高中数学竞赛讲义_复数
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛_三角 平面向量 复数

专题四 三角 平面向量 复数一 能力培养1,数形结合思想 2,换元法 3,配方法 4,运算能力 5,反思能力 二 问题探讨问题1设向量(cos ,sin )a αα= ,(cos ,sin )b ββ=,求证:sin()sin cos cos sin αβαβαβ+=+.问题2设()f x a b =⋅,其中向量(2cos ,1)a x =,(cos 2)b x x =,x R ∈(I)若()1f x =且[,]33x ππ∈-,求x ; (II)若函数2sin 2y x =的图象 按向量(,)()2c m n m π=<平移后得到函数()y f x =的图象,求实数,m n 的值.问题3(1)当4x π≤,函数2()cos sin f x x x =+的最大值是 ,最小值是 .(2)函数32cos sin cos y x x x =+-的最大值是 .(3)当函数22sin 2sin cos 3cos y x x x x =++取得最小值时,x 的集合是 . (4)函数sin (0)cos 1xy x x π=<<+的值域是 .问题4已知ABC ∆中,,,a b c 分别是角,,A B C 的对边,且4,5a b c =+=,tan tan A B +=tan tan )A B -,求角A.三 习题探讨 选择题1在复平面内,复数12ω=-对应的向量为OA ,复数2ω对应的向量为OB ,那么向量AB对应的复数是A,1 B,1- D,2已知α是第二象限角,其终边上一点P(x ),且cos 4x α=,则sin α=D, 3函数2sin(3)4y x π=-图象的两条相邻对称轴之间的距离是A,3πB,23π C,π D,43π4已知向量(2,0)OB = ,向量(2,2)OC = ,向量)CA αα=,则向量 OA 与向量OB的夹角的取值范围是A,[0,]4πB,5[,]412ππ C,5[,]122ππ D,5[,]1212ππ5已知(,2)a λ=,(3,5)b =-,且a 与b 的夹角为钝角,则λ的取值范围是 A,103λ>B,103λ≥ C,103λ< D,103λ≤ 6若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的值域是A,[1,)-+∞ B,[- C, D,1]2填空题7已知sin sin 1αβ⋅=,则cos()αβ+= .8复数13z i =+,21z i =-,则12z z z =⋅在复平面内的对应点位于第 象限. 9若tan 2α=,则224sin 3sin cos 5cos αααα--= .10与向量1)a =-和b =的夹角相等,的向量c = . 11在复数集C 内,方程22(5)60x i x --+=的解为 .12若[,]1212ππθ∈-,求函数cos()sin 24y πθθ=++的最小值,并求相应的θ的值.13设函数11()22x x f x ---=-,x R ∈,若当02πθ≤≤时,2(cos 2sin )f m θθ++(22)0f m --<恒成立,求实数m 的取值范围.14设5arg 4z π=,且22z R z -∈,复数ω满足1ω=,求z ω-的最大值与最小值勤.15已知向量33(cos ,sin )22a x x = ,(cos ,sin )22x x b =- ,且[0,]2x π∈(I)求a b ⋅ 及a b + ; (II)求函数()4f x a b a b =⋅-+的最小值.16设平面向量1)a =- ,1(,22b = .若存在实数(0)m m ≠和角((,))22ππθθ∈-, 使向量2(tan 3)c a b =+- ,tan d ma b θ=-+ ,且c d ⊥ .(I)求函数()m f θ=的关系式; (II)令tan t θ=,求函数()m g t =的极值.问题1证明:由cos cos sin sin a b αβαβ⋅=+,且cos()cos()a b a b αβαβ⋅=⋅-=-得cos()αβ-=cos cos sin sin αβαβ+ ① 在①中以2πα-代换α得cos[()]2παβ-+=cos()cos sin()sin 22ππαβαβ-+-.即sin()αβ+=sin cos cos sin αβαβ+.温馨提示:向量是一种很好用的工具.运用好它,可简捷地解决一些三角,平几,立几,解几等问题.问题2解:(I)可得2()2cos 212sin(2)6f x x x x π==++由12sin(2)6x π++=1得sin(2)62x π+=-又33x ππ-≤≤,得52266x πππ-≤+≤,有26x π+=3π-,解得4x π=-. (II)函数2sin 2y x =的图象按向量(,)c m n =平移后得到函数2sin 2()y n x m -=-, 即()y f x =的图象.也就是1y -=2sin 2()12x π+的图象.而2m π<,有12m π=-,1n =.问题3解:(1)22151sin sin (sin )24y x x x =-+=--+而4x π≤,有sin 22x -≤≤,当1sin 2x =,即6x π=时,max 54y =;当sin 2x =-,即4x π=-时,min 322y =-.(2)32cos (1cos )cos y x x x =+--,令cos t x =,则11t -≤≤,有321y t t t =--+,得'2321y t t =--令'0y =,有11t =,213t =-①当113t -≤<-时,'0y >,y 为增函数;②当113t -<<时,'0y <,y 为减函数. 32111()()()1333y =-----+极大=3227,而y =x=111110--+=,于是y 的最大值是3227.(3) 22cos 1sin 2sin 2cos 22)24y x x x x x π=++=++=++当2242x k πππ+=-,即38x k ππ=-时,min 2y =(4)可得cos 2sin y x y x +=,有sin cos 2x y x y -=)2x y ψ+=,有sin()1x ψ+=≤,得y ≤≤,又0y >,于是有y的值域是.问题4解:由已知得tan tan 1tan tan A BA B+=-⋅即tan()A B +=又000180A B <+<得0120A B +=,060C =.又4,5,a b c =+=得5,b c =-由余弦定理2216(5)8(5)60c c c cos =+---. 得72c =,32b =. 由正弦定理得0742sin sin 60A =,有sin 7A =. 又a c b >>,得A 为最大角.又01sin sin 302B =<=,有030B <,于是090B C +<.所以得A π=-. 习题:1得2122ω=--,11()()2222AB OB OA i =-=----+= ,选D.2 OP =又cos x α==,得x =舍去),有cos 4α=-,sin 4α==,选A.3它的对称轴为:342x k πππ-=+,即34k x ππ=+,有(1)[]()34343k k πππππ++-+=,选A.4(数形结合)由)CA αα=,知点A 在以C (2,2)为圆心(如图),过原点O 作圆C 的切线'OA ,'A 为切点,由OC ='A C =知'6AOC π∠=,有'4612AOB πππ∠=-=,过点O 作另一切线''OA ,''A 为切点,则''54612A OB πππ∠=+=,选D.5由310a b λ⋅=-+ ,a b ⋅= 设a 与b 的夹角为θ,则0090180θ<<, 有1cos 0θ-<<,即10-<<,得225603203100λλλ⎧+->⎨-+<⎩,有103λ>,选A.6由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=,选D. 7显然sin 0α≠且sin 0β≠,有1sin sin αβ=, 当0sin 1β<≤时,11sin β≥,有sin 1α≥,于是sin 1α=,得sin 1β=,则cos cos 0αβ== 得到cos()cos cos sin sin 1αβαβαβ+=-=-, 当1sin 0β-≤<时,同理可得cos()1αβ+=-.8 12(3)(1)24z z z i i i =⋅=++=+,它对应的点位于第一象限.9由tan 2α=,得sin 2cos αα=,有22sin 4cos αα=,即221cos 4cos αα-=. 则21cos 5α=,原式=222216cos 6cos 5cos 5cos 1αααα--==.10设(,)c x y =,则1)(,)a c x y y ⋅=-⋅=-,(,)b c x y x ⋅=⋅=.设c 与a ,b 的夹角分别为,αβ,则cos a c a c α⋅==⋅,cos b c b c β⋅==⋅由αβ=,y -=x +①;由c ,得222x y +=.②由①,②得, 111212x y ⎧=⎪⎪⎨⎪=⎪⎩,221212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,于是11()22c =或11(,)22-- 11设x a bi =+,,a b R ∈,代入原方程整理得22(2256)(45)0a b a b ab a b i --+-++-=有2222560450a b a b ab a b ⎧--+-=⎨+-=⎩,解得11a b =⎧⎨=⎩或3232a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以1x i =+或3322x i =-.12解:cos()sin 2cos()cos(2)442y πππθθθθ=++=+-+22c o s ()c o s ()144ππθθ=-++++ 令cos()4t πθ=+,得2219212()48y t t t =-++=--+ 由1212ππθ-≤≤,得643πππθ≤+≤,有1cos()242πθ≤+≤,122t ≤≤于是当2t =,即cos()42πθ+=,得12πθ=-时,min 122y =-. 13解:由1()1()22()x x f x f x ------=-=-,知()f x 是奇函数,而'11'11()2ln 22ln 2(1)2ln 22ln 20x x x x f x x ------=---=+>得()f x 在R 上为增函数,则有2cos 2sin 22m m θθ+<+,令sin t θ=有 22(21)0t mt m -++>,[0,1]t ∈恒成立.①将①转化为:22(1)(1)m t t ->-+,[0,1]t ∈ (1)当1t =时,m R ∈;(2)当01t ≤<时,22()2[(1)]1m h t t t >=--+-,由函数2()g x x x=+在(0,1]上递减,知 当0t =时,min ()1h t =-,于是得12m >-. 综(1),(2)所述,知12m >-.14解:设(,)z a bi a b R =+∈,由5arg 4z π=得0b a =<,得222222(1)2(1)(1)(1)z a i a a iz a i a----++-==+ 由22z R z-∈,得210a -=,从而1z i =--, 设,z ω在复平面上的对应点分别为,W Z ,由条件知W 为复平面单位圆上的点,z ω-的几何意义为单位圆上的点W 到点Z 的距离,所以z ω-的最小值为1OZ OA -=;最大值为1OZ OA +=.15解(I)33cos cos sin (sin )cos 22222x xa b x x x ⋅=+-= ,33(cos cos ,sin sin )2222x xa b x x +=+- ,得2cos a b x +== 2cos2x =([0,]2x π∈).(II)22()cos 28cos 2cos 8cos 12(cos 2)9f x x x x x x =-=--=-- 当且仅当cos 1x =时,min ()7f x =-.16解:(I)由c d ⊥ ,1102a b ⋅== ,得2[(tan 3)][tan ]c d a b ma b θθ⋅=+-⋅-+ =223(tan 3tan )0ma b θθ-+-= ,即223(tan 3tan )m a b θθ=- ,得31(tan 3tan )()422m ππθθθ=--<<.(II)由tan t θ=,得31()(3),4m g t t t t R ==-∈求导得''23()(1)4m g t t ==-,令'()0g t =,得11t =-,21t =当(,1)t ∈-∞-,'()0g t >,()g t 为增函数;当(1,1)t ∈-时,'()0g t <,()g t 为减函数; 当(1,)t ∈+∞时,'()0g t >,()g t 为增函数. 所以当1t =-,即4πθ=-时,()m g t =有极大值12;当1t =,即4πθ=时,()m g t =有极小 值12-.。
高中数学竞赛第十五章 复数【讲义】

第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。
若z=r(cos θ+isin θ),则θ称为z 的辐角。
若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。
3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。
模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z z z =⎪⎪⎭⎫⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=。
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛试题汇编一二《集合与简易逻辑》《复数》讲义

1. 命题“所有实数的平方都是正数”的否定 (A )所有实数的平方都不是正数 (B )有的实数的平方是正数(C )至少有一个实数的平方不是正数 (D )至少有一个实数的平方是正数2. 集合{11}P x x =-<{1},Q x x a =-≤且P Q ⋂=∅,则实数a 取值范围为A. 3a ≥B. 1a ≤-.C. 1a ≤-或 3a ≥D. 13a -≤≤ 3. 若,,R αβ∈ 则90αβ+=是sin sin 1αβ+>的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知全集U R =,集合112xN x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2680M x x x =-+≤,图中阴影部分所表示的集合为 (A ){}0x x ≤(B ){}24x x ≤≤ (C ){}024x x x <≤≥或 (D ){}024x x x ≤<>或 5. 已知集合{}23100A x x x =--≤,{}121B x m x m =+≤≤-,当A B =∅ 时,实数m 的取值范围是(A) 24m << (B) 24m m <>或(C) 142m -<< (D) 142m m <->或6. 已知函数[](),0,1f x ax b x =+∈,“20a b +>”是“()0f x >恒成立”的(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件7. 已知{}11,10,,lg ,10A B y y x x A ⎧⎫===∈⎨⎬⎩⎭, 则A B = .8. 设集合{}1,3,5,7,9A =,{}2,4,6,18B =,{},C a b a A b B =+∈∈,则集合C 中所有的元素之和为 . 9. 设AB 是两个非空的有限集,全集U A B = 且U 中含有m 个元素,若()()U U C A C B 中含有n 个元素,则A B 中含有元素的个数为 . 10. 设{}2A x x a =-<,{}2230B x x x =--<,若B A ⊆,则实数a 的取值范围是 . 11.设{}20122013log log A x x x =<,{}2B x x ax a x =-+< 且A B ⊆,则a 的取值范围是 . 12设{}0,1,2,3A =,{}2,2B x x A x A =-∈-∉,则集合B 的所有元素之和为 .13. 已知复数z 满足2z z i +=+,那么z = .14. 已知复数z 满足1z =,则21z z -+的最大值为 .15. 已知i 是虚数单位,2342013i i i i i+++++= .16. i 是虚数单位,23420131z i i i i i=++++++ ,复数z 的共轭复数记为z ,则z z = . 17. 已知复数(,,z x yi x y R i =+∈为虚数单位),且28z i =,则z =( ) (A) 22z i =+ (B) 22z i =--(C) 22,z i =-+或22z i =- (D) 22,z i =+或22z i =--UNM高中数学竞赛试题汇编一《集合与简易逻辑》《复数》讲义。
数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版)

完全四边形与Miquel点
垂足三角形与等角共轭
反演与配极,调和四边形
射影几何
复数法及重心坐标方法
例题和习题
1.四边形ABCD中,AB=BC,DE⊥AB,CD⊥BC,EF⊥BC,且。求证: 2EF=DE+DC。(10081902.gsp)
2.已知相交两圆O和O'交于A、B两点,且O'恰在圆O上,P为圆O的AO'B弧 段上任意一点。∠APB的平分线交圆O'于Q点。求证:PQ2=PA×PB。 (10092401-1. gsp)
(09022301.gsp)
31.已知半圆圆心为O,直径为AB,一直线交半圆于C、D,交AB延长线于 P,设M是△AOC与△BOD外接圆除O点外的另一交点。求证: OM⊥MP。(10091001.gsp)
32.凸四边形ABCD内接于圆O,两组对边所在直线分别交于点E、F,对角 线AC、BD交于G,作GH⊥EF于H,圆O的弦MN经过G点。求证:GH 与圆O交点恰是△HMN的内心。(10092103-2.gsp)
实用标准文档高中平面几何学习要点几何问题的转化ptolemy定理及应用几何变换及相似理论位似及其应用完全四边形与miquel垂足三角形与等角共轭反演与配极调和四边形射影几何复数法及重心坐标方法例题和习题1
高中平面几何
学习要点
几何问题的转化
叶中豪圆幂与根轴Biblioteka P’tolemy定理及应用
几何变换及相似理论
位似及其应用
53.已知:AD是高,O、H是外心和垂心,过D作OD垂线,交AC 于E。求证:∠DHE=∠C。(09022202.gsp)
54.△ABC中,AD为边BC上的中线,E、F、G分别为AB、AC、AD上
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。
若z=r(cos θ+isin θ),则θ称为z 的辐角。
若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。
3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。
模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z z z =⎪⎪⎭⎫⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若21212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2ei(θ1+θ2),.)(212121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n=r n(cosn θ+isinn θ).6.开方:若=nw r(cos θ+isin θ),则)2s i n2(c o snk i nk r w nπθπθ+++=,k=0,1,2,…,n-1。
7.单位根:若w n=1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=ni n ππ2sin 2cos+,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,k=1,2,…,n-1):(1)对任意整数k ,若k=nq+r,q ∈Z,0≤r ≤n-1,有Z nq+r =Z r ;(2)对任意整数m ,当n ≥2时,有m n m m Z Z Z 1211-++++ =⎩⎨⎧,|,,|,0m n n m n 当当特别1+Z 1+Z 2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z 1)(x-Z 2)…(x-Z n-1)=(x-Z 1)(x-21Z )…(x-11-n Z ).8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。
9.复数z 是实数的充要条件是z=z ;z 是纯虚数的充要条件是:z+z =0(且z ≠0). 10.代数基本定理:在复数范围内,一元n 次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n 次方程的虚根成对出现,即若z=a+bi(b ≠0)是方程的一个根,则z =a-bi 也是一个根。
12.若a,b,c ∈R,a ≠0,则关于x 的方程ax 2+bx+c=0,当Δ=b 2-4ac<0时方程的根为.22,1aib x ∆-±-=二、方法与例题 1.模的应用。
例1 求证:当n ∈N +时,方程(z+1)2n +(z-1)2n=0只有纯虚根。
[证明] 若z 是方程的根,则(z+1)2n =-(z-1)2n ,所以|(z+1)2n |=|-(z-1)2n |,即|z+1|2=|z-1|2,即(z+1)(z +1)=(z-1)(z -1),化简得z+z =0,又z=0不是方程的根,所以z 是纯虚数。
例2 设f(z)=z 2+az+b,a,b 为复数,对一切|z|=1,有|f(z)|=1,求a,b 的值。
[解] 因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b) =|f(1)+f(-1)-f(i)-f(-i)|≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0. 2.复数相等。
例3 设λ∈R ,若二次方程(1-i)x 2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
[解] 若方程有实根,则方程组⎪⎩⎪⎨⎧=--=++0122λλx x x x 有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x 2-x+1=0中Δ<0无实根,所以λ≠-1。
所以x=-1, λ=2.所以当λ≠2时,方程无实根。
所以方程有两个虚根的充要条件为λ≠2。
3.三角形式的应用。
例4 设n ≤2000,n ∈N ,且存在θ满足(sin θ+icos θ)n=sinn θ+icosn θ,那么这样的n 有多少个?[解] 由题设得)2sin()2cos()2sin()2(cos )]2sin()2[cos(θπθπθπθπθπθπn i n i n i n -+-=-+-=-+-,所以n=4k+1.又因为0≤n ≤2000,所以1≤k ≤500,所以这样的n 有500个。
4.二项式定理的应用。
例5 计算:(1)100100410021000100C C C C +-+- ;(2)99100510031001100C C C C --+-[解] (1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100=10010010099991002210011000100i C i C i C i C C +++++ =100100410021000100(C C C C +-+- )+(99100510031001100C C C C --+- )i ,比较实部和虚部,得100100410021000100C C C C +-+- =-250,99100510031001100C C C C --+- =0。
5.复数乘法的几何意义。
例6 以定长线段BC 为一边任作ΔABC ,分别以AB ,AC 为腰,B ,C 为直角顶点向外作等腰直角ΔABM 、等腰直角ΔACN 。
求证:MN 的中点为定点。
[证明] 设|BC|=2a ,以BC 中点O 为原点,BC 为x 轴,建立直角坐标系,确定复平面,则B ,C 对应的复数为-a,a,点A ,M ,N 对应的复数为z 1,z 2,z 3,a z a z +=-=11,,由复数乘法的几何意义得:)(13a z i a z CN --=-=,①)(12a z i a z BM --=+=,②由①+②得z 2+z 3=i(z 1+a)-i(z 1-a)=2ai.设MN 的中点为P ,对应的复数z=ai z z =+232,为定值,所以MN 的中点P 为定点。
例7 设A ,B ,C ,D 为平面上任意四点,求证:AB •AD+BC •AD ≥AC •BD 。
[证明] 用A ,B ,C ,D 表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B|•|C-D|+|B-C|•|A-D|≥(A-B)(C-D)+(B-C)(A-D).所以|A-B|•|C-D|+|B-C|•|A-D|≥|A-C|•|B-D|, “=”成立当且仅当)()(D C C B Arg A D A B Arg --=--,即)()(CD CB Arg A B A D Arg --+--=π,即A ,B ,C ,D 共圆时成立。
不等式得证。
6.复数与轨迹。
例8 ΔABC 的顶点A 表示的复数为3i ,底边BC 在实轴上滑动,且|BC|=2,求ΔABC 的外心轨迹。
[解]设外心M 对应的复数为z=x+yi(x,y ∈R),B ,C 点对应的复数分别是b,b+2.因为外心M 是三边垂直平分线的交点,而AB 的垂直平分线方程为|z-b|=|z-3i|,BC 的垂直平分线的方程为|z-b|=|z-b-2|,所以点M 对应的复数z 满足|z-b|=|z-3i|=|z-b-2|,消去b 解得).34(62-=y x所以ΔABC 的外心轨迹是轨物线。
7.复数与三角。
例9 已知cos α+cos β+cos γ=sin α+sin β+sin γ=0,求证:cos2α+cos2β+cos2γ=0。
[证明] 令z 1=cos α+isin α,z 2=cos β+isin β,z 3=cos γ+isin γ,则 z 1+z 2+z 3=0。
所以.0321321=++=++z z z z z z 又因为|z i |=1,i=1,2,3. 所以z i •i z =1,即.1ii z z =由z 1+z 2+z 3=0得.022********32221=+++++z z z z z z x x x ①又.0)(111321321321321132321=++=⎪⎪⎭⎫⎝⎛++=++z z z z z z z z z z z z z z z z z z 所以.0232221=++z z z所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0. 所以cos2α+cos2β+cos2γ=0。