选修1-2复数习题课
高中数学人教版选修1-2同课异构教学课件:3.2.1 复数代数形式的加减运算及其几何意义

【巩固训练 】计 算:(1)(1+3i)+(-2+i)+(2-3i). (2)(2-i)-(-1+5i)+(3+4i). (3)5i-[(3+4i)-(-1+3i)]. (4)(a+bi)-(3a-4bi)+5i(a,b∈R). 【解析】(1)原式=(-1+4i)+(2-3i)=1+i. (2)原式=(3-6i)+(3+4i)=6-2i. (3)原式=5i-(4+i)=-4+4i. (4)原式=(-2a+5bi)+5i=-2a+(5b+5)i.
【过关小练】 1.复数z1=2- i,z2= -2i,则z1+z2等于( )
【解析】选C.z1+z2=
2.在复平面内,向量 对应的复数为3-4i,点B对应的复数为
-2+2i,则向量
对应的复数为( )
A.5-6i
B.1-2i
C.-5+6i
D.5-2i
【解析】选B.由复数加法运算的几何意义知,
对应的复数
【解析】(1)选A.(3+i)-(2+i)=1. (2)①(2+2i)+(1-4i)-(5+7i) =(2+1-5)+(2-4-7)i=-2-9i. ②-i-[(3-4i)-(-1-3i)]=-i-(4-i)=-4. ③(x+yi)-(3x-2yi)-4i =(x-3x)+(y+2y-4)i =-2x+(3y-4)i(x,y∈R).
即为(3-4i)+(-2+2i),即1-2i.
主题二:复数的减法 【自主认知】 1.规 定:复数的减法是加法的逆运算,若复数z=z1-z2,则复 数z1等于 什么? 提示:z1=z+z2.
新课程标准数学选修1-2第三章课后习题解答[唐金制]
![新课程标准数学选修1-2第三章课后习题解答[唐金制]](https://img.taocdn.com/s3/m/95087619cc7931b765ce157c.png)
新课程标准数学选修1—2第三章课后习题解答第三章 数系的扩充与复数的引入3.1数系的扩充和复数的概念练习(P52)1、实部分别是2-2,0,0,0;虚部分别是13,1,0,1,0.2、2+0.618,0,2i 是实数;27i ,i ,58i +,3-,(1i 是虚数;27i ,i ,(1i 是纯虚数. 3、由23121x y x y y y +=+⎧⎨-=+⎩,得42x y =⎧⎨=-⎩. 练习(P54)1、A :43i +,B :33i -,C :32i -+,D :43i +,E :532i --,F :112,G :5i ,H :5i -. 2、略. 3、略.习题3.1 A 组(P55)1、(1)由321752x y x y +=⎧⎨-=-⎩,得17x y =⎧⎨=⎩. (2)由3040x y x +-=⎧⎨-=⎩,得41x y =⎧⎨=-⎩ 2、(1)当230m m -=,即0m =或3m =时,所给复数是实数.(2)当230m m -≠,即0m ≠或3m ≠时,所给复数是虚数.(3)当2256030m m m m ⎧-+=⎪⎨-≠⎪⎩,即2m =时,所给复数是纯虚数.3、(1)存在,例如i ,,等等.(2)存在,例如1-,12--,等等.(3)存在,只能是.4、(1)点P 在第一象限. (2)点P 在第二象限.(3)点P 位于原点或虚轴的下半轴上. (4)点P 位于实轴下方.5、(1)当2281505140m m m m ⎧-+>⎪⎨--<⎪⎩,即23m -<<或57m <<时,复数z 对应的点位于第四象限. (2)当2281505140m m m m ⎧-+>⎪⎨-->⎪⎩,或2281505140m m m m ⎧-+<⎪⎨--<⎪⎩,即2m <-或35m <<或7m >时,复数z 对应的点位于第一、三象限.(3)当22815514m m m m -+=--,即293m =时,复数z 对应的点位于直线y x =上. 习题3.1 B 组(P55)1、(1)2i -; (2)2i --.2、因为 1z ==2z =3z ==4z ==所以,1Z ,2Z ,3Z ,4Z .3.2复数代数形式的四则运算练习(P58)1、(1)5; (2)22i -; (3)22i -+; (4)0.2、略. 练习(P60)1、(1)1821i --; (2)617i -; (3)2015i --;2、(1)5-; (2)2i -; (3)5.3、(1)i ; (2)i -; (3)1i -; (4)13i --.习题3.2 A 组(P61)1、(1)93i -; (2)23i -+; (3)75612i -; (4)0.30.2i +. 2、AB 对应的复数为(34)(65)9i i i -+-+=--. BA 对应的复数为9i +.3、向量BA 对应的复数为(13)()14i i i +--=+.向量BC 对应的复数为(2)()22i i i +--=+.于是向量BD 对应的复数为(14)(22)36i i i +++=+,点D 对应的复数为()(36)35i i i -++=+.4、(1)2124i -+; (2)32i --; (3)1122i -+; (4)122--.5、(1)2455i -+; (2)1816565i -; (3)342525i +; (4)138i -. 习题3.2 B 组(P61) 由22(23)(23)0i p i q -+-+=,得(103)(224)0p q p i -++-=.于是,有10302240p q p -+=⎧⎨-=⎩,解得 12p =,26q =. 第三章 复习参考题A 组(P63)1、(1)A ; (2)B ; (3)D ; (4)C .2、由已知,设z bi =(b R ∈且0b ≠);则222(2)8(2)8(4)(48)z i bi i b b i +-=+-=-+-.由2(2)8z i +-是纯虚数,得240480b b ⎧-=⎨-≠⎩,解得2b =-. 因此2z i =-.3、由已知,可得1286z z i +=+,125510z z i =+.又因为121212111z z z z z z z +=+=,所以1212551055862z z i z i z z i +===-++. 第三章 复习参考题B 组(P63)1、设z a bi =+(,a b R ∈),则z a bi =-.由(12)43i z i +=+,得(12)()43i a bi i +-=+,化简,得(2)(2)43a b a b i i ++-=+.根据复数相等的条件,有2423a b a b +=⎧⎨-=⎩,解得2a =,1b =.于是2z i =+,2z i =-,则234255z i i i z +==+-. 2、(1)(2)对任意n N ∈,有41n i i +=,421n i +=-,43n i i +=-,441n i +=.。
人教版高中数学文科选修1-2同步练习题、期中、期末复习资料、补习资料:47复数的概念与运算(文)

复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。
2.理解复数相等的充要条件。
3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。
4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。
5. 会进行复数乘法和除法运算。
【要点梳理】知识点一:复数的基本概念 1.虚数单位数叫做虚数单位,它的平方等于,即。
要点诠释:①是-1的一个平方根,即方程的一个根,方程的另一个根是;②可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。
2. 复数的概念形如()的数叫复数,记作:();其中:叫复数的实部,叫复数的虚部,是虚数单位。
全体复数所成的集合叫做复数集,用字母 表示。
要点诠释:复数定义中,容易忽视,但却是列方程求复数的重要依据. 3.复数的分类对于复数()若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。
分类如下:用集合表示如下图:i i 1-21i =-i 21x =-21x =-i -i a bi +,a b R ∈z a bi =+,a b R ∈a b i C ,a b R ∈z a bi =+,a b R ∈4.复数集与其它数集之间的关系(其中为自然数集,为整数集,为有理数集,为实数集,为复数集。
)知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:. 要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”. 知识点三、复数的加减运算 1.复数的加法、减法运算法则:设,(),我们规定:要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。
高中数学选修1-2精品学案:第四章 数系的扩充与复 数的引入 复数代数形式的加减运算及其几何意义

第2课时复数代数形式的加减运算及其几何意义1.理解复数代数形式的加减运算规律.2.复数的加减与向量的加减的关系.重点:正确理解复数的加减运算,复数加减运算的几何意义.难点:对比复数加减法与向量加减法的异同,从而理解复数的几何意义.实数可以进行加减运算,并且具有丰富的运算律,其运算结果仍是实数;多项式也有相应的加减运算和运算律;对于引入的复数,其代数形式类似于一个多项式,当然它也应有加减运算,并且也有相应的运算律.问题1:依据多项式的加法法则,得到复数加法的运算法则.设z1=a+b i,z2=c+d i是任意两个复数,那么(a+b i)+(c+d i)=(a+c)+(b+d)i,很明显,两个复数的和仍然是一个确定的复数.问题2:复数的加法满足交换律、结合律.即z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).问题3:利用向量加法讨论复数加法的几何意义向量加法遵循平行四边形法则,在直角坐标系中从横纵坐标上分析就是横纵坐标分别相加.故复数相加就是实部与虚部分别相加得到一个新的复数.问题4:如何理解复数的减法?复数减法是复数加法的逆运算.向量减法遵循三角形法则,在直角坐标系中从横纵坐标上分析就是横纵坐标分别相减.故复数相减就是实部与虚部分别相减得到一个新的复数.十八世纪末十九世纪初,著名的德国数学家高斯在证明代数基本定理“任何一元n次方程在复数集内有且仅有n个根”时,就应用并论述了卡尔丹所设想的新数,并首次引进了“复数”这个名词,把复数与平面内的点一一对应起来,创立了复平面,依赖于平面内的点或有向线段(向量)建立了复数的几何基础.这样历经300年的努力,数系从实数系到复数系的扩张才基本完成,复数才被人们广泛承认和使用.1.设z1=3-4i,z2=-2+3i,则z1-z2在复平面内对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限【解析】(3-4i)-(-2+3i)=5-7i.【答案】D2.(2-i)+(3+i)+(4+i)+(5+i)-i(其中i为虚数单位)等于().A.10B.10+2iC.14D.14+2i【解析】(2-i)+(3+i)+(4+i)+(5+i)-i=2+3+4+5+(-+1++-)i=14.【答案】C3.复数z1=9+3i,z2=-5+2i,则z1-z2=.【解析】z1-z2=(9+3i)-(-5+2i)=14+i.【答案】14+i4.已知复数z1=7-6i,z1+z2=-4+3i.(1)求z2;(2)求z1-2z2.【解析】(1)z2=(z1+z2)-z1=(-4+3i)-(7-6i)=-11+9i.(2)z1-2z2=(7-6i)-2(-11+9i)=7-6i+22-18i=29-24i.复数代数形式的加减法运算(1)z1=2+3i,z2=-1+2i,求z1+z2,z1-z2;(2)计算:(+i)+(2-i)-(-i);(3)计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2019+2019i)+(2019-2019i).【方法指导】依据复数代数形式的加减运算法则以及运算律求解.【解析】(1)z1+z2=2+3i+(-1+2i)=1+5i,z1-z2=2+3i-(-1+2i)=3+i.(2)+i+(2-i)-(-i)=(+2-)+(-1+)i=1+i.(3)(法一)原式=[(1-2)+(3-4)+…+(2019-2019)+2019]+[(-2+3)+(-4+5)+…+(-2019+2019)-2019]i=(-1006+2019)+(1006-2019)i=1007-1008i.(法二)(1-2i)+(-2+3i)=-1+i,(3-4i)+(-4+5i)=-1+i,(2019-2019i)+(-2019+2019i)=-1+i,将以上各式(共1006个)相加可知:原式=1006(-1+i)+(2019-2019i)=1007-1008i.【小结】几个复数相加减,运算法则为这些复数的所有实部相加减,所有虚部相加减.第(3)小题的解法一是从整体上把握,将计算分实部和虚部进行,有机构造特殊数列的和进而求得结果.解法二是从局部入手,抓住了式中相邻两项和的特点,恰当地分组使计算得以简化.复数代数形式加减运算的几何意义在复平面内,A、B、C分别对应复数z1=1+i,z2=5+i,z3=3+3i,以AB、AC为邻边作一个平行四边形ABDC,求D点对应的复数z4及AD的长.【方法指导】根据复数加减运算的几何意义可以把复数的加减运算转化为向量的坐标运算.【解析】如图所示:对应复数z3-z1,对应复数z2-z1,对应复数z4-z1.由复数加减运算的几何意义得=+,∴z4-z1=(z2-z1)+(z3-z1),∴z4=z2+z3-z1=(5+i)+(3+3i)-(1+i)=7+3i,∴AD的长为||=|z4-z1|=|(7+3i)-(1+i)|=|6+2i|=2.【小结】利用向量进行复数的加减运算时,同样满足平行四边形法则和三角形法则.复数加减法运算的几何意义为应用数形结合思想解决复数问题提供了可能.复数加减运算的综合应用已知实数a>0,b>0,复数z1=a+5i,z2=3-b i,|z1|=13,|z2|=5,求z1+z2.【方法指导】利用两复数的模,可求得a,b的值,再求z1+z2.【解析】由题意得∴∴z1=12+5i,z2=3-4i,∴z1+z2=15+i.【小结】本题结合了复数的模与复数的加法,表面看着难,其实难度不大.复数z1=2+3i,z2=4-5i,z3=-6i,求z1+z2-z3,并说明z1+z2-z3在复平面内对应的点所在的象限.【解析】z1+z2-z3=(2+3i)+(4-5i)-(-6i)=6+4i,z1+z2-z3在复平面内对应的点为(6,4),在第一象限.如图所示,平行四边形OABC的顶点O、A、C分别表示0、3+2i、-2+4i.求:(1)表示的复数;(2)表示的复数;(3)表示的复数.【解析】(1)因为=-,所以表示的复数为-3-2i.(2)因为=-,所以表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为=+,所以表示的复数为(3+2i)+(-2+4i)=1+6i.已知实数a∈R,复数z1=a+2-3a i,z2=6-7i,若z1+z2为纯虚数,求a的值.【解析】z1+z2=(a+2-3a i)+(6-7i)=a+8-(3a+7)i,∴z1+z2为纯虚数,∴∴a=-8.1.复数z1=-3+4i,z2=6-7i,则z1+z2等于().A.3-3iB.3+3iC.-9+11iD.-9-3i【答案】A2.复数(3+i)m-(2+i)对应的点在第三象限内,则实数m的取值范围是().A.m<B.m<1C.<m<1D.m>1【解析】(3+i)m-(2+i)=(3m-2)+(m-1)i,∴点(3m-2,m-1)在第三象限,∴即m<.【答案】A3.复数z1=-2+3i,z2=4+3i,则z1-z2=.【解析】z1-z2=(-2+3i)-(4+3i)=-6.【答案】-64.已知a∈R,复数z1=2+(a+2)i,z2=a2+2a-1+3i,若z1+z2为实数,求z1-z2.【解析】z1+z2=a2+2a+1+(a+5)i,∴a∈R,z1+z2为实数,∴a+5=0,∴a=-5,∴z1=2-3i,z2=14+3i,∴z1-z2=-12-6i.在复平面内,A,B,C三点对应的复数分别为1,2+i,-1+2i.(1)求向量,,对应的复数;(2)判断∈ABC的形状.【解析】(1)=-=(2+i)-1=1+i,=-=(-1+2i)-1=-2+2i,=-=(-1+2i)-(2+i)=-3+i,所以,,对应的复数分别为1+i,-2+2i,-3+i.(2)因为||2=10,||2=8,||2=2,所以有||2=||2+||2,所以∈ABC为直角三角形.1.向量对应的复数是5-4i,向量对应的复数是-5+4i,则+对应的复数是().A.-10+8iB.10-8iC.0D.10+8i【解析】+对应的复数为5-4i+(-5+4i)=0.【答案】C2.复数z1=1-5i,z2=-2+i,则z1-z2在复平面内对应的点在().A.第一象限B.第二象限C.第三象限D.第四象限【解析】z1-z2=(1-5i)-(-2+i)=3-6i,对应的点为(3,-6),该点位于第四象限.【答案】D3.复数z1=5-12i,z2=4+7i,则z1-z2=.【解析】z1-z2=(5-12i)-(4+7i)=1-19i.【答案】1-19i4.已知z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i(x,y∈R).设z=z1-z2且z=13-2i,求z1,z2.【解析】z=z1-z2=(3x+y)+(y-4x)i-[(4y-2x)-(5x+3y)i]=[(3x+y)-(4y-2x)]+[(y-4x)+(5x+3y)]i=(5x-3y)+(x+4y)i,又z=13-2i,且x,y∈R,则解得故z1=(3×2-1)+(-1-4×2)i=5-9i,z2=4×(-1)-2×2-[5×2+3×(-1)]i=-8-7i.5.复平面内点A,B,C对应的复数分别为i,1,4+2i,由A→B→C→D按逆时针顺序作平行四边形ABCD,则||等于().A.5B.C.D.【解析】如图所示,∈ABCD四个顶点对应复数分别为z1=i,z2=1,z3=4+2i,z4,则有=+,=(z1-z2)+(z3-z2)=2+3i,故||==.【答案】B6.已知复数z1,z2,有|z1|=5,|z2|=12,|z1+z2|=13,则|z1-z2|为().A.8B.10C.12D.13【解析】利用向量结合复数分析可知构成的平行四边形为矩形,故对角线相等.【答案】D7.已知实数a>0,复数z1=a+2i,z2=3+5i,|z1-z2|=5,则a的值为.【解析】z1-z2=a-3-3i(a∈R),∴|z1-z2|=5,∴=25,∴a-3=±4,又a>0,∴a=7.【答案】78.已知f(z)=2z+2-i,z0=1+2i,f(z0-z1)=6-3i,z∈C,求复数z1,f(|z0+z1|).【解析】由已知得2z0-2z1+2-i=6-3i,z0=1+2i,∴2+4i-2z1+2-i=6-3i,即4+3i-2z1=6-3i,∴2z1=(4+3i)-(6-3i)=(4-6)+(3+3)i=-2+6i,∴z1=-1+3i,∴|z0+z1|=|(1+2i)+(-1+3i)|=|5i|=5,∴f(|z0+z1|)=f(5)=2×5+2-i=12-i.9.已知复数z的模为2,则|z-i|的最大值为.【解析】(法一)∴|z|=2,∴|z-i|≤|z|+|i|=2+1=3.(法二)设w=z-i,则w+i=z,∴|w+i|=|z|=2.w表示以点(0,-1)为圆心,以2为半径的圆,由图知,圆上到原点的距离以|OP|为最大,最大值是3.【答案】310.已知a,b∈R,若复数z1=a+b i,|z1|=4,z2=b-a i,求|z1+z2|,|z1-z2|.【解析】∴|z1|=4,∴=4,a2+b2=16.∴z1+z2=(a+b)+(b-a)i,∴|z1+z2|====4.∴z1-z2=(a-b)+(b+a)i,∴|z1-z2|====4.。
高中数学人教B版选修1-2练习课件3.2.2 复数的乘法和除法精选ppt课件

=-32+(12+2 3)i,对应点在第二象限.
答案:B
知识点二
共轭复数
3.[2013·福建高考]已知复数z的共轭复数= 1+2i(i为虚数单位),则z在复平面内对应的点位于 ()
A. 第一象限 B. 第二象限
C. 第三象限 D. 第四象限
解析:由条件知:z=1-2i,其在复平面内 对应的点为(1,-2),在第四象限,选D.
答案:B
知识点三
虚数单位i的幂的周期性
5.计算:i+i2+i3+…+i2014.
解:解法一:原式=i1- 1-i2i014=i[1-1-i2i1007] =i·11-+i1=2i12+i=-1+i. 解法二:∵i+i2+i3+i4=i-1-i+1=0, ∴in+in+1+in+2+in+3=0(n∈N*). ∴原式=(i+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2009+ i2010+i2011+i2012)+i2013+i2014 =0+i-1=-1+i.
课后提升训练
温馨提示:请点击按扭进入WORD文档作业
再见
选修1-2 章 数系的扩3.充2 与复复数数的的运引算入
课时作业41 复数的乘法和除法
[目标导航] 1.掌握复数代数形式的乘法和除法运算法 则. 2.理解复数乘法的交换律、结合律和乘法 对加法的分配律.
1 课堂对点训练 2 课后提升训练
课堂对点训练
知识点一
复数的乘除运算
1.[2013·浙江高考]已知i是虚数单位,则 (-1+i)(2-i)=( )
答案:D
为共轭4复.数[2,01则4·|陕z1西|=高|z考2|]”原,命关题于为其“逆若命z1,题z,2互否 命题,逆否命题真假性的判断依次如下,正确的 是( )
高中数学选修1-2课时作业9:习题课 复 数

习题课 复 数一、选择题1.复数lg(m 2+2m +1)+(m 2+3m +2)i 是纯虚数,则实数m 的值是( )A.0B.1C.2D.32.复数1-2+i +11-2i 的虚部是( )A.15iB.15C.-15iD.-153.若(m 2-1)+(m 2-2m )i>0,则实数m 的值为( )A.1B.-1C.2D.04.复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.i 是虚数单位,若2+i1+i =a +b i(a ,b ∈R ),则a +b 的值是( )A.0B.12C.1D.26.设z =1+i(i 是虚数单位),则2z +z 2等于( )A.-1+iB.-1-iC.1+iD.1-i7.在复平面内,复数10i3+i 对应的点的坐标为( )A.(1,3)B.(3,1)C.(-1,3)D.(3,-1)8.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i 的点是()A.EB.FC.GD.H二、填空题9.已知z 1=3+i ,z 2=1-3i ,则z 1·z 2在复平面内对应的点位于第______象限.10.已知|z |=3,且z +3i 是纯虚数,则z =________.11.若复数z 在复平面内的对应点在第二象限,|z |=5,z 在复平面内的对应点在直线y =43x 上,则z =________.三、解答题12.复数z =a 2-a -6+a 2+2a -15a 2-4i ,要使z 为纯虚数,实数a 是否存在?若存在求出实数a 的值;若不存在,说明理由.13.已知z 1、z 2为复数,(1+3i)z 1为纯虚数,z 2=z 12+i,且z 2·z 2=50,求z 2.[答案]精析1.A [⎩⎪⎨⎪⎧lg (m 2+2m +1)=0,m 2+3m +2≠0,解得m =0,故选A.] 2.B [1-2+i +11-2i=-2-i 5+1+2i 5=-15+15i.故选B.] 3.C [因为虚数不能比较大小,所以(m 2-1)+(m 2-2m )i 是实数,即⎩⎪⎨⎪⎧m 2-1>0,m 2-2m =0,解得m =2.故选C.] 4.D [z =(3+i)(1-i)=4-2i ,所以复数z 对应的点Z (4,-2)在第四象限.]5.C [∵a +b i =2+i 1+i =(2+i )(1-i )(1+i )(1-i )=3-i 2,a ,b ∈R , ∴a =32,b =-12,∴a +b =1.] 6.C [2z +z 2=21+i+(1+i)2=1-i +2i =1+i.] 7.A [10i 3+i =10i (3-i )(3+i )(3-i )=10+30i 10=1+3i. ∴复数10i 3+i对应的点的坐标为(1,3).] 8.D [由题图知,复数z =3+i ,∴z 1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i. ∴表示复数z 1+i的点为H .] 9.四[解析] z 1·z 2=(3+i)(1-3i)=6-8i , 对应的点(6,-8)位于第四象限.10.3i[解析] 设z =a +b i(a 、b ∈R ),∵|z |=3,∴a 2+b 2=9.又w =z +3i =a +b i +3i =a +(b +3)i 为纯虚数, ∴⎩⎪⎨⎪⎧ a =0,b +3≠0,即⎩⎪⎨⎪⎧ a =0,b ≠-3,又a 2+b 2=9,∴a =0,b =3.∴z =3i.11.-3+4i[解析] 设z =3t +4t i(t ∈R ),则z =3t -4t i ,∵|z |=5,∴9t 2+16t 2=25,∴t 2=1, ∵z 的对应点在第二象限,∴t <0,∴t =-1,∴z =-3+4i.12.解 假设z 为纯虚数,则⎩⎪⎨⎪⎧ a 2-a -6=0,a 2-2a -15a 2-4≠0由a 2-a -6=0,得a =-2或a =3.当a =-2时,a 2+2a -15a 2-4无意义; 当a =3时,a 2+2a -15a 2-4=0不合题意;所以不存在a ,使z 为纯虚数.13.解 设z 1=a +b i(a ,b ∈R ),则(1+3i)z 1=a -3b +(3a +b )i. 由题意得a =3b ≠0.z 2=z 12+i =2a +b +(2b -a )i 5=7b -b i 5,z 2·z 2=50b 225=50,解得b =±5. 所以z 2=7-i 或z 2=-7+i.。
人教版数学高二选修1-2作业3.2复数的运算
(限时:10分钟)1.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2iB .2+iC .2+2iD .3+i解析:z 1·z 2=(1+i)·(3-i)=1×3-i×i+(3-1)i =4+2i ,故选A.答案:A2.已知i 2=-1,则i(1-3i)=( )A.3-iB.3+i C .-3-i D .-3+i解析:i(1-3i)=i -3i 2=3+i.答案:B3.复数i 1-2i(i 为虚数单位)的虚部是( ) A.15i B .-15 C .-15i D.15解析:i 1-2i=i 1+2i 1-2i 1+2i =1+2i 25=-25+15i ,其虚部为15,故选D. 答案:D4.已知a =-3-i 1+2i,那么a 4=__________. 解析:∵a =-3-i 1+2i=-3-i 1-2i 5=-1+i , ∴a 4=2=(-2i)2=-4.答案:-45.设复数z 满足|z |=1,且(3+4i)·z 是纯虚数,求z .解析:设z =a +b i(a ,b ∈R ).由|z |=1,得a 2+b 2=1.由题意,得(3+4i)·z =(3+4i)(a +b i)=3a -4b +(4a +3b )i 是纯虚数,则⎩⎪⎨⎪⎧ 3a -4b =0,4a +3b ≠0.由⎩⎨⎧ a 2+b 2=1,3a -4b =0,4a +3b ≠0,解得⎩⎪⎨⎪⎧ a =45,b =35,或⎩⎪⎨⎪⎧ a =-45,b =-35.∴z =45+35i 或z =-45-35i.∴z =45-35i 或z =-45+35i.(限时:30分钟)1.⎪⎪⎪⎪⎪⎪21+i =( ) A .2 2 B .2 C. 2 D .1解析:21+i =21-i 1-i 1+i =21-i 2=1-i , 所以⎪⎪⎪⎪⎪⎪21+i =|1-i|=2,选C . 答案:C 2.复数(1+i)2(2+3i)的值为( )A .6-4iB .-6-4iC .6+4iD .-6+4i解析:(1+i)2(2+3i)=2i(2+3i)=-6+4i.答案:D3.在复平面内,复数5i 2-i的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限解析:5i 2-i =5i 2+i 2-i 2+i =5i 2+i5=-1+2i ,对应的点的坐标为(-1,2),所以在第二象限.答案:B4.设a 是实数,且1+a i 1+i∈R ,则实数a =( ) A .-1 B .1 C .2 D .-2解析:因为1+a i 1+i ∈R ,所以不妨设1+a i 1+i=x ,x ∈R ,则1+a i =(1+i)x =x +x i ,所以有⎩⎪⎨⎪⎧ x =1,a =x ,所以a =1.答案:B5.若复数z =2i +21+i,其中i 是虚数单位,则复数z 的模为( )A.22B. 2C. 3 D .2 解析:由题意,得z =2i +21+i=2i +21-i 1+i 1-i =1+i ,复数z 的模|z |=12+12= 2.答案:B6.i 是虚数单位,i +i 2+i 3+i 4+…+i2 013=__________. 解析:因为i4n +1+i 4n +2+i 4n +3+i 4n =0(n ∈Z ), 所以i +i 2+…+i2 013=i.答案:i 7.已知复数2-a i i=1-b i ,其中a ,b ∈R ,i 是虚数单位,则|a +b i|=__________. 解析:由2-a i i=1-b i ,得2-a i =i(1-b i)=i -b i 2=b +i ,所以b =2,-a =1,即a =-1,b =2,所以|a +b i|=|-1+2i|= 5.答案: 58.投掷两颗骰子,其向上的点数分别为m 和n ,则复数(m +n i)2为纯虚数的概率为__________.解析:设掷两颗骰子共有36种结果.因为(m +n i)2=m 2-n 2+2mn i ,所以要使复数(m +n i)2为纯虚数,则有m 2-n 2=0,即m =n ,共有6种结果,所以复数(m +n i)2为纯虚数的概率为636=16. 答案:169.计算:i -2i -11+i i -1+i +-3-2i 2-3i . 解析:因为i -2i -11+i i -1+i =i -2i -1i 2-1+i =i -2i -1-2+i=i -1, -3-2i 2-3i =-3-2i 2+3i 2-3i2+3i =-13i 13=-i , 所以i -2i -11+i i -1+i +-3-2i 2-3i=i -1+(-i)=-1. 10.已知复数z =3+b i(b ∈R ),且(1+3i)·z 为纯虚数.(1)求复数z .(2)若w =z 2+i,求复数w 的模|w |. 解析:(1)(1+3i)·(3+b i)=(3-3b )+(9+b )i.因为(1+3i)·z 为纯虚数,所以3-3b =0,且9+b ≠0,所以b =1,所以z =3+i.(2)w =3+i 2+i =3+i ·2-i 2+i ·2-i =7-i 5=75-15i , 所以|w |=⎝ ⎛⎭⎪⎫752+⎝ ⎛⎭⎪⎫-152= 2. 11.设i 为虚数单位,复数z 和ω满足zω+2i z -2i w +1=0.(1)若z 和ω满足ω-z =2i ,求z 和ω的值.(2)求证:如果|z |=3,那么|ω-4i|的值是一个常数.并求这个常数. 解析:(1)因为ω-z =2i ,所以z =ω-2i.代入zω+2i z -2i ω+1=0,得(ω-2i)(ω+2i)-2i ω+1=0,所以ωω-4i ω+2i ω+5=0.设ω=x +y i(x ,y ∈R ),则上式可变为(x +y i)(x -y i)-4i(x +y i)+2i(x -y i)+5=0.所以x 2+y 2+6y +5-2x i =0.所以⎩⎪⎨⎪⎧ x 2+y 2+6y +5=0,2x =0,所以⎩⎪⎨⎪⎧ x =0,y =-1,或⎩⎪⎨⎪⎧ x =0,y =-5.所以ω=-i ,z =-i 或ω=-5i ,z =3i.(2)由zω+2i z -2i ω+1=0,得z (ω+2i)=2i ω-1,所以|z ||ω+2i|=|2i ω-1|.①设ω=x +y i(x ,y ∈R ),则|ω+2i|=|x +(y +2)i|=x 2+y +22=x 2+y 2+4y +4.|2i ω-1|=|-(2y +1)+2x i|=[-2y +1]2+4x 2 =4x 2+4y 2+4y +1.又|z |=3, 所以①可化为3(x 2+y 2+4y +4)=4x 2+4y 2+4y +1.所以x 2+y 2-8y =11.所以|ω-4i|=|x +(y -4)i|=x 2+y -42。
人教A版数学高二选修1-2学案复数的几何意义
3.1.2 复数的几何意义预习课本P52~53,思考并完成下列问题 (1)复平面是如何定义的,复数的模如何求出?(2)复数与复平面内的点及向量的关系如何?复数的模是实数还是复数?[新知初探]1.复平面2.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b )(2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→.3.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). [点睛] 实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.()(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.()(3)复数的模一定是正实数.()答案:(1)√(2)×(3)×2.已知复数z=i,复平面内对应点Z的坐标为()A.(0,1)B.(1,0)C.(0,0)D.(1,1)答案:A3.向量a=(1,-2)所对应的复数是()A.z=1+2i B.z=1-2iC.z=-1+2i D.z=-2+i答案:B4.已知复数z的实部为-1,虚部为2,则|z|=________.答案: 5复数与点的对应关系[典例]求实数a分别取何值时,复数z=aa+3+(a2-2a-15)i(a∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内.(2)在复平面内的x轴上方.[解](1)点Z在复平面的第二象限内,则⎩⎪⎨⎪⎧a2-a-6a+3<0,a2-2a-15>0,解得a<-3.(2)点Z在x轴上方,则⎩⎪⎨⎪⎧a2-2a-15>0,a+3≠0,即(a+3)(a-5)>0,解得a>5或a<-3.[一题多变]1.[变设问]本例中题设条件不变,求复数z表示的点在x轴上时,实数a的值.解:点Z 在x 轴上,所以a 2-2a -15=0且a +3≠0, 所以a =5.故a =5时,点Z 在x 轴上.2.[变设问]本例中条件不变,如果点Z 在直线x +y +7=0上,求实数a 的值. 解:因为点Z 在直线x +y +7=0上, 所以a 2-a -6a +3+a 2-2a -15+7=0,即a 3+2a 2-15a -30=0,所以(a +2)(a 2-15)=0,故a =-2或a =±15.所以a =-2或a =±15时,点Z 在直线x +y +7=0上.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i(a ,b ∈R)可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R), 由|z |=5得a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|=a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1, 即-1<a <1. [答案] (1)D (2)B复数模的计算(1)计算复数的模时,应先确定复数的实部和虚部,再利用模长公式计算.虽然两个虚数不能比较大小,但它们的模可以比较大小.(2)设出复数的代数形式,利用模的定义转化为实数问题求解. [活学活用]1.如果复数z =1+a i 满足条件|z |<2,那么实数a 的取值范围是( ) A .(-22,22) B .(-2,2) C .(-1,1)D .(-3,3)解析:选D 因为|z |<2,所以1+a 2<2,则1+a 2<4,a 2<3,解得-3<a < 3. 2.求复数z 1=6+8i 与z 2=-12-2i 的模,并比较它们的模的大小.解:∵z 1=6+8i ,z 2=-12-2i ,∴|z 1|=62+82=10, |z 2|=⎝⎛⎭⎫-122+(-2)2=32. ∵10>32,∴|z 1|>|z 2|.复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C(1)以原点为起点的向量表示的复数等于它的终点对应的复数;向量平移后,此向量表示的复数不变,但平移前后起点、终点对应的复数要改变.(2)复数的模从几何意义上来讲,表示复数对应的点到原点的距离,类比向量的模,可以进一步引申|z -z 1|表示点Z 到点Z 1之间的距离.如|z -i|=1表示点Z 到点(0,1)之间的距离为1.[活学活用]在复平面内画出下列复数对应的向量,并求出各复数的模. z 1=1-i ;z 2=-12+32i ;z 3=-2;z 4=2+2i.解:在复平面内分别画出点Z 1(1,-1),Z 2-12,32,Z 3(-2,0),Z 4(2,2),则向量OZ 1――→,OZ 2――→, OZ 3――→,OZ 4――→分别为复数z 1,z 2,z 3,z 4对应的向量,如图所示.各复数的模分别为:|z 1|=12+(-1)2=2; |z 2|=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1; |z 3|=(-2)2=2;|z 4|=22+22=2 2.层级一 学业水平达标1.与x 轴同方向的单位向量e 1与y 轴同方向的单位向量e 2,它们对应的复数分别是( )A .e 1对应实数1,e 2对应虚数iB .e 1对应虚数i ,e 2对应虚数iC .e 1对应实数1,e 2对应虚数-iD .e 1对应实数1或-1,e 2对应虚数i 或-i 解析:选A e 1=(1,0),e 2=(0,1).2.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D ∵23<m <1,∴3m -2>0,m -1<0,∴点(3m -2,m -1)在第四象限.3.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( )A .(1,3)B .(1,5)C .(1,3)D .(1,5)解析:选B |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5).5.复数z =1+cos α+isin α(π<α<2π)的模为( ) A .2cos α2B .-2cos α2C .2sin α2D .-2sin α2解析:选B |z |=(1+cos α)2+sin 2α=2+2cos α=4cos 2α2=2|cos α2|.∵π<α<2π,∴π2<α2<π,cos α2<0,于是|z |=-2cos α2. 6.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.解析:由点(3,-5),(1,-1),(-2,a )共线可知a =5. 答案:57.过原点和3-i 对应点的直线的倾斜角是________. 解析:∵3-i 在复平面上的对应点是(3,-1), ∴tan α=-1-03-0=-33(0≤α<π),∴α=5π6.答案:5π69.设z 为纯虚数,且|z -1|=|-1+i|,求复数z . 解:∵z 为纯虚数,∴设z =a i(a ∈R 且a ≠0),又|-1+i|=2,由|z -1|=|-1+i|, 得a 2+1=2,解得a =±1,∴z =±i.10.已知复数z =m (m -1)+(m 2+2m -3)i(m ∈R). (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面内,z 所对应的点在第四象限,求m 的取值范围. 解:(1)∵z 为实数,∴m 2+2m -3=0, 解得m =-3或m =1. (2)∵z 为纯虚数,∴⎩⎪⎨⎪⎧ m (m -1)=0,m 2+2m -3≠0. 解得m =0. (3)∵z 所对应的点在第四象限,∴⎩⎪⎨⎪⎧m (m -1)>0,m 2+2m -3<0. 解得-3<m <0. 故m 的取值范围为(-3,0).层级二 应试能力达标1.已知复数z 1=2-a i(a ∈R)对应的点在直线x -3y +4=0上,则复数z 2=a +2i 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 复数z 1=2-a i 对应的点为(2,-a ),它在直线x -3y +4=0上,故2+3a +4=0,解得a =-2,于是复数z 2=-2+2i ,它对应点的点在第二象限,故选B.2.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( ) A .a ≠2或a ≠1 B .a ≠2且a ≠1 C .a =0D .a =2或a =0解析:选D ∵z 在复平面内对应的点在虚轴上, ∴a 2-2a =0,解得a =2或a =0.3.若x ,y ∈R ,i 为虚数单位,且x +y +(x -y )i =3-i ,则复数x +y i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A ∵x +y +(x -y )i =3-i ,∴⎩⎪⎨⎪⎧x +y =3,x -y =-1,解得⎩⎪⎨⎪⎧x =1,y =2,∴复数1+2i 所对应的点在第一象限.4.在复平面内,复数z 1,z 2对应点分别为A ,B .已知A (1,2),|AB |=25,|z 2|=41,则z 2=( )A .4+5iB .5+4iC .3+4iD .5+4i 或15+325i解析:选D 设z 2=x +y i(x ,y ∈R),由条件得,⎩⎪⎨⎪⎧ (x -1)2+(y -2)2=20,x 2+y 2=41. ∴⎩⎪⎨⎪⎧x =5,y =4或⎩⎨⎧x =15,y =325.故选D.5.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________.解析:由条件知⎩⎪⎨⎪⎧m 2+2m -3≠0,m 2-9=0,∴m =3,∴z =12i ,∴|z |=12.答案:126.已知复数z =x -2+y i 的模是22,则点(x ,y )的轨迹方程是________. 解析:由模的计算公式得 (x -2)2+y 2=22,∴(x -2)2+y 2=8. 答案:(x -2)2+y 2=87.已知复数z 0=a +b i(a ,b ∈R),z =(a +3)+(b -2)i ,若|z 0|=2,求复数z 对应点的轨迹.解:设z =x +y i(x ,y ∈R),则复数z 的对应点为P (x ,y ),由题意知⎩⎪⎨⎪⎧x =a +3,y =b -2,∴⎩⎪⎨⎪⎧a =x -3,b =y +2. ① ∵z 0=a +b i ,|z 0|=2,∴a 2+b 2=4. 将①代入得(x -3)2+(y +2)2=4.∴点P 的轨迹是以(3,-2)为圆心,2为半径的圆.8.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 解:(1)|z 1|= (3)2+12=2,|z 2|=⎝⎛⎭⎫-122+322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.。
高中数学选修1-2精品学案:第四章 数系的扩充与复 数的引入 第1课时 数系的扩充和复数的概念
第1课时数系的扩充和复数的概念1.了解引进复数的必要性,理解并掌握虚数单位i.2.理解复数的代数形式,复数虚部与实部.3.实数集、复数集、虚数集与纯虚数集的关系.重点:掌握复数的实部与虚部;实数、复数、虚数、纯虚数与复数的代数形式的实部、虚部的关系;两复数相等的充要条件.难点:体会复数问题实数化的过程.由于解方程的需要推动了数的发展,为了使类似x+5=3的方程有解,引入了负数;为了使类似5x=3的方程有解,引入了分数;为了使类似x2=3的方程有解,引入了无理数.但引入无理数后,类似x2=-1的方程在实数范围内仍然没解.问题1:为了得到方程x2=-1的解,需引入虚数单位i,试给出虚数单位i的定义?虚数单位i满足它的平方等于-1,即i2=-1.问题2:(1)复数:形如a+b i(a,b∈R)的数叫作复数.(2)复数集:全体复数所成的集合叫作复数集,用字母C表示.(3)复数的代数形式:复数通常用字母z表示,把复数表示成a+b i(a,b∈R)的形式,其中a与b分别叫作复数的实部与虚部.(4)两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果a、b、c、d∈R,那么a+b i=c+d i∈a=c,b=d.问题3:复数z=a+b i(a,b∈R),当b=0时,复数z是实数;当b≠0时,复数z是虚数;当时,复数z是纯虚数.问题4:两复数可不可以比较大小?当两复数是实数时,两复数可以比较大小;当两复数有一个是虚数时,两复数不能比较大小,只能分析两复数相不相等.“复数”“虚数”这两个名词,都是人们在解方程时引入的.为了用公式求一元二次、三次方程的根,就会遇到求负数的平方根的问题.1545年,意大利数学家卡丹诺在《大术》一书中,首先研究了虚数,并进行了一些计算.1.“a=0”是“复数a+b i(a,b∈R)为纯虚数”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】a=0时,a+b i(a,b∈R)可能为纯虚数,也可能为0;a+b i为纯虚数时,a=0.所以答案为B.【答案】B2.复数z=-3-10i的实部是().A.3B.-3C.-10iD.10【解析】复数z=-3-10i的实部是-3.【答案】B3.若复数z1=a+|b|i,z2=c+|d|i(a、b、c、d∈R),则z1=z2的充要条件是.【解析】z1=z2,则它们的实部与虚部分别相等,即a=c且|b|=|d|.【答案】a=c且b2=d2(或写成a=c且|b|=|d|)4.判断下列命题的真假:(1)-1的平方根只有一个;(2)i是1的4次方根;(3)i是方程x6-1=0的根;(4)方程x3-x2+x-1=0的根只有一个.【解析】(1)∵(-i)2=i2=-1,∵-i也是-1的平方根,故(1)为假命题.(2)∵i2=-1,∵i4=i2·i2=(-1)2=1,故(2)为真命题.(3)i6-1=i2·i2·i2-1=(-1)3-1=-2≠0,故(3)为假命题.(4)由x3-x2+x-1=0得(x2+1)(x-1)=0,则x2=-1或x=1,即x=±i或x=1都是方程x3-x2+x-1=0的根,故(4)为假命题.对复数概念的理解已知下列命题:①复数a+b i不是实数;②两个复数不能比较大小;③若(x2-4)+(x2+3x+2)i是纯虚数,其中x∈R,则x=±2;④若复数z=a+b i,则当且仅当b≠0时,z为虚数;⑤若a+b i=c+d i,则a=c且b=d.其中真命题的个数是().A.0B.1C.3D.4【方法指导】根据复数的有关概念来判断命题的真假.【解析】①是假命题,因为当a∈R且b=0时,a+b i是实数.②是假命题,因为两个复数都是实数时,可以比较大小.③是假命题,因为由纯虚数的条件得解得x=2.④是假命题,因为没有强调a,b∈R.⑤是假命题,因为没有强调,a,b,c,d∈R这一重要条件,故选A.【答案】A【小结】对于概念的理解注意一些小细节,比如a+b i中要求a∈R,b∈R.复数概念的应用z=+(m2+5m+6)i,当实数m为何值时,(1)z是实数;(2)z是虚数;(3)z是纯虚数?【方法指导】根据复数的分类方式将问题转化为求实部和虚部应满足什么条件.【解析】(1)若z是实数,则得m=-2.(2)若z是虚数,则得m≠-2且m≠-3且m∈R.(3)若z是纯虚数,则得m=3.【小结】①本题考查复数集的分类,给出的是复数的标准代数形式即z=a+b i(a,b∈R),若不然,应先将其化为标准形式,再根据满足的条件去解;②解题中应时刻注意使式子有意义.复数相等的充要条件(1)已知(2x-1)+i=y-(3-y)i,x,y∈R,求x与y.(2)设z1=1+sin θ-icos θ,z2=+(cos θ-2)i,若z1=z2,求θ.【方法指导】确定两复数的实部与虚部,利用两复数相等的定义列方程组,解方程组.【解析】(1)根据复数相等的充要条件,得方程组解得(2)由已知,得故解得θ=2kπ(k∈Z).【小结】复数问题实数化是解决复数相等问题最基本的也是最重要的思想方法,转化过程主要依据复数相等的充要条件.基本思路是:①等式两边整理为a+b i(a,b∈R)的形式;②由复数相等的充要条件可以得到由两个实数等式所组成的方程组;③解方程组,求出相应的参数.下列命题中正确的有.①若z=a+b i(a,b∈R),则当a=0,b≠0时,z为纯虚数;②若(z1-z2)2+(z2-z3)2=0,则z1=z2=z3;③若实数a与a i对应,则实数集与纯虚数集一一对应.【解析】①正确.②错误,只有当z1,z2,z3∈R时才成立;若z1=1,z2=0,z3=i也满足题意.③错误,若a=0,则0·i=0不再是纯虚数.【答案】①复数z=log2(x2-3x-3)+ilog2(x-3),当x为何实数时:(1)z∈R;(2)z为虚数;(3)z为纯虚数?【解析】(1)因为一个复数是实数的充要条件是虚部为零,所以有由②得x=4,经验证满足①.所以当x=4时,z∈R.(2)因为一个复数是虚数的充要条件是虚部非零,所以有解得即<x<4或x>4.所以当<x<4或x>4时,z为虚数.(3)因为一个复数是纯虚数时其实部为零且虚部不为0,所以有解得方程无解,所以复数z不可能是纯虚数.关于a的方程是a2-a tan θ-2-(a+1)i=0,若方程有实数根,求锐角θ和实数根.【解析】设实数根是a,则a2-a tan θ-2-(a+1)i=0,∵a,tan θ∈R,∵∵a=-1且tan θ=1,又0<θ<,∵θ=,a=-1.1.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论中正确的是().A.A∈B=CB.∈S A=BC.A∩(∈S B)=∈D.B∩(∈S A)=B【答案】D2.如果复数z=(a2-3a+2)+(a-1)i为纯虚数,则实数a的值为().A.1或2B.1C.2D.不存在【解析】由a2-3a+2=0和a-1≠0,得a=2.【答案】C3.已知复数z=3-2i,则复数z的实部与虚部的积是.【解析】z=3-2i的实部和虚部分别为3,-2,故答案为-6.【答案】-64.实数m为何值时,复数z=(m2-8m+15)+(m2+3m-28)i在复平面内对应的点:(1)位于第四象限;(2)在x轴的负半轴上?【解析】(1)由已知得∵∵-7<m<3.∵当m∈(-7,3)时,z对应的点在第四象限.(2)由已知得解得m=4,即m=4时,z对应的点在x轴的负半轴上.(2019年·上海卷)设m∈R,m2+m-2+(m2-1)i是纯虚数,其中i是虚数单位,则m=.【解析】∵m2+m-2+(m2-1)i是纯虚数,∵∵m=-2.【答案】-21.复数z=-2+3i的虚部是().A.-2B.2C.3D.3i【解析】复数z=-2+3i的虚部是3.【答案】C2.若复数(2x2+5x+2)+(x2+x-2)i为虚数,则实数x满足().A.x=-B.x=-2或-C.x≠-2D.x≠1且x≠-2【解析】由题意得x2+x-2≠0,∵x≠1且x≠-2.【答案】D3.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},集合N={-1,3},若M∩N={3},则实数m的值为.【解析】由题设知3∈M,∵m2-3m-1+(m2-5m-6)i=3.∵即∵m=-1.【答案】-14.设复数z=ab+(a2+b2)i(a、b∈R),a、b分别满足什么条件时,z是实数、虚数、纯虚数?【解析】当a、b同时为0时,z为实数;当a、b不全为0时,z是虚数;当a、b有且仅有一个为0时,z为纯虚数.5.如果(x+y)i=x-1,则实数x、y的值分别为().A.x=1,y=-1B.x=0,y=-1C.x=1,y=0D.x=0,y=0【解析】根据复数相等的充要条件,可知解得【答案】A6.下列命题中,正确命题的个数是().①若x,y∈C,则x+y i=1+i的充要条件是x=y=1;②若a,b∈R且a>b,则a+i>b+i;③若x2+y2=0,则x=y=0;④一个复数为纯虚数的充要条件是这个复数的实部等于零;⑤-1没有平方根;⑥若a∈R,则(a+1)i是纯虚数.A.0B.1C.2D.3【解析】由于x,y∈C,所以x+y i不一定是复数的代数形式,不符合复数相等的充要条件,①是假命题.由于两个虚数不能比较大小,∵②是假命题.当x=1,y=i时,x2+y2=0成立,∵③是假命题.因为复数为纯虚数要求实部为零,虚部不为零,故④错.因为-1的平方根为±i,故⑤错.当a=-1时,(a+1)i是实数0,故⑥错.【答案】A7.复数z=(a2+2a-3)+(a2-1)i(a∈R)为纯虚数,则复数z的虚部为.【解析】复数z=(a2+2a-3)+(a2-1)i(a∈R)为纯虚数,∵∵∵a=-3,∵a2-1=8,∵复数z的虚部为8.【答案】88.已知m∈R,复数z=+(m2+2m-3)i,当m为何值时:(1)z∈R;(2)z是虚数;(3)z是纯虚数;(4)z=+4i?【解析】(1)m需满足解得m=-3.(2)m需满足m2+2m-3≠0且m-1≠0,解得m≠1且m≠-3.(3)m需满足解得m=0或m=-2.(4)m需满足解得m∈∈.9.已知m、n∈R,复数z1=m2+2n-3+(m+n)i,z2=2m-3n+2+(2m-n)i,若z1=z2,则m+n=.【解析】∵z1=z2,∵∵∵n=1或n=-,m+n=3n,∵m+n的值为3或-.【答案】3或-10.已知复数z1=sin 2x+λi,z2=m+(m-cos 2x)i(λ,m,x∈R),且z1=z2.若λ=0且0<x<π,求x的值.【解析】∵z1=z2,∵∵λ=sin 2x-cos 2x.若λ=0,则sin 2x-cos 2x=0,得tan 2x=.∵0<x<π,∵0<2x<2π,∵2x=或2x=,∵x=或.。
高中数学 选修1-2 9.复数代数形式的加减法运算
9.复数代数形式的加减法运算教学目标 班级______姓名________1.掌握复数加减法运算的法则.2.理解复数加减法的几何意义.3.理解共轭复数的概念.教学目标一、知识要点.1.复数四则运算的法则:设bi a z +=1,di c z +=2(1)复数加法:i d b c a z z )()(21+++=+;(2)复数减法:i d b c a z z )()(21-+-=-;说明:实数的运算定律对于复数同样适用.2.复数加减法的几何意义:复数的和(或差)表示复数对应向量的和(差)向量.二、例题分析.1.复数的加减法运算.例1:计算:(1))43()42(i i -++; (2))23(5i +-;(3))51()2()43(i i i --++--; (4)i i i 4)32()2(++--.练1:计算:(1))21()2()2()21(i i i i -+--++-++;(2))21()21()(12i i i i --++-+++;2.复数加减法的几何意义.例2:如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0,i 23+,i 42+-. 求:(1)AO 表示的复数;(2)对角线CA 表示的复数;(3)对角线OB 表示的复数.练2:复数i z 211+=,i z +-=22,i z 213--=,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.3.复数加减法的综合应用.例3:已知1||||||2121=-==z z z z ,求||21z z +.练3:1||||21==z z ,2||21=+z z .求||21z z -.作业:已知i i z +=-+423,求复数z .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习回顾 一些常用的计算结果
①如果n∈N*有:i4n=1;i4n+1=i,i4n+2=-1;i4n+3=-i. (事实上可以把它推广到n∈Z.)
②设 1
2
3 2
i,则有:
3
1; 2
__
;1
2
0.
__
__
事实上, 与 统称为1的立方虚根,而且对于,也
有类似于上面的三个等式.
③ (1 i)2 2i; 1 i; 1 i i; 1 i i.
解:z2
1i z1
1i 1i
(1 i)2 (1 i)(1 i)
2i i 2
2009浙江高考题
例4.设z 1 i(i是虚数单位),则2 z2
z A. 1 i B. 1 i C.1 i D.1 i
解:原式 2 (1 i)2 2 2i
1 i
1 i
2(1 i) 2i 2(1 i) 2i
(1 i)(1 i)
2
1 i
教参64页第12题
已知 z1为虚数,z2
z1
1 z1
是实数,
且
1
z2
1.
1)求 | z1 |的值以及z1的实部的取值范围
2设 = 1 z1 ,求证为纯虚数
1 z1
解:设z1 a bi(a,b R,且b 0),则
1
1
z2 z1 z1 =a bi+ a bi
=
a
a2a b2源自ba2b
b2
i
z2是实数,b 0
b b b(1 1 ) 0,
a2 b2
a2 b2
a2 b2 1,即| z1 | =1,z2 2a,
由1 z2 1,得 1 2a 1.
解得 1 a 1 ,
2
2
即z1的实部的取值范围
1 2
,1 2
.
(2)= 1 z1 = 1 a bi
i
1i 1i
1.(2012年山东文数)若复数z满足
z(2-i)=11+7i(为虚数单位),则z为( A )
A. 3 5Bi. 3 5iC. 3 5iD. 3 5i
z 11 7i (11 7i)(2 i) 22 7 (14 11)i 3 5i
2i
5
5
练习
1.已知复数z1 1 i, z1 • z2 1 i, 则复数z2 ______
1 z1 1 a bi
1 a2 b2 2bi b
(1 a)2 b2
i a 1
因为a
1 2
,1 2
,
b
0,为纯虚数
例2:如果复数
2 1
2bii(其中i为虚数单位,b为实数)
的实部和虚部互为相反数,那么b等于
A. 2
B. 2
C.- 2
D.2
3
3
解析:2
1
bi 2i
=
(2
bi)(1 5
-
∴2-2b=b+4,b=-
已知z=1+i,z 2 az b
z2 z 1
1i
求实数a,b的值
分析: 代入化简后,通过复数相等,把复数问题转
化为实数问题来解
2i) =
2
3.
2
2b
(b 5
4)i
答案:C
例3:设f(n)=(1 i )n+(1 i )n(n∈Z),则集合
1 i 1i
{x|x=f(n)}中元素的个数是
A.1
B.2
C.3
D.无穷多个
解析:∵f(n)=in+(-i)n, ∴f(0)=2,f(1)=i-i=0,f(2)=-1-1=-2,f(3)=-i+i=0. ∴{x|x=f(n)}={-2,0,2}. 答案:C