解决问题:行程问题
用方程解决行程问题

1、一辆汽车从南京开往上海要行使360千米,开始按计划以每小时45千米的速度行驶。
途中因汽车故障修车2小时。
如按时赶往上海,修好后的汽车每小时必须行75千米。
问:汽车在离南京多远处出了故障?2、小明家离学校3千米。
他每天骑车以每分钟200米的速度上学,正好准时到。
有一天他出发几分钟后因交通阻塞耽误4分钟。
为了准时到校,后面的路必须每分钟多行100米。
求小明是在离家多远的地方遇阻塞的?】3、汽车以每小时45千米的速度从甲地出发,4小时后到达乙地。
汽车出发1小时候返回甲地取东西,然后立即从甲地出发,为了能在原来的时间内到达乙地,汽车从甲地驶向乙地的速度是多少?4、甲乙两地相距272千米,客车从甲地开往乙地,每小时行驶64千米,半小时后货车从乙地开往甲地每小时行驶56千米,货车开出几小时后和客车相遇?5、甲乙两人分别从相距1980米的两处出发相向而行,甲每分钟步行120米,乙骑车每分钟行225米。
甲出发5分钟后,乙骑车出发,求甲出发几分钟后和乙相遇?6、客货两车从甲乙两地相对开出,客车每小时行68千米,货车每小时行35千米,货车途中因修车停留半小时,共经历4.5小时两车相遇,求甲乙两地的距离。
7、一汽车从A地去B地送货,去时每小时行40千米,返回时因空车每小时行60千米,往返共用7.5小时,求AB两地的距离。
8、轮船上所带燃料最多可以用9小时,顺水是轮船每小时行15千米,逆水时轮船每小时行12千米,轮船最多行多少千米就要往回开?9、ABC三地在一条直线上,AB两地相距1000米,甲乙两人从A地同时向C地行走,甲每分钟走35米,乙每分钟走45米,经过几分钟B地在甲乙两人的中点上10、两列客车从A、B相向而行,甲车每小时行30千米,乙车每小时行25千米。
相遇时,甲比乙多行15千米,求A、B两地相距多少千米?11、两列客车从A、B两地相向而行,甲车每小时行30千米,乙车每小时行25千米。
两车几小时以后在离中点10千米的地方相遇?12、两辆汽车分别从相距580千米的两地相对开出,甲车每小时行45千米,2小时后乙车才出发,乙车每小时行35千米。
小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
行程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。
要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是总结的10种经典行程问题的相关解法。
一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
行程问题

年级六年级学科奥数版本通用版课程标题行程问题(一)编稿老师宋玲玲一校林卉二校黄楠审核高旭东行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都占有非常重要的地位。
行程问题包括:相遇问题、追及问题、流水问题、火车过桥、环形行程、复杂行程等。
每一类问题都有自己的特点,解决方法也各有不同,但是,行程问题无论怎么变化,都离不开“三个量、三个关系”:三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程=速度×时间2. 相遇问题:路程和=速度和×时间3. 追及问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的这三种关系,就会发现解决行程问题还是有很多方法可循的。
要正确的解答有关“行程问题”的应用题,必须弄清物体运动的具体情况。
如运动的方向(相向,相背,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错而过、追及)。
两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体“相向运动”或“相背运动”时,它们的运动速度都是“两个物体运动速度的和”(简称速度和),当两个物体“同向运动”时,它们的追及速度就变为“两个物体运动速度的差”(简称速度差)。
例如:甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么AB之间的路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间“相遇问题”的核心是速度和问题。
例1 小陈和小许二人分别从两地同时骑车相向而行。
小陈每小时行16千米,小许每小时行13千米,两人相遇时距中点3千米。
求全程长多少千米?分析与解:要求全程长多少千米,必须知道“速度和”与“相遇时间”。
行程问题的解题技巧

行程问题的解题技巧1. 哎呀呀,行程问题中遇到相向而行的情况,那简直就像是两个人对着跑呀!比如说,小明和小红在一条路上,一个从这头走,一个从那头走,他们多久能相遇呢?这时候只要把两人的速度加起来,再用总路程除以这个和,不就能算出相遇时间啦!就像搭积木一样简单嘛!2. 嘿,要是同向而行呢,那不就是一个追一个嘛!就好像跑步比赛,跑得快的追跑得慢的。
比如小强每分钟跑 100 米,小亮每分钟跑 80 米,那小强要多久才能追上小亮呀?用他们的速度差乘以时间等于最初的距离差这个道理,一下子就能算出来啦,是不是超有趣呀!3. 碰到那种来回跑的行程问题呀,可别晕!比如说小李在 A、B 两点间跑来跑去。
这就像钟摆一样来来回回呀!这时候得仔细分析他跑的每一段路程和时间,然后加起来或者算差值,搞清楚到底怎么回事儿!这很考验耐心哦,但搞懂后会超有成就感的呀!4. 还有那种在环形跑道上跑的呢,这不就像围着一个大圆圈转嘛!比如小王在环形跑道上跑,和别人相遇几次或者追上几次,就得想想他们相对的速度和跑的圈数啦。
这多有意思呀,就好像在玩一个特别的游戏!5. 你们想想看,行程问题里有时候给的条件可隐晦啦!这就像捉迷藏一样,得仔细找线索呀!比如说告诉你一段路程走了几小时,又告诉你另外一些模糊的信息,就得开动脑筋把有用的找出来,算出行程中的各种数据。
是不是有点像侦探破案呀,刺激吧!6. 有时候行程问题里会有停顿呀什么的,那就像走路走一半歇会儿一样。
比如小张走一段路,中间停了几分钟,这时候得把停顿的时间考虑进去呀,不然可就算错啦,可不能马虎哟!7. 哈哈,行程问题其实就是生活中的各种走呀跑呀的情况。
只要我们把它当成有趣的事儿,像玩游戏一样去对待,就不会觉得难啦!所以呀,不要害怕行程问题,大胆去挑战它们吧!我的观点结论就是:行程问题没那么可怕,只要用心去理解和分析,都能轻松搞定!。
行程问题7大经典题型四年级

行程问题7大经典题型四年级
行程问题在数学中是一个经典的题型,旨在训练学生的逻辑思维和计算能力。
下面将介绍四年级学生常见的行程问题的七种经典题型。
1. 单程问题:给定起点和终点,要求计算从起点到终点所需的距离
或时间。
这种题型要求学生直接计算两个点之间的距离或时间差。
2. 往返问题:给定起点和终点,要求计算从起点到终点再返回起点
的总距离或时间。
这种题型要求学生计算两次单程的距离或时间,并将其相加。
3. 同步问题:给定两个人从相同的地点同时出发,要求计算他们在
指定时间或指定距离后到达的位置。
这种题型要求学生计算两个人的行程,并比较他们的位置。
4. 平均速度问题:给定两个地点之间的距离和时间,要求计算平均
速度。
这种题型要求学生将距离除以时间,得到平均速度。
5. 快慢车问题:给定两辆车的速度和距离,要求计算两辆车分别到
达终点所需的时间。
这种题型要求学生根据速度和距离的关系,计算出所需的时间。
6. 集合问题:给定多个地点之间的距离,要求计算从起点到终点经过指定的中间点的最短路径。
这种题型要求学生进行路径规划,选择最短的路径。
7. 排队问题:给定多个人按照不同的顺序排队,要求计算某个人离队伍起点或终点的距离。
这种题型要求学生计算相对位置,并进行加减运算。
通过解决这些行程问题,四年级学生可以培养逻辑思维能力和计算能力,提高他们的数学综合素质。
同时,这些问题也能够让学生在实际生活中运用数学知识,理解和应用数学的意义和价值。
行程解决问题(奥数)

行程问题(一)1:两辆汽车同时从某地出发,运送一批货物到距离165千米的工地,甲车比乙车早到48分钟,当甲车到达时,乙车还距工地24千米,甲车行完全程用了多少小时?2.AB 两地相距900千米,甲车由A 地到B 地需15小时,乙车由B 地到A 地需10小时,两车同时从两地开出,相遇时甲车距B 地还有多少千米?3.两辆汽车同时从AB 两站相向开出,第一次在离A 站60千米的地方相遇,之后,两车继续以原来的速度前进,各自到达对方车站后都立即返回,又在距中点右侧30千米处相遇,两站相距多少千米?4.两列火车同时从甲乙两站相向而行,第一次相遇在离甲站40千米的地方,两车扔以原速继续前进,各自到站后立即返回,又在离乙站20千米的地方相遇,两站相距多少千米?5.:AB 两地相距960米,甲乙两人分别从AB 两地同时出发,若相向而行,6分钟相遇;若同向而走,80分钟甲可以追上乙,甲从A 地走到B 地要多少分钟?6.父子两人在400米长的环形跑道上散步,他俩同时从同一地点出发,若相背而行,276分钟相遇;若同向而行,2632分钟父亲可以追上儿子,问在跑道上走一圈,父子各需多少分钟?7.上午8时8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家,到家后有立即回头去追小明,再追上他的时候,离家恰好是8千米,这时是几时几分?8.甲乙丙三人,每分钟分别行68米,70.5米,72米。
现在甲乙从A镇去B镇,丙从B镇去A镇,三人同时出发,丙和乙相遇后,又过了2分钟与甲相遇。
AB两镇相距多少千米?9.一只狼以每秒15米的速度追捕在它前面100米处的兔子,兔子每秒行4.5米,6秒钟后猎人向狼开一枪,狼立即转身以每秒16.5米的速度背向兔子逃去,问猎人开枪多少秒后兔子与狼又相距100米?10.1211.12.跑,,13.绕湖的一周是24千米,小张和小王从湖边某一点同时出发反向而行,小王以每小时4千米速度每走1小时后休息5分钟,小张以每小时6千米速度每走50分钟后休息10分钟,两人出发后多长时间第一次相遇?14.一个游泳池长90米,甲乙二人分别从游泳池两端同时出发,游到另一端立即返回,照这样往返游,两人游10分钟。
行程问题(五年级)
行程问题(一)姓名例1.甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?例2.一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?例3.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
例4.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?例5.甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时.在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?例6.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?例7.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在它们出发后的5小时.6小时,8小时先后与甲、乙、丙三辆车相遇,求丙车的速度。
练习1.甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?3.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.4.甲、乙二人从相距100千米的A、B两地出发相向而行,甲先出发1小时.他们二人在乙出后的4小时相遇,又已知甲比乙每小时快2千米,求甲、乙二人的速度.5.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长为385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少?6.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?7. A,B两村相距 2800米,小明从 A村步行出发 5分后,小军骑车从B村出发,又经过10分两人相遇。
行程问题的解题技巧和方法
行程问题的解题技巧和方法介绍在日常生活中,我们经常面临行程安排的问题。
无论是规划旅行还是安排工作日程,合理的行程安排对我们的生活具有重要意义。
本文将介绍一些解决行程问题的技巧和方法,帮助读者更好地规划自己的行程。
行程问题的来源和类型行程问题通常分为两类:旅行行程问题和工作日程问题。
旅行行程问题涉及到如何合理地安排旅行路线、景点游览顺序、交通工具选择等;而工作日程问题则是关于如何合理安排工作任务、会议安排、时间分配等。
解决行程问题的技巧和方法以下是一些解决行程问题的技巧和方法,可以帮助读者更好地规划自己的行程。
旅行行程问题的解决技巧和方法1.确定旅行目的地和时间:首先需要明确旅行的目的地和出行的时间,这将有助于确定有关行程安排的其他要素。
2.研究目的地:了解目的地的景点、气候、交通等信息,帮助做出更明智的决策。
3.制定旅行路线:根据目的地景点的位置和开放时间,制定一个合理的旅行路线。
考虑景点之间的交通便利性、旅行时间等因素,避免来回折腾。
4.合理安排游览时间:根据景点的特点和自己的兴趣,合理安排游览时间,避免时间过长或过短。
5.选择合适的交通工具:根据旅行路线和自己的预算,选择合适的交通工具,如飞机、火车、汽车等。
同时,预先购买车票或订票有助于降低成本和提前规划行程。
6.考虑食宿问题:根据旅行路线,提前安排好合适的食宿,以免到达目的地后再苦苦寻找,浪费时间和精力。
工作日程问题的解决技巧和方法1.列出工作任务:首先将需要完成的工作任务列出来,并根据重要性和紧急程度进行排序。
2.估算任务完成时间:对每个工作任务估计所需的完成时间,以便更好地分配时间和优先处理。
3.合理分配时间:根据工作任务的紧急程度和时间估计,合理分配每天工作的时间段。
4.避免过度安排:不宜在同一时间段内安排过多的工作任务,以免无法有效完成。
5.留出灵活时间:在行程中留出一些灵活的时间,以应对可能的变动和突发事件。
6.合理安排会议和约会:将会议和约会集中在一天或几天内安排,以减少工作中的中断和时间浪费。
做复杂行程问题的技巧方法
做复杂行程问题的技巧方法
在处理复杂行程问题时,有几个技巧和方法可以帮助您更好地
应对:
1. 细致规划,首先要对整个行程有清晰的规划,包括目的地、
时间安排、交通方式等。
可以利用行程规划软件或网站来帮助您安
排行程。
2. 灵活应变,在复杂行程中,可能会遇到各种意外情况,例如
航班延误、交通堵塞等。
因此,要做好心理准备,并随时准备应对
变化。
3. 确认信息,在出行前要确认所有预订信息,包括航班、酒店、租车等,以确保没有遗漏或错误。
4. 多渠道沟通,在复杂行程中,与各个服务提供商保持有效沟
通非常重要。
可以通过电话、电子邮件或社交媒体等多种方式与他
们联系,确保一切顺利进行。
5. 寻求帮助,如果遇到困难或问题,不要犹豫寻求帮助。
可以
向当地的旅游信息中心、酒店前台或航空公司服务台寻求帮助。
总之,处理复杂行程问题需要细致规划、灵活应变、确认信息、多渠道沟通和寻求帮助的技巧和方法。
希望以上建议能对您有所帮助。
行程问题应用题
行程问题应用题1.XXX平均每分钟走80米,共走了17分钟,所以她走了80×17=1360米。
因此,她家距学校1360米。
2.火车每小时行驶74千米,12小时后到达乙站,所以火车行驶了74×12=888千米。
因为甲乙两地距离相等,所以甲乙两地的距离是888÷2=444千米。
3.XXX平均每小时行驶15千米,家到公园相距30千米,所以他需要行驶30÷15=2小时才能到达公园。
因此,他最早在早上6:00出发才能在8:00到达公园。
4.货车每小时行驶55千米,相距440千米的甲乙两地,要在下午4:00之前到达乙地,所以XXX最晚在下午4:00-440÷55=3:20出发才能按时到达乙地。
5.XXX家到天虹商场距离1200米,每次步行用时20分钟,即1200÷20=60米/分钟。
因为她们走了5分钟后返回家取手机,所以这次多走了5×60=300米的路程。
6.运动场的跑道长400米,XXX跑了4圈共1600米,用时16分钟,所以他平均每分钟跑了1600÷16=100米。
7.XXX每小时行驶16千米,叔叔每小时行驶55千米,他们同向出发,3小时后,XXX落后叔叔的距离为3×(55-16)=117千米。
8.(1)明明每小时行驶18千米,比红红快2千米,所以明明的路程更长。
2)XXX骑了4小时,行驶了16×4=64千米;明明骑了3小时,行驶了18×3=54千米。
所以他们骑的路程长64-54=10千米。
9.甲车每小时行驶54千米,乙车每小时行驶50千米,乙车比甲车少行驶4千米,所以乙车到达B地的时间比甲车早1080÷(54+50-4)=10小时。
因此,甲车比乙车晚到达B地10小时。
10.XXX走了76×21=1596米,林西走了75×21=1575米,所以XXX夺走了1596-1575=21米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程应用题
日期:姓名:
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?
2、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。
慢车每小时行多少千米?
3、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?
4、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?
5、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东西两村相距多少千米?
6、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红。
小红每分钟走多少米?
7、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。
上午11时到达B地后立即返回,在距离B地24千米处相遇。
求A、B两地相距多少千米?
8、甲乙两队学生从相距18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时
14千米的速度,在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?
9、两支队伍从相距55千米的两地相向而行。
通信员骑马以每小时16千米的速度在两支队伍之间不断往返联络。
已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通信员共行了多少千米?
10、甲乙两人同时从两地出发,相向而行,距离是100千米。
甲每小时行6千米,乙每小时行4千米,甲带着一条狗,狗每小时行10千米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑。
直到两人相遇时,这只狗一共跑了多少千米?
11、两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。
如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度。