颜色的色素,并可分别进行鉴定。 色谱法也由此而得名。
色谱流出曲线的意义: 色谱峰数(样品中单组份的最少个数)
色谱保留值(定性依据)
色谱峰高或面积(定量依据)
色谱保留值或区域宽度(色谱柱分离效
能评价指标)
色谱峰间距(固定相或流动相选择是否
合适的依据)
§1.3 色谱法基本原理
色谱分析的目的是将样品中各组分彼此分离, 组分要达到完全分离,两峰间的距离必须足够远, 两峰间的距离是由组分在两相间的分配系数决定
h. 区域宽度:色谱峰的区域宽
度是色谱流出曲线的重要参数之一
,可用于衡量色谱柱的柱效及反映 色谱操作条件下的动力学因素。宽
度越窄,其效率越高,分离的效果
也越好。
区域宽度通常有三种表示法: 标准偏差:峰高0.607 倍处峰 宽处的一半。 半峰宽W1/2:峰高一半处的峰宽。 W1/2=2.354 峰底宽W:色谱峰两侧拐点上切 线与基线的交点间的距离。W= 4
有关,与两相体积、
柱管特性和所用仪
器无关。
分配系数 K的讨论
试样一定时,K主要取决于固定相性质一定温
度下,组分的分配系数K越大,出峰越慢;每个组 分在各种固定相上的分配系数K不同;选择适宜的 固定相可改善分离效果;试样中的各组分具有不 同的K值是分离的基础;某组分的K=0时,即不被 固定相保留,最先流出。
色谱分析法概论

⾊谱分析法概论第⼀章⾊谱分析法概论第⼀节概述⾊谱分析法简称⾊谱法或层析法(chromatography),是⼀种物理或物理化学分离分析⽅法。
从本世纪初起,特别是在近50年中,由于⽓相⾊谱法、⾼效液相⾊谱法及薄层扫描法的飞速发展,⽽形成⼀门专门的科学——⾊谱学。
⾊谱法已⼴泛应⽤于各个领域,成为多组分混合物的最重要的分析⽅法,在各学科中起着重要作⽤。
历史上曾有两次诺贝尔化学奖是授予⾊谱研究⼯作者的:1948年瑞典科学家Tiselins因电泳和吸附分析的研究⽽获奖,1952年英国的Martin和Synge因发展了分配⾊谱⽽获奖;此外在1937~l972年期间有12次诺贝尔奖的研究中,⾊谱法都起了关键的作⽤。
⾊谱法创始于20世纪初,1906年俄国植物学家Tsweet将碳酸钙放在竖⽴的玻璃管中,从顶端倒⼊植物⾊素的⽯油醚浸取液,并⽤⽯油醚冲洗。
在管的不同部位形成⾊带,因⽽命名为⾊谱。
管内填充物称为固定相(stationary phase),冲洗剂称为流动相(mobile phase)。
随着其不断发展,⾊谱法不仅⽤于有⾊物质的分离,⽽且⼤量⽤于⽆⾊物质的分离。
虽然“⾊”已失去原有意义,但⾊谱法名称仍沿⽤⾄今。
30与40年代相继出现了薄层⾊谱法与纸⾊谱法。
50年代⽓相⾊谱法兴起,把⾊谱法提⾼到分离与“在线”分析的新⽔平,奠定了现代⾊谱法的基础,l957年诞⽣了⽑细管⾊谱分析法。
60年代推出了⽓相⾊谱—质谱联⽤技术(GC-MS),有效地弥补了⾊谱法定性特征差的弱点。
70年代⾼效液相⾊谱法(HPLC)的崛起,为难挥发、热不稳定及⾼分⼦样品的分析提供了有⼒⼿段。
扩⼤了⾊谱法的应⽤范围,把⾊谱法⼜推进到⼀个新的⾥程碑。
80年代初出现了超临界流体⾊谱法(SFC),兼有GC与HPLC的某些优点。
80年代末飞速发展起来的⾼效⽑细管电泳法(high performance capillary electrophoresis,HPCE)更令⼈瞩⽬,其柱效⾼,理论塔板数可达l07m-1。
色谱分析法概论

流动相选择
02
03
分离条件优化
选择合适的流动相,控制待测组 分的吸附和解吸行为,提高分离 效果。
通过调整温度、压力、流速等参 数,优化分离过程,提高分离效 率和准确性。
检测过程
检测器选择
根据待测组分的性质和检测需求, 选择合适的检测器,如紫外可见 光检测器、荧光检测器、电化学 检测器等。
检测条件优化
原理
基于不同物质在两相之间的吸附 或溶解能力差异,实现各组分的 分离。固定相和流动相的选择性 差异是色谱分离的基础。
发展历程与现状
发展历程
自1906年俄国植物学家茨维特发明了色谱法以来,该技术不 断发展并广泛应用于各个领域。随着技术的进步,出现了许 多新型色谱技术,如高效液相色谱、气相色谱、毛细管电泳 等。
现状
色谱分析法已成为实验室常规分析手段,尤其在生命科学、 药物研发、环境监测等领域具有不可替代的作用。随着仪器 自动化和智能化的发展,色谱分析法的应用前景更加广阔。
色谱分析法的分类
根据流动相的不同
液相色谱、气相色谱、超临界流体色谱等。
根据分离原理的不同
体积排阻色谱、亲和色谱、环糊精色谱等。
根据固定相的不同
优化检测器的参数,如波长、电 压、响应时间等,提高检测灵敏 度和准确性。
数据处理与分析
对检测数据进行处理、分析和解 释,得出待测组分的含量、分布 和变化规律等信息。
05
色谱分析法的实验
技术
薄层色谱法
原理
薄层色谱法是一种基于吸附原理的色 谱技术,利用固定相吸附剂对不同组 分的吸附能力差异实现分离。
操作流程
样品制备
样品收集
根据分析目的,选择合适 的样品收集方法,确保样 品的代表性和可靠性。
色谱分析法概论

色
按流动相分
气相 (GC) ) 超临界 按固定相分 液相 (LC) )
谱 法
液-液 液
液-固 固
21
2. 按操作形式分类: 柱色谱法、平面色谱法、 柱色谱法、平面色谱法、毛细管电泳 法等 3. 按色谱过程的分离机制分类: 分配色谱法、吸附色谱法、 分配色谱法、吸附色谱法、离子交换 色谱法、 空间排阻色谱法、 色谱法、 空间排阻色谱法、毛细管电泳 法等
32
塔板理论实际上是用色谱过程的分解动作 慢镜头)解释分离机制,如果塔板数少, (慢镜头)解释分离机制,如果塔板数少, 用二项式解释; 用正态分布解释。 用二项式解释;多,用正态分布解释。
二、二项式分布 B组分: KB=1=Cs/Cm 组分: 组分 若:Vm=Vs KB=ms/mm=1/1
33
质量分配和转移过程
I x = 100[ z + n
lg t ' R ( X ) − lg t ' R ( 2 ) lg t ' R ( 2 + n ) − lg t ' R ( 2 )
]
12
3. 定量参数
峰高( : 峰高(h):组分在柱后出现浓度极大时的检 测信号,即色谱峰顶至基线的距离。 测信号,即色谱峰顶至基线的距离。 峰面积(A):色谱曲线与基线间包围的面积。 峰面积 :色谱曲线与基线间包围的面积。
22
二、分配色谱法
23
分离原理 利用被分离组分在固定相和流 动相中的溶解度差别而实现分离。 动相中的溶解度差别而实现分离。
Cs Xs Vs K= = Cm Xm Vm
•在HPLC中K与流动相的性质 (种类与极性 有关 在 种类与极性) 中 与流动相的性质 种类与极性 •在GC中K与固定相极性和柱温有关 与固定相极性和柱温有关 在 中 与固定
色谱分析概论

分离因子和分离度 色谱中描述相邻组分分离状态的指标一般用分离因子 或分离度表示。
分离因子被定义为两种物质调整保留值之比,又称为 分配系数比或选择性系数,以α表示。
分离因子(选择性系数α):
α
两个物质分离的前提: α≠1,即α>1。
分离度(RS)
两个相邻色谱峰的分离度Rs(resolution)定义为两峰保 留时间差与两峰峰底宽平均值之商。
注:颗粒太小,柱压过高且不易填充均匀
填充柱——60~100目 空心毛细管柱(0.1~0.5mm),A=0,n理较高
速率理论
back
柱子规格: 30m× 0.32mm× 0.25μm
速率理论
(2). 纵向扩散项(分子扩散项):B/u
扩散,即浓度趋向均一的现象。
扩散速度的快慢,用扩散系数衡量。
由于样品组份被载气带入色谱柱后,以“塞子”的形式存在色谱柱的很 小一段空间中,在“塞子”前后(纵向),存在浓度差,形成浓度梯度 ,导致运动着的分子产生纵向扩散。
涡流扩散项
传质阻抗项
纵向扩散项
(1). 涡流扩散项(多径扩散项):A
产生原因: 载气携样品进柱,由于固定相填充不均匀,使 一个组分的分子经过多个不同长度的途径流出色谱柱, 引起峰扩张。
— 填充不规则因子
dp — 填充颗粒直径
影响因素:固体颗粒越小,填充越实,A项越小
讨论:λ↓,dp ↓ →A↓ →H↓ → n↑ → 柱效↑ λ↑ ,dp ↑ →A ↑ →H ↑ → n ↓ → 柱效↓
速率理论
C· u —传质阻力项
气液色谱 传质阻力包括气相传质阻力 Cg和液相传质阻力 CL,即: C = Cg + CL
色谱峰面积
色谱峰与基线间所包围的面积。
第十七章 色谱分析法概论-分析化学

I X 100 [Z n
' ' lg t R lg t ( x) R( z )
lg t
' R( z n)
lg t
' R( z )
]
Ix为待测组分的保留指数,z 与 z+n 为
正构烷烃对的碳原子数。
P
16
乙酸正丁酯的保留指数测定
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
第十七章 色谱分析法概论
P
1
第一节 色谱法的分类和发展
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
色谱分析法是一种物理或物理化学分离分 析方法。 始于20世纪初; 30与40年代相继出现了薄层色谱与纸色谱; 50年代气相色谱兴起、色谱理论、毛细管色 谱; 60年代气相色谱-质谱联用; 70年代高效液相色谱; 80年代末超临界流体色谱、高效毛细管电泳 色谱。
• R=1 4σ分离 • R=1.5 6σ分离 95.4% 99.7%
w1
w1
tR2-tR1
P
21
三、分配系数与色谱分离
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
1、分配系数 在一定温度和压力下,达到分配平衡 时,组分在固定相和流动相中的浓度之比 CS K Cm 2、容量因子
m
X+
H+
SO3-R
S
X+ SO -R 3 H+
P
30
阳离子交换树脂
xie 仪 器 分 析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
色谱分析法概论
1色谱分析法是根据混合物中各组分在两相分配系数的不同进行分离,而后逐个分析。
2色谱过程:组分的分子在流动相和固定相间多次分配的过程。
若两个组分的分配系数存在微小的差异,经过反复多次的分配平衡,使微小的差异积累起来,其结果就使分配系数小的组分被先洗脱,从而使两组分得到分离。
色谱分离的前提是分配系数或保留因子不等。
3色谱流出曲线是由检测器输出的电信号对时间作图所绘制的曲线,又称为色谱图。
4按色谱过程的分离机制分类:分配色谱法、吸附色谱法、离子交换色谱法、分子排阻色谱法。
①分配色谱法机制:利用被分离组分在固定相或流动相中的溶解度差别,即分配系数的差别而实现分离。
②吸附色谱法机制:利用被分离组分对固定相表面吸附中心吸附能力的差别,即吸附系数的差别而实现分离。
常见化合物的吸附能力顺序:烷烃<烯烃<卤代烃<醚<硝基化合物<叔胺<酯<酮<醛<酰胺<醇<酚<伯胺<羧酸③离子交换色谱法机制:利用分离组分离子交换能力的差别即选择性系数的差别而实现分离。
④分子排阻色谱法:根据被分离组分分子的线团尺寸,即渗透系数的差别而进行分离。
5流动相线速对塔板高度的影响:在较低线速度时,纵向扩散起主要作用,线速度升高,塔板高度降低,柱效升高;在较高线速度时,传质阻抗起主要作用,线速度升高,塔板高度增高,柱效降低。
6说明保留因子的物理含意及与分配系数的关系。
为什么保留因子(或分配系数)不等是分离的前提?
答:保留因子k是在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比,故又称为质量分配系数。
而分配系数K是组分在固定相和流动相中的浓度之比。
二者的关系是k=KV s//V m,可见保留因子除与固定相、流动相、组分三者的性质有关外,还与固定相和流动相的体积之比有关。
保留因子越大的组分在色谱柱中的保留越强,t R =t0 (1+k)或t'R =kt0 ,由于在一定色谱条件下t0为定值,如果两组分的k相等,则他们的t'R一定相等,t R相等,即不能分离。
要使两组分分离,即t R或t'R不等,则它们的k(或K)必须不等,即保留因子(或分配系数)不等是分离的前提。
7根据分离度的定义,哪些色谱参数与分离度有关?可从哪两方面改善色谱分离度?如何在色谱图上测定这些参数?
答:分离度的定义式为R=2(t R2 -t R1)/(W1 +W2 ),由此可见色谱峰的区域宽度和保留时间与分离度有关。
为改善色谱分离度,一方面应增加两组分保留时间之差,即保留因子或分配系数之差,另一方面减小峰宽,即提高柱效使色谱峰变锐。
保留时间是从进样到色谱峰峰顶的时间间隔;峰宽是在色谱峰两侧拐点作切线到基线上所截得的距离。
8什么是最佳流速?实际操作中是否一定要选择最佳流速?为什么?
答:柱效最高时(n最大或H最小)的流动相流速叫最佳流速。
实验中要根据具体情况选择流速,如果分离不好,尽量选最佳流速,如果速度太慢而分离很好,则可选远于最佳值的流速。
9色谱定性是根据保留值,定量的依据是峰面积和峰高。
气相色谱法
1气相色谱法的特点:分离效能高、高灵敏度、高选择性、简单快速、应用广泛。
2气相色谱仪的组成:①气路系统②进样系统③色谱柱系统④检测和记录系统⑤控制系统3对固定液的要求:①在操作温度下蒸气压低于10Pa,否则固定液易流失。
每一固定液有一
“最高使用温度”,实际使用时以不超过最高使用温度以下20℃为宜。
②热稳定性好,在高柱温下不分解,不与试样组发生反应。
③对被分离组分的选择性要高,即分配系数有较大差别。
④对试样中各组分有足够的溶解能力。