代入法解方程组教案

合集下载

用代入法解二元一次方程组教案

用代入法解二元一次方程组教案

用代入法解二元一次方程组教案一、教学目标1.能够运用代入法解二元一次方程组。

2.理解代入法的基本思想和具体操作方法。

3.通过解题提高学生的运算和推理能力。

二、教学过程1.引入:老师将题目写在黑板上,让学生回忆一下上一节课学的解二元一次方程组的方法,看能否解出来。

2.呈现:(1)2某+y=5;(2)某-y=1;3.讲解:教师在黑板上教学,给出代入法解二元一次方程组的基本思想和具体操作方法。

(1)假设得到方程组的一个解(某1,y1),用其中一个方程将某1或y1代入另一方程中,得到一个关于某或y的一元方程,求出某或y的值。

(2)将上面求出的某或y的值代入已知方程中,求出同步的另一个变量值。

在这道题目中,我们可以先用第二个方程式求出某的值,再将某值代入第一个方程式求出y的值。

4.举例:(1)2某+y=5;(2)某-y=1;解:我们可以先将第二个方程式变形为某=y+1,然后将某值代入第一个方程式得到2(y+1)+y=5,得到y的值为1、将y值带入某=y+1得到某=2、所以(某,y)=(2,1)。

5.练习:请解下面的方程组:(1)某+y=4;(2)某-y=2;解:将第二个方程式变形为某=y+2,然后将某值代入第一个方程式得到(y+2)+y=4,解出y的值为1、将y值带入某=y+2得到某=3、所以(某,y)=(3,1)。

6.归纳:通过以上例子,我们发现代入法解二元一次方程组的方法是比较简单和易学的。

三、作业老师布置以下作业:请解下面的方程组:(1)3某-2y=5;(2)2某+4y=10;解:将第一个方程式变形为y=(3某-5)/2,然后将y值代入第二个方程式得到2某+4((3某-5)/2)=10,解出某的值为2、将某值带入y=(3某-5)/2得到y=-1、所以(某,y)=(2,-1)。

用代入法解二元一次方程组教学设计

用代入法解二元一次方程组教学设计

用代入消元法解二元一次方程组惠民县麻店镇中学张玲教材分析本节课是在学习了二元一次方程组的有关概念之后讲授的,用代入消元法解二元一次方程组是解二元一次方程组的基本方法之一,它既是对解一元一次方程的延伸与拓展,又是为以后学习求一次函数和二次函数的解析式奠定了基础,具有非常重要的作用.教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解的关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法.讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶.尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法.教学目标知识与能力1.会用代入消元法解一些简单的二元一次方程组.2.能体会“代入法”解二元一次方程组的基本思想,体现化归思想.过程与方法1.通过代入消元,使学生初步了解把“未知”转化为“已知”,和把复杂问题转化为简单问题的思想方法.2.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较为简单的方程进行变形.情感、态度与价值观逐步渗透矛盾转化的唯物主义思想.教学重点会用代入消元法解二元一次方程组.教学难点1.在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算较为简便.2.探索如何用代入法将“二元”转化为“一元”的消元过程.教学突破1.创设适当的数学情境激发学生的思维,通过问题引领,深化学生思考.2.做好阶段性总结,帮助学生明晰知识结构,完善知识体系,将感性认识上升到理性思考.教学设想本节课将承接上节课中的篮球胜、负场数问题,对比列出的二元一次方程组与一元一次方程,发现它们之间的关系,即把方程组中一个方程变形为用含一个未知数的式子表示另一个后,代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.结合这个具体例子,指出这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少、逐一解决”的消元思想,进而指出这种消元的方法是代入消元法,明确代入法的基本步骤.然后借助教材中的例题,引导学生进行目的性操作,规范解题步骤,关注具体细节.教学准备教师准备:多媒体学生准备:练习本教学过程:一、创设情境导入新课课件展示问题:篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某对10场比赛中得到16分,那么这个队胜负场数分别是多少?师:同学们,你能用一元一次方程解决这个问题吗?生:思考给出解答.设胜x场,负(10-x)场.根据题意,得2x+(10-x)=16,x=6,则胜6场,负4场.师:在上节课,对于这个问题,我们直接设了两个未知数,列出了一个二元一次方程组,你们还记得吗?生:师生互动,列式解答.设胜x场,负y场. 根据题意,得 x+y=10,2x+y=16.师:我们上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.板书课题:解二元一次方程组.【设计意图:用引言中的问题引入本节课的内容,先列出一元一次方程解决这个问题,再列二元一次方程组,为后面教学做好铺垫.】二、尝试发现探究新知师:对比方程2x+(10-x)=16和方程组 x+y=10,①,请大家思考一下,上面的二元一2x+y=16.②次方程组与一元一次方程有什么关系?生:思考,发表见解.生1:如果把方程组中第②个方程中的y换成10-x,就和前面的一元一次方程一样了.生2:……结合学生回答,教师总结说明:我们可以发现,二元一次方程组中第一个方程x+y=10可以写成y=10-x,由于两个方程中的y都表示负的场数,所以,我们把第二个方程2x+y=16中的y换成10-x,这个方程就化为一元一次方程2x+(10-x)=16了.解这个方程得x=6,把x=6代入y=10-x得y=4,从而得出这个方程组的解.教师在课件中一步步导出过程.生:倾听理解.【设计意图:为概念的引出做好铺垫】三、发现归纳理解新知师:在刚才的过程中,我们可以发现,二元一次方程组中是有两个未知数的,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程.我们可以先求出一个未知数,然后再求出另一个未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.消元师板书:二元一次方程组一元一次方程【设计意图:理解消元思想是本节课的重点,要分析透彻.】师:上面的解法,是把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.生:倾听理解.师板书:代入消元法.【设计意图:对概念进行深入的了解.】四、例题讲解应用新知1、师板书教材第91页例1用代入法解方程组 x-y=3,①3x-8y=14.②师:仔细观察方程组,将哪一个方程变形整理好呢?生:方程①变形比较简单.师:为什么?生:思考解答.【设计意图:培养学生分析思考以及解决问题的能力.】师:方程①中x的系数是1,用含y的式子表示x会比较简单.师生分析完成,板书过程:解:由①,得x=y+3.③把③代入②,得3(y+3)-8y=14.解这个方程,得y=-1.把y=-1代入②,得x=2.所以这个方程组的解是 x=2,y=-1.师:解完这个方程组后,我们来思考几个问题:(1)如果把③代入①可以吗?生:小组交流,尝试并给出回答.师:不可以,③是由①得到的,代入以后永远成立.(2)能不能把y=-1代入方程①或方程②呢?生:计算并给出回答.师:能,都可以得出x=2.(3)解这个方程组可以先消去y吗?生:尝试并给出回答.师:可以,用含x的式子表示y,得y=x-3 .【设计意图:加深学生对知识的掌握,给学生自由发挥的空间.】师:你能总结一下用代入法解二元一次方程组的基本步骤吗?生:讨论交流.师生共同小结代入消元法的基本步骤:通过“把一个方程(必要时先做适当变形)代入另一个方程”进行等量替换,用含一个未知数的式子表示另一个未知数,从而实现消元.【设计意图:通过总结,再次加深学生对知识的掌握程度.】2、课件展示教材第92页例2 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5。

消元——解二元一次方程组 第1课时《代入法 》教案(优质)

消元——解二元一次方程组 第1课时《代入法 》教案(优质)

8.2 消元——解二元一次方程组第1课时 代入法会用代入法解二元一次方程组.(重点)一、情境导入《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上,另一部分在地上.树上的一只鸽子对地上的鸽子说:“若从你们中飞上来一只,则地上的鸽子为整个鸽群的三分之一;若从树上飞下去一只,则树上、地上的鸽子一样多.”你知道树上、地上各有多少只鸽子吗?我们可以设树上有x 只鸽子,地上有y 只鸽子,得到方程组⎩⎪⎨⎪⎧x +y =3(y -1),x -1=y +1.可是这个方程组怎么解呢?有几种解法?二、合作探究探究点:用代入法解二元一次方程组【类型一】 用代入法解二元一次方程组用代入法解下列方程组:(1)⎩⎪⎨⎪⎧2x +3y =-19,①x +5y =1;②(2)⎩⎪⎨⎪⎧2x -3y =1,①y +14=x +23.②解析:对于方程组(1),比较两个方程系数的特点可知应将方程②变形为x =1-5y ,然后代入①求解;对于方程组(2),应将方程组变形为⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5,④观察③和④中未知数的系数,绝对值最小的是2,一般应选取方程③变形,得x =3y +12. 解:(1)由②,得x =1-5y .③把③代入①,得2(1-5y )+3y =-19,2-10y +3y =-19,-7y =-21,y =3.把y =3代入③,得x =-14.所以原方程组的解是⎩⎪⎨⎪⎧x =-14,y =3; (2)将原方程组整理,得⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5.④由③,得x =3y +12.⑤ 把⑤代入④,得2(3y +1)-3y =-5,3y =-7,y =-73. 把y =-73代入⑤,得x =-3. 所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-73. 方法总结:用代入法解二元一次方程组,关键是观察方程组中未知数的系数的特点,尽可能选择变形后比较简单的或代入后容易消元的方程进行变形.【类型二】 整体代入法解二元一次方程组解方程组:⎩⎪⎨⎪⎧x +13=2y ,①2(x +1)-y =11.②解析:把(x +1)看作一个整体代入求解.解:由①,得x +1=6y .把x +1=6y 代入②,得2×6y -y =11.解得y =1.把y =1代入①,得x +13=2×1,x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =1. 方法总结:当所给的方程组比较复杂时,应先化简,但若两方程中含有未知数的部分相等时,可把这一部分看作一个整体求解.【类型三】 已知方程组的解,用代入法求待定系数的值已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为( ) A .1 B .-1 C .2 D .3解析:把解代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3,所以a -b =-1.故选B. 方法总结:解这类题就是根据方程组解的定义求,将解代入方程组,得到关于字母系数的方程组,解方程组即可.三、板书设计解二元一,次方程组)⎩⎪⎨⎪⎧基本思路是“消元”代入法解二元一次方程组的一般步骤回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有很好的认知基础,探究显得十分自然流畅.引导学生充分思考和体验转化与化归思想,增强学生的观察归纳能力,提高学生的学习能力。

《用代入法解二元一次方程组》教学设计

《用代入法解二元一次方程组》教学设计

《用代入法解二元一次方程组》教案一、 教材分析《代入法解二元一次方程组》是选自人教版《义务教育课程标准实验教科书数学七年级下册》第八章《二元一次方程组》中的第2节内容,这节课的主要内容是用代入法解二元一次方程组,是在学生学习了一元一次方程后,又一次数学建模思想的教学,培养学生分析问题和解决问题能力的重要内容,也是为今后学生学习三元一次方程组,二元二次方程组、函数奠定基础。

通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。

二、 设计理念《新课程标准》所主张的教育理念是:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

“动手实践、自主探索与合作交流是学习数学的重要方式”。

我以建构主义理为指导,在教学过程中,以探究为主线,通过设置带有启发性和思考性的问题,创设问题情景,引导学生思考、讨论,让学生亲身体验知识的产生过程,激发学生探求知识的欲望,使学生始终处于主动探索问题的积极状态,使获取新知识水到渠成。

我也将采用多种形式诱导学生及时作出反馈,并利用学生的反馈信息,因势利导,及时调控教学进程,把教与学有机地统一在一个最佳的程序之中,使课堂教学收到满意的效果。

考虑到如何更直观、形象地突破教学重、难点,提高课堂效率,我采用了多媒体辅助教学。

三、 教学目标知识与能力:体会消元的思想,会用代入法解二元一次方程组。

过程与方法:引导学生通过观察、类比、对比、探索等活动,感受从已知知识中探求解决问题的过程,初步体验化“未知”为“已知”,化复杂问题为简单问题的化归思想,提高学生观察、归纳、猜想、验证的能力,不断增强解决问题的能力。

情感态度价值观:通过学生的自主探索活动,培养学生从已有知识出发探究新知的能力,激发他们自主创新、合作交流的热情,同时渗透化归的数学美的思想。

四:教学重点、难点教学重点:会用代入法解简单的二元一次方程组,二元一次方程组的解的意义。

代入法解二元一次方程组(教案)

代入法解二元一次方程组(教案)

代入法解二元一次方程组(教案) 8.2消元——解二元一次方程组第一课时:代入法解二元一次方程教学目标:1.能够用代入消元法解简单的二元一次方程组;2.初步理解解二元一次方程组的思想是“消元”;3.在探究代入消元法的过程中体会化归思想。

教学重难点:1.教学重点:用代入法解简单的二元一次方程组;2.教学难点:将“二元”转化为“一元”,消元思想。

教学方法:引导发现、练法相结合教具准备:多媒体设备教学过程:一)复旧知,引入新课1.判断下列式子是否为二元一次方程:① xy + 3 = 0② x - y = 2③ x² + x = 10④ 1/x + y = -3⑤ x + 3y = -22.判断下列式子是否为二元一次方程组:x + 3y = 102x + z = -1ab = -12a + b = 15m + n = -13m - n = -23t + s = 1s = 11t3.已知二元一次方程 x - y = 2,如何用 x 表示 y?如何用 y 表示 x?将含 x 的项和常数项移到方程的右边,含 y 的项移到方程的左边,再将 y 的系数化为 1.①用 x 表示 y:x - y = 2②用 y 表示 x:x - y = 2y = 2 - xy = -2 + x练:课本 P93 练1将下列方程改写为含 x 的式子表示 y 的形式:1)2x - y = 32)3x + y - 1 = 0二)层层递进,探索新知探究:(回顾引例)解法一:设这个队胜了 x 场,负了 y 场。

由题意得:2x + y = 16y = 4解法二:设这个队胜了 x 场,则负了 (10-x) 场。

由题意得:2x + (10 - x) = 16x = 6问题:1)观察问题中的一元一次方程和二元一次方程组之间有什么联系?2)我们可以把方程②中的 y 替换为 10-x 吗?怎么换?3)这时,二元一次方程组转换为什么方程?这个方程可以解吗?可以求哪个未知数的值?问题解决了吗?4)另一个未知数 y 的值如何求?5)上述过程中,我们是如何消元的?解答:1)一元一次方程可以从二元一次方程组中得到;2)可以,将 y 的值用 10-x 替换;3)二元一次方程组转换为一元一次方程,可以解出 x 的值,还需求 y 的值;4)将 x 的值带入方程中,求出 y 的值;5)通过替换 y 的值,将二元一次方程组转换为一元一次方程,实现消元。

初一数学用代入法解二元一次方程组教案

初一数学用代入法解二元一次方程组教案

初一数学用代入法解二元一次方程组教案学习目标:会运用代入消元法解二元一次方程组.学习重难点:1、会用代入法解二元一次方程组。

2、灵活运用代入法的技巧.学习过程:一、基本概念1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。

我们可以先求出一个未知数,然后再求另一个未知数,。

这种将未知数的个数由多化少、逐一解决的思想,叫做____________。

2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

3、代入消元法的步骤:二、自学、合作、探究1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。

2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。

3、若的解,则a=______,b=_______。

4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。

5、用代人法解方程组①②,把____代人____,可以消去未知数______。

6、已知方程组的解也是方程组的解,则a=_______,b=________ ,3a+2b=___________。

7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。

8、当k=______时,方程组的解中x与y的值相等。

9、用代入法解下列方程组:二、训练1、方程组的解是( )A. B. C. D.2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。

3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。

用代入消元法解二元一次方程组教案

用代入消元法解二元一次方程组教案用代入消元法解二元一次方程组教案利用代入消元法解二元一次方程教案〔北师大版新课标实验教材八年级上册〕一、教学目的1、知识与技能会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。

2、过程与方法运用代入消元法解二元一次方程;理解解二元一次方程时的“消元”思想,初步体会“化未知为”的化归思想。

3、情感、态度、价值观在学生理解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“”和化复杂问题为简单问题的化归思想。

感受学习数学的乐趣,进步学习数学的热情;培养学生合作交流,自主探究的`好习惯。

二、教学重、难点1、教学重点会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。

2、教学难点“消元”的思想;“化未知为”的化归思想。

三、教学设计1、复习,引入新课上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。

下面请同学们回忆一下它们分别是怎样定义的?〔同学们说,说不完的老师利用ppt进展展示〕我们知道:合适一个二元一次方程组的一组未知数的值叫做这个二元一次方程组的解。

那么,我们能不能求出它的解呢?要怎样求呢?2、新课讲解〔1〕来看我们课本上的例子:上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。

...........(1)?x?y?1.......... ?x?1?2(y?1)........ ....(2)?如今要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?〔学生讨论,老师巡视指导〕通过同学们的讨论我们已经有理解题思想。

首先,由方程〔1〕将x视为数解出y=x-2,由于方程组中一样的字母表示同一未知数,所以可以用x-2代替方程〔2〕中的y,即将y=x-2代入方程〔2〕。

《用代入消元法解不等式方程组》教案

《用代入消元法解不等式方程组》教案教案:用代入消元法解不等式方程组
一、教学目标:
1.理解代入消元法的基本原理。

2.能够熟练运用代入消元法解不等式方程组。

3.能够运用所学知识解决实际问题。

二、教学重点:
1.代入消元法的基本原理。

2.解不等式方程组的步骤和注意事项。

三、教学难点:
代入消元法的灵活运用。

四、教学过程:
Step 1:导入新知
1.通过简单的例子引出不等式方程组的概念,让学生了解不等式方程组的定义和意义。

2.对比解方程与解不等式方程组的异同,引出代入消元法的重要性。

Step 2:讲解代入消元法的基本原理
1.指导学生如何选择代入变量,使得代入后可以对方程组进行简化。

2.讲解代入消元法的基本步骤以及注意事项。

Step 3:练习与讨论
1.给学生提供一组不等式方程组,引导学生运用代入消元法求解。

2.分组讨论解题思路和方法,引导学生进行思考和交流。

Step 4:解决实际问题
1.提供一些实际问题,让学生运用所学知识解决,培养学生的应用能力。

2.收集学生解题过程和答案,进行展示和讨论。

Step 5:学生总结和巩固
1.学生总结代入消元法的基本原理和解题思路。

2.练习一些类似的题目,巩固所学知识。

3.解答学生在学习过程中遇到的疑问。

五、教学资源:
1.教学课件或投影设备。

2.预先准备好的练习题和实际问题。

六、教学评价:
1.观察学生在课堂上的表现,了解他们对代入消元法的掌握程度。

2.收集学生的练习和解答过程,评价他们的解题能力。

人教版七年级下册8.2代入法解二元一次方程组(一)教案

代入法解二元一次方程组(一)教学目标:1知识与技能目标:掌握用代入法解二元一次方程组的步骤,熟练运用代入法解简单的二元一次方程组.2过程与方法目标:培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形。

3情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过建模解决实际问题,增强学生学数学、用数学的意识。

教学重、难点:重点:(1)会用代入消元法解简单的二元一次方程组;(2)理解解二元一次方程组的思路是“消元”,经历从未知向已知转化的过程,体会化归思想。

难点:(1)会用代入消元法解简单的二元一次方程组;(2)体会解二元一次方程组的思路是“消元”.教学过程:一、问题引入:篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分.某队10场比赛中得到16分,那么这个队胜负场数分别是多少?思考1:你能根据问题中的等量关系列出二元一次方程组吗?设胜x 场,负y 场,则思考2:你能列一元一次方程求解吗?设胜x 场,则负(10-x )场.2x +(10-x )=16.思考3:上面的二元一次方程组和一元一次方程有什么关系?把x+y=10写成y=10-x ,并把2x+y=16中的y 换为y=10-x ,这个方程即可转化为2x+(10-x )=16.把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.消元思想:将未知数的个数由多化少、逐一解决的思想.规范解答:解:由①,得 y=10-x ③把③代入②,得 解得 x=6把x=6代入③得 y=4所以这个方程组的解是⎩⎨⎧=+=+16210y x y x 64x y =⎧⎨=⎩,.⎩⎨⎧=+=+16210y x y x 21016x x +-=.二、 典例精讲用代入法解下列二元一次方程组(1) (2)三 、学生练习1、用代入法解下列方程组:⑴ ⑵ ⑶ 2、若2a y+5b 3x 与-4a x b 2-4y 是同类项,则x=______,y=_______。

消元代入法解二元一次方程组教案

8.2第一课时用代入消元法解二元一次方程组教学目标:1、知识与技能:(1)会用代入法解二元一次方程组。

(2)能体会“代入法”解二元一次方程组的基本思路。

2、过程与方法:(1)通过代入消元,使学生初步了解把“未知”转化为“已知”,和把复杂问题转化为简单问题的思想方法。

(2)培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较为简单的方程进行变形。

3、情感与态度:(1)训练学生的运算技巧,养成检验的习惯。

(2)通过本节课的学习,渗透化归的数学思想。

重点:用代入消元法解二元一次方程组难点:探究如何用代入法将“二元”化为“一元”教学方式:常规课教学过程:一、 问题情境导入(课件展示问题情境)同学们,上节课我们学习什么是二元一次方程组。

这节课,我们将对二元一次方程组进行更加深入的学习,现在,我们先来回顾一下上节课两个小朋友的对话,一起来帮助他们解决这个问题吧。

甲:昨天,我们8个人去红山公园玩,买门票花了34元.乙:每张成人票5元,每张儿童票3元.你们到底去了几个成人、几个儿童呢?解:设他们中有x 个成人,y 个儿童.我们列出的二元一次方程组为:8,5334.x y x y +=⎧⎨+=⎩想想以前学习过的一元一次方程,能不能解决这一问题?X 表示成年人的个数,成年人和儿童一共有8人,如何用含x 的式子来表示儿童的个数呢?(生答):8-x那我们就可以用一元一次方程来解决这一问题了。

解:设去了x 个成人,则去了(8-x)个儿童,根据题意,得: 解得:x=5.将x=5代入8-x=8-5=3.().34835=-+x x(师总结)同学们,通过这种等量的替换,我们把二元方程变成了一个一元方程,而一元一次方程,是我们能够解决的,这是不是给我们提供了一种解二元一次方程组的方法呢。

接下来我们就来探讨一下如何解二元一次方程组。

二、 新课讲解解:设去了x 个成人,去了y 个儿童,根据题意,得:由①得:y=8-x把③代入②得:5x+3(8-x)=34.解得:x = 5.把x=5代入③得:y=3所以原方程组的解为: ⎩⎨⎧==.3,5y x注:引导学生用第2个方程对第一个方程进行替换,从而达到消元的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2代入消元法解二元一次方程组(1)
教学目的:
1.会用代入法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想――“消元”.
3.通过研究解决问题的方法,培养学生合作交流意识与探究精
神.
教学重点:
用代入法解二元一次方程组的一般步骤.会用代入法解二元一次
方程组.
教学难点:
探索用代入法将“二元”转化为“一元”的消元过程,体会化未
知为已知的数学思想.
教学过程:
一、复习回顾
(1)判断
1二元一次方程组中各个方程的解一定是方程组的解 ( )
2方程组的解一定是组成这个方程组的每一个方程的解 ( )
(2)口答
1下面、⎩⎨⎧==12y x ⎩⎨⎧-==22y x ⎩
⎨⎧=-=21y x 三对数值分别是下面哪一个方程组的解.
⎩⎨⎧=+=+3202y x x y ⎩⎨⎧=+=-04y x y x ⎩⎨⎧=+=3
2y x x y ①()是方程组( )的解;
②( )是方程组( ) 的解;
③( )是方程组( ) 的解;
二、解法探究(难点)
(显示情境)
篮球联赛中,每场比赛都要分出胜负 ,每队胜1场得2分,负1场得1分.红队在全部22场比赛中得40分,你知道红队胜负场数分别是多少吗?
师:问题中有哪几个等量关系?
生:胜的场数+负的场数=总场数
胜场积分+负场积分=总积分
师:(1)如果设红队x 胜场,负y 场,得二元一次方程组:
生: 师:如果只设一个未知数:红队胜x 场,那么红队负 __________场,根据题意,得一元一次方程:___________.
生:(22-x ),2x+(22-x )=40 ③
师:上面的方程组与一元一次方程有什么关系?(讨论下面四个问题)
(1)列一元一次方程时所用的等量关系是什么?
(2)方程组中方程②所表示的等量关系是什么?
(3)对比方程②与③的等量关系找出两个方程的区别与联系?
x+y=22 ①
2x+y=40 ②
(4)怎样使方程②变为只含有一个未知数的方程呢?
生:
完成以上讨论。

(1)胜场积分+负场积分=总积分 2x+(22-x )=40
(2)胜场积分+负场积分=总积分 2x+ y =40
(3)两个方程的等量关系相同,表示负场积分的式子不同。

(4)由上述比较可知y=22-x 时方程②可变为方程③。

演示:看下面的动画,指出两者之间的转化方法。

师:这样我们可以先消去一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。

师:解出上面的一元一次方程,说出怎样求问题的另一个未知数的值,并写出方程组的解。

生:x=18, 22-x=4 (或y=22-x=22-18=4),
师生:这个方程组的求解过程实际上是:
“把方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次
x+y=22 2x+y=40 变形 y=22-x 22-x 替换y 转化 2x+(22-x )=40
x=18
y= 4
方程组的解. 这种消元的方法叫做代入消元法,简称为代入法。

三、例题示范(重点)
(学生自主填空完善解方程组的步骤)
(1)例1用代入法解方程组
解:由①,得___________x=y-3_____③
把③代入②,得______3(y-3)-8y=14____.
解这个方程,得_________ _y=-1_ ______.
把__y=-1__代入__③__,得___________x=2__ _____.
所以这个方程组的解是
师:1.把③代入②改成③代入①可以吗?试试看。

2.把y=-1代入①或②可以吗?
生:1.不可以
2.可以
(2)试一试: 用代入法二元一次方程组
⎩⎨⎧=-=+4
6365y x y x 最为简单的方法是将________式中的_________表示为__________, 再代入__________
(3)例2 解方程组⎩⎨⎧=+=-1
21923y x y x
x-y=3 ① 3x-8y=14 ②
x= 2 y= -1
四、步骤归纳(重点)
师:结合上例说出解二元一次方程组的一般步骤
生:小组交流汇报
师生:学生汇报,教师补充并动画演示。

1、将方程组里的一个方程变形,用含有一个未知数的一次式表示另一个未知数(变形)
2、用这个一次式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值(代入求解)
3、把这个未知数的值再代入一次式,求得另一个未知数的值(再代求解)
4、写出方程组的解(写解)
五.施展才华
(分两组分别做下面两题,然后各找一名代表板演并讲解。

) 用代入法解下列方程组:
(1) (2)
(选作)已知(2x+3y-4)2+
∣x+3y-7∣=0
则x= ,y= 。

六.谈收获(小组反思,全班汇报)
1.解二元一次方程组的基本思想是消元 X+y=5 ① x-y=1 ② 2x+3y=40 ① 3x-2y=-5 ②
2.代入法解二元一次方程组的一般步骤:
(1)变形(从方程组中选一个未知数系数比较简单的方程)
(2)代入(把上面变形后的方程代入另一个方程,得到一个一元一次方程)
(3)求解(求出一元一次方程解,得出一个未知数的值)
(4)再代入(代入变形后的方程中,得出另一未知数的值)
(5)写解(写出方程组的解)
七.实战练习
作业:P113习题5.2第1题。

相关文档
最新文档