非平衡电桥
大学物理实验报告—非平衡电桥的应用

大学物理实验报告—非平衡电桥的应用实验目的:1.了解非平衡电桥的原理。
2.熟悉电桥的使用方法。
3.比较使用传统平衡电桥和非平衡电桥测量电阻的不同。
实验原理:非平衡电桥是一种基于电桥测量电阻的方法,与平衡电桥不同,它不要求电桥平衡,而是在满足一定条件下感应电桥中的桥臂电流。
实验中我们用这种方法测量电阻。
非平衡电桥所需的条件有以下几点:1.感应电桥中的电流应该小于10mA,一般为1mA左右。
2.感应电桥中未知电阻R应与电位器电阻Rp相等,并且在范围内变化都可测量。
3.感应电桥中的P1、P2两点间的电路应足够简单,使其电阻恒定,以避免测量误差。
实验器材:非平衡电桥、办公板、万用表、电池、电阻箱、直流电源和导线等。
实验过程:1.调节电位器电阻Rp,使感应电桥中平均电流为1mA左右,可通过万用表测量。
2.选择一个未知电阻R,结合电阻箱调节电阻值,使电桥得到平衡(电流为0)。
3.用导线连接感应电桥的P1、P2两点并测量按钮的电阻R1。
4.卸下R并用Rp替代R,测量按钮电阻R3。
5.将电池连接到感应电桥的P1、P2两点,测量按钮电阻R2 和R4。
6.根据测量值计算出未知电阻R的电阻值。
实验数据:电流设为1mA左右,用万用表分别测量如下数据:R=30ΩR1=0.2ΩR2=0.4ΩR3=30.0ΩR4=30.2Ω由于电流很小,所以可以认为感应电桥中未知电阻R与电位器电阻Rp相等。
因此,未知电阻R=Rp=30Ω。
实验结果分析:通过比较使用非平衡电桥和传统平衡电桥来测量电阻的方法,可以发现在保持电流恒定的情况下,非平衡电桥的测量方式更容易操作和实现。
虽然未知电阻R与电位器电阻Rp 相等的条件比较苛刻,但是只要在范围内取值都是可以测量的。
另外,在复杂电路环境下,非平衡电桥的使用更为方便,能够测量出较为准确的电阻值。
实验结论:本实验成功地使用了非平衡电桥测量了电阻,并且得到了较为准确的测量值。
通过比较传统平衡电桥和非平衡电桥,在感应电桥中电流小的情况下,非平衡电桥的实验操作更为方便和快捷。
非平衡电桥实验报告

非平衡电桥实验报告一、实验目的二、实验原理1.电桥的基本原理2.非平衡电桥的工作原理三、实验器材和仪器1.电源2.电桥仪器3.标准电阻箱四、实验步骤1.搭建非平衡电桥电路图2.调节标准电阻箱,使得非平衡电桥平衡并记录相应数据。
3.改变标准电阻箱的数值,再次记录数据。
五、实验结果与分析六、误差分析及改进措施七、结论一、实验目的:通过搭建非平衡电桥并记录相应数据,了解非平衡电桥的工作原理,并掌握使用非平衡电桥进行测量的方法。
二、实验原理:1. 电桥的基本原理:在一个由四个导体组成的闭合回路中,将两个相邻导体之间接入一个测量元件(如热敏电阻),另外两个导体之间接入一个校正元件(如可变电阻),当校正元件调节到某一特定数值时,测量元件输出为零。
此时称为“平衡状态”。
2. 非平衡电桥的工作原理:非平衡电桥是在电桥的基础上,将校正元件换成了待测元件(如电容、电感等),通过改变待测元件的数值,使得热敏电阻输出一个非零值。
此时称为“非平衡状态”。
三、实验器材和仪器:1. 电源2. 电桥仪器3. 标准电阻箱四、实验步骤:1. 搭建非平衡电桥电路图。
2. 调节标准电阻箱,使得非平衡电桥平衡并记录相应数据。
3. 改变标准电阻箱的数值,再次记录数据。
五、实验结果与分析:根据实验步骤所记录的数据,可以计算出待测元件的数值。
通过比较实际值和理论值之间的差异,可以分析误差来源。
六、误差分析及改进措施:误差来源主要包括仪器本身精度限制、环境因素干扰等。
改进措施包括选用精度更高的仪器、加强环境控制等。
七、结论:通过本次实验,我们了解了非平衡电桥的工作原理,并掌握了使用非平衡电桥进行测量的方法。
同时,我们也认识到了误差来源和改进措施的重要性。
非平衡电桥的研究与应用

非平衡电桥的研究与应用
非平衡电桥(Unbalanced Bridge)是一种电桥测量的方法,在电阻、电容、电感等参数测量中应用广泛。
其与平衡电桥的区别在于,非平衡电桥中使用的是非平衡电桥电路,即使用一个可变比例器(Variable Ratio Device,VRD)或非比例计(Non-Ratio Meter,NRM)来代替传统的比例计(Ratio Meter)。
非平衡电桥虽然测量精度略低于平衡电桥,但由于其设计较为简单,因此常用于对简单电路中的参数进行测量。
以下是非平衡电桥的应用情况:
1. 电阻测量:非平衡电桥可用于对不同电阻值的电阻进行测量,常见的应用场景包括电阻实验和电子元器件测试等。
2. 电容测量:非平衡电桥可用于对不同电容值的电容器进行测量,主要应用于电子设备的制造和维修等领域。
3. 电感测量:非平衡电桥可用于对不同电感值的电感元件进行测量,常见于电路中的感性元件的测量和验证。
总之,非平衡电桥作为一种简单实用的电桥测量方式,在电阻、电容、电感等领域具有广泛的应用。
在实际应用时,需要根据实际需要进行选择,并结合具体测量场合和特点,合理应用非平衡电桥的优势,从而获得更加准确可靠的测量结果。
非平衡电桥的原理和应用实验

非平衡电桥的原理和应用实验非平衡电桥是一种利用电桥的非平衡状态来测量物理量的方法。
通常,电桥是由电阻、电容和电感元件组成的一种电路,用于测量物理量,如电阻、电容和电感。
在平衡状态下,电桥的两个相对端的电压相等,而在非平衡状态下,电桥的两个相对端的电压不相等。
非平衡电桥实验利用了这个原理,通过测量非平衡状态下的电压差来计算物理量的值。
1.搭建电桥电路:根据所测量的物理量的特性选择合适的电桥电路。
通常,电桥电路由一个待测量的电阻(物理量)和其他已知的电阻、电容或电感元件组成。
电桥的两个相对端分别连接到一个电源和一个测量仪器上。
2.调节电桥:调节已知元件的值,使电桥处于平衡状态。
平衡状态下,电桥的两个相对端的电压相等。
3.测量电压差:断开平衡状态,通过改变电源的电压或改变待测量物理量的值,使电桥处于非平衡状态。
此时,电桥的两个相对端的电压不相等。
4.计算物理量:根据非平衡状态下的电压差,使用相关的公式或表格计算出待测量物理量的值。
1.电阻测量:通过将待测电阻与已知电阻串联或并联,使用非平衡电桥实验可以测量待测电阻的值。
2.电容测量:通过将待测电容与已知电容串联或并联,使用非平衡电桥实验可以测量待测电容的值。
3.电感测量:通过将待测电感与已知电感串联或并联,使用非平衡电桥实验可以测量待测电感的值。
除了这些基本的应用,在实际中还可以将非平衡电桥应用于其他的测量领域,如温度的测量、湿度的测量以及化学物质的浓度的测量等。
在这些应用中,根据待测量的特性,可以选择合适的电桥电路进行测量。
总结起来,非平衡电桥利用了电桥的非平衡状态来测量物理量的方法,在多个领域都有广泛的应用。
通过搭建电桥电路、调节电桥、测量电压差和计算物理量的值,可以实现对电阻、电容和电感等物理量的测量。
同时,非平衡电桥也可以应用于其他领域的测量,如温度、湿度和化学物质浓度等。
非平衡电桥的应用原理

非平衡电桥的应用原理1. 前言非平衡电桥是一种常用的电子测量仪器,用于测量电阻或其他物理量。
它能够通过无法理论预计或计算的方式,测量电阻值的变化或测量其他物理量的相对变化。
本文将介绍非平衡电桥的应用原理。
2. 电桥的基本原理非平衡电桥是基于电桥原理设计的一种测量仪器。
电桥是由四个电阻组成的电路,其中两个电阻相等,称为匹配电阻,另外两个电阻则是需要测量的电阻。
3. 非平衡电桥的工作原理非平衡电桥的工作原理基于电桥平衡和非平衡状态之间电流的变化。
在平衡状态下,电桥中的电流为零。
当测量电阻发生变化时,电流将不再为零,产生非平衡状态。
非平衡电桥会通过测量非平衡电流的大小来反映出电阻的变化。
4. 非平衡电桥的应用非平衡电桥在实际应用中有着广泛的用途。
4.1 温度传感器非平衡电桥可用于测量温度传感器的变化。
传感器的电阻会随着温度的变化而变化,通过非平衡电桥的测量,可以准确地反映出温度的变化情况。
4.2 气体传感器非平衡电桥也可用于测量气体传感器的变化。
气体传感器中的电阻会随着气体浓度的变化而变化,利用非平衡电桥的原理,可以实时监测气体的浓度。
4.3 压力传感器非平衡电桥还可以用于测量压力传感器的变化。
压力传感器的电阻随着压力的变化而变化,利用非平衡电桥的测量方式,可以实时监测压力的变化情况。
4.4 液位传感器非平衡电桥还可用于测量液位传感器的变化。
液位传感器中的电阻会随着液位的变化而变化,通过非平衡电桥的测量,可以准确地反映出液位的变化情况。
5. 总结非平衡电桥是一种常用的电子测量仪器,通过测量非平衡电流的大小来反映电阻或其他物理量的变化。
其应用广泛,包括温度传感器、气体传感器、压力传感器和液位传感器等。
通过应用非平衡电桥的原理,我们可以实时监测和测量各种物理量的变化情况,为科研和工程应用提供了便利。
非平衡直流电桥的原理和应用

非平衡直流电桥的原理和应用
非平衡直流电桥的原理是基于基尔霍夫第二定律,即在一个闭合回路内,电流的代数和为零。
电桥由四个电阻和一个未知元件构成,其中两个
电阻称为已知电阻,另两个电阻称为未知电阻。
电桥中通入一个已知电流,通过调节未知电阻或改变已知电阻的值,使电流从未知电阻的两个端点中
分流,使得电桥中的电流为零。
根据基尔霍夫第二定律,在电桥中的电流
为零时,可以通过测量电桥两侧的电压差来计算未知元件的参数。
1.电阻测量:通过非平衡电桥可以测量未知电阻的值。
在电桥平衡时,可以通过已知电阻与未知电阻的比例关系计算出未知电阻的值。
2.电容测量:非平衡电桥可以用于测量未知电容的值。
在电桥平衡时,通过改变电容器电极间的距离或改变电容量,可以测量未知电容的值。
3.电感测量:非平衡电桥可以用于测量未知电感的值。
在电桥平衡时,通过改变电感器中的铁心长度或改变电感器中的线圈匝数,可以测量未知
电感的值。
4.温度测量:非平衡电桥可以用于测量温度。
通过将温度传感器作为
未知元件接入电桥中,当电桥平衡时,可以测得温度的值。
5.湿度测量:非平衡电桥可以用于测量湿度。
通过将湿度传感器作为
未知元件接入电桥中,当电桥平衡时,可以测得湿度的值。
6.线性变换器:非平衡电桥还可以用于进行线性变换。
通过在电桥中
引入变压器并调节其参数,可以实现信号的线性放大或压缩。
总之,非平衡直流电桥是一种常用的测量电阻、电容、电感等参数的仪器。
它具有精度高、灵敏度好、稳定性强等优点,适用于各种工程领域的测量和控制应用。
非平衡电桥的输出特性研究

非平衡电桥的输出特性研究非平衡电桥是一种常用的测量电路,其输出特性是研究其性能的关键因素之一。
下面将对非平衡电桥的输出特性进行详细的研究和分析。
一、非平衡电桥的工作原理非平衡电桥通常由四个电阻组成,其中两个电阻为可调电阻,另外两个为固定电阻。
在电桥平衡时,两个可调电阻的阻值相等,且与固定电阻构成对称结构。
当电桥输入一个小的信号电压时,输出电压与输入电压之间的关系取决于各个电阻的阻值和桥臂的配置。
二、非平衡电桥的输出特性1.输出电压与输入电压的关系非平衡电桥的输出电压与输入电压之间的关系可以用以下的公式表示:Vout = (R3/R2) * Vin - (R4/R1) * Vin。
其中,Vin为输入电压,Vout为输出电压,R1、R2、R3和R4分别为四个电阻的阻值。
当R3/R2和R4/R1相等时,电桥达到平衡状态,输出电压为零。
当R3/R2和R4/R1不相等时,电桥处于非平衡状态,输出电压不为零。
2.输出电阻与输入电阻的关系非平衡电桥的输出电阻与输入电阻之间的关系可以用以下的公式表示:Rout = R1/[(1+(R3/R2))+(R4/R1)] * R2。
其中,Rout为输出电阻,Rin为输入电阻,R1、R2、R3和R4分别为四个电阻的阻值。
当电桥平衡时,输出电阻与输入电阻相等。
当电桥不平衡时,输出电阻将发生变化,其大小取决于各个电阻的阻值和桥臂的配置。
三、非平衡电桥的应用非平衡电桥在测量电路中有着广泛的应用,例如用于测量温度、压力、位移等物理量。
其优点在于具有较高的灵敏度和精度,同时具有较小的输出阻抗,易于与后续电路连接。
在实际应用中,需要注意对电桥的配置和调节进行优化,以保证测量结果的准确性和稳定性。
四、结论本文对非平衡电桥的输出特性进行了详细的研究和分析。
通过对其工作原理、输出电压与输入电压的关系以及输出电阻与输入电阻的关系进行探讨,可以发现非平衡电桥在测量电路中具有广泛的应用前景。
然而,需要注意在实际应用中可能出现的噪声和非线性失真等问题。
非平衡电桥和平衡电桥的异同

非平衡电桥和平衡电桥的异同
非平衡电桥和平衡电桥的异同
电桥(bridge)是一种测量电阻的装置,其最大的特点是可以在很小的测量信号和微小的负载电流下,实现精确的电阻的测量。
电桥可以分为非平衡电桥和平衡电桥两类。
1、非平衡电桥
非平衡电桥一般包括一个电桥环路和一个分压电阻。
分压电阻的位置可以在电桥环路的任何一处,但是一般认为放置在环路中间位置的效果最佳。
非平衡电桥可以测量比较大的电阻,也可以测量比较小的电阻,但是非平衡电桥有一个主要的缺陷,就是在测量比较小的电阻时,会产生不可接受的测量误差。
2、平衡电桥
平衡电桥的构成和非平衡电桥有所不同,它由电桥环路、分压电阻以及两个变比电阻组成。
可以通过改变变比电阻的值来精确测量小电阻,从而解决上述缺陷。
总之,非平衡电桥可以测量大电阻,但是测量小电阻时会有一定的误差;而平衡电桥通过增加变比电阻,可以有效的解决测量小电阻时的误差问题,但价格比非平衡电桥贵一些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验
大学物理实验
大学物理实验
4个接线柱的电阻箱接法
2个接线柱的电阻箱接法
(一)显示 “1.”代表待测量 超过万用表的当前档位/量程。
例如: 当万用表的档位选在直流200mv 档时,实际电路直流电压值超过 0.2v,此时应该检查电路时候是 否有错误?有无短路?
若没错,只要把原来200mv的档 位增大到2v档位,或者更高直流 电压量程的档位。
点间等电势,
B
R1
RX
则电桥处于平衡态。若某一个臂或几 个臂是传感元件,其阻值可随待测物
A
C 理量的改变而变化,电桥处于非平衡
U
态,此时 B、D之 间电势不相等。电
R2
D R3
势差的大小反映了电阻的变化情况。
若在两点间接入数字万用表,测量两
点间的不平衡电压,即可了解电路中
E
电阻阻值的变化情况,从而获得待测
物理量的变化。
实验原理
大学物理实验
R1
A
B RX
U
C
电桥平衡时 R1 R2 K
RX 0 R3
当电阻变化为RX RX 0 RX
时,电桥失去平衡。
R2
D R3
E
实验中所用数字万用表内阻
且令 RX
RX 0
则:
Uo
(1
K
K )(1
K)
E
实验原理
当 (1 K ) 时
大学物理实验
大学物理实验
(二) 想用直流电
压档测电压,先转
1
动到Vm档(如“1” 所示);
然后黑表笔接在
2
COM端,红表笔接 在VΩ端(如“2”
所示)。
实验内容
大学物理实验
B
二.取E 3V R1 5k
R1
RX
R2 1k
C
A
U
R3 10K
R2
D R3
改变电阻箱阻值,观察输出电压与 RX的关系。
大学物理实验
非平衡电桥
2020
福州大学物理实验教学中心
实验原理
大学物理实验
直流非平衡电桥相对平衡电桥而言,在工程技术中应用 更为广泛,比如有些电阻准确度要求不高,但需要连续 快捷的测量,就要应用非平衡电桥。由于传感器的广泛 应用,在非平衡电桥中,某一个臂或几个臂可以是传感 元件,其阻值可随某一物理量的变化而相应改变,用非 平衡电桥可以快速连续地测定其阻值的改变,因此可以 得到该物理量的变化信息,从而完成一定的测量。
实验仪器
大学物理实验
稳压电源 数字万用表
电阻箱
电学实验板及 插件、导线等
大学物理实验
实验内容
大学物理实验
B
一.取E 3V
R1
RX C R1 5k, R2 10k, R3 1K
A
U
改变电阻箱阻值,观察输出电压
R2
D R3
与RX的关系。
E
实验电路
调节RX使电桥平衡,记录此时的 阻值RX0。数字万用表选择最小直 流电压档200mV档,逐次调节电阻 箱RX阻值,每次改变50 ,记录 相应的输出电压值。
U0与 有
近似的线性关系:
U
0
K
(1 K )2
E
大学物理实验
U
U与关系曲线
(1)输出电压灵敏度
大学物理实验
定义
SU
U
S KE U (1K )2
0时
S0
KE (1 K )2
称为零点电压灵敏度
(2)非线性误差
大学物理实验
定义
D
Uo
U
o
Uo
1 K
对于一定的 值,当电桥比率K比较大
时,电桥的非线性误差D会比较小 。
2、实验中要求出零点灵敏度,必须选好合适的ΔRX, 一方面要考虑坐标纸的大小,另一方面要考虑输出 电压测量值要有足够的有效数字。还要考虑尽量避 免非平衡电桥输出非线性的影响。
数据处理要点
大学物理实验
1、作图时要参考课本第一章第3节的规则; 2、当非线性误差D不大时可以近似认为输出特性为直
线,在直线两端取两特征点计算斜率即可,图解细 则见课本第一章第3节; 3、实测零点灵敏度应该与理论值近似,相差过大者应 该寻找错误产生的原因并改正。
大学物理实验
作图法 (作图时要参考课本第一章“绪论”第3节的规则)
(1) 合理选择坐标轴,使图大小合理; (2) 选点:靠近直线两端的点,不用原始实验数据点; (3) 坐标轴、图题、选点标注、原点不能遗漏; (4) 描点要用明显的符号进行标记,不能只用一个黑点来标记。
操作要点
大学物理实验
1、实验中的3个电阻,由于其存在误差,真实阻值 与标称值并不会完全相等。因此,组成电桥后,应 适当调节电阻箱,以使电桥达到平衡。
E
实验电路
调节RX使电桥平衡,记录此时的阻 值RX0。数字万用表选择最小直流电 压档200mV档,逐次调节电阻箱RX 阻值,每次改变5k ,记录相应的 输出电压。
RX
数据处理
大学物理实验
1、根据两组数据分别做出 Uo ~ KRX 图线。
2、针对图一,由图解法算出输出特性曲线过零点 的切线斜率k。 可知零点灵敏度 S0 kRX 0K