实验指导书ARIMA模型建模与预测范本

合集下载

实验一arima模型建立与应用

实验一arima模型建立与应用

实验一 ARIMA 模型建立与应用一、实验项目: ARIMA 模型建立与预测。

二、实验目的1、准确掌握 ARIMA (p,d,q ) 模型各种形式和基本原理;2、熟练识别 ARIMA (p,d,q ) 模型中的阶数 p,d,q 的方法;3、学会建立及检验 ARIMA (p,d,q ) 模型的方法;4、熟练掌握运用 ARIMA (p,d,q ) 模型对样本序列进行拟合和预测; 三、预备知识(一)模型1、AR (p )(p 阶自回归模型)xt 1x t 1 2 xt 2p x t p ut其中u t 白噪声序列,3是常数(表示序列数据没有 0均值化)AR (p )等价于(1 丄 2L 2丄p )X tu tAR (p )的特征方程是:(L ) 1 丄 2L 2pL pAR (p )平稳的充要条件是特征根都在单位圆之外。

2、MA ( q )( q 阶移动平均模型)Xtut 1u t 1 2ut 2q ut qX t (1 1L 2L 2qL q)u t(L )u t其中{u t }是白噪声过程。

MA ( q )平稳性MA (q )是由u t 本身和q 个u t 的滞后项加权平均构造出来的,因此它是平 稳的。

MA (q )可逆性(用自回归序列表示 u t )u t [ (L )] 1X t可逆条件:即[(L )] 1收敛的条件。

即3( L )每个特征根绝对值大于1,即 全部特征根在单位圆之外。

3、ARMA (p , q )(自回归移动平均过程)(L)X t (L)u tARMA (p , q )平稳性的条件是方程◎( 条件是方程3( L ) =0 的根全部在单位圆外。

Xt 1Xt 12 Xt 2p Xtput 1ut 12ut 2q ut2(L)X t (11L 2L 2pL p)X t(11L 2L 2qL q)u t(L)u tL ) =0 的根都在单位圆外;可逆性4、ARIMA (p , d , q )(单整自回归移动平均模型) 差分算子: x t x t x t 1 x t Lx t (1 L)x t2 2X tX t X t 1 (1 L)X t (1 L)X t 1 (1 L) X tddX t (1 L) X t对d 阶单整序列Xt~I(d)w tdX t (1 L)dX t则wt 是平稳序列,于是可对 wt 建立ARMA (p , q )模型,所得到的模型 称为Xt~ARIMA ( p ,d ,q ),模型形式是Wt 1Wt1 2 Wt2 p WtpUt 1Ut 12Ut 2q Ut q(L) dX t(L)u t由此可转化为ARMA 模型。

VR虚拟现实-实验一 ARIMA模型建立与应用 精品

VR虚拟现实-实验一 ARIMA模型建立与应用 精品

实验一 ARIMA 模型建立与应用一、实验项目:ARIMA 模型建立与预测。

二、实验目的1、准确掌握ARIMA(p,d,q)模型各种形式和基本原理;2、熟练识别ARIMA(p,d,q)模型中的阶数p,d,q 的方法;3、学会建立及检验ARIMA(p,d,q)模型的方法;4、熟练掌握运用ARIMA(p,d,q)模型对样本序列进行拟合和预测; 三、预备知识(一)模型1、AR (p )(p 阶自回归模型)t p t p t t t u x x x x +++++=---φφφδ 2211其中u t 白噪声序列,δ是常数(表示序列数据没有0均值化) AR (p )等价于t t p p u x L L L +=----δφφφ)1(221AR (p )的特征方程是:01)(221=----=Φp p L L L L φφφ AR (p )平稳的充要条件是特征根都在单位圆之外。

2、MA (q )(q 阶移动平均模型)q t q t t t t u u u u x ---+++++=θθθμ 2211t t q q t u L u L L L x )()1(221Θ=++++=-θθθμ其中{u t }是白噪声过程。

MA (q )平稳性MA (q )是由u t 本身和q 个u t 的滞后项加权平均构造出来的,因此它是平稳的。

MA (q )可逆性(用自回归序列表示u t )t t x L u 1)]([-Θ=可逆条件:即1)]([-ΘL 收敛的条件。

即Θ(L )每个特征根绝对值大于1,即全部特征根在单位圆之外。

3、ARMA (p ,q )(自回归移动平均过程)q t q t t t p t p t t t u u u u x x x x ------+++++++++=θθθδφφφ 22112211t t qq tp p t u L u L L L x L L L x L )()1()1()(221221Θ+=+++++=----=Φδθθθδφφφt t u L x L )()(Θ+=ΦδARMA (p ,q )平稳性的条件是方程Φ(L )=0的根都在单位圆外;可逆性条件是方程Θ(L )=0的根全部在单位圆外。

实验指导书(ARIMA模型建模与预测)

实验指导书(ARIMA模型建模与预测)

实验指导书(ARIMA 模型建模与预测)例:我国1952-2011年的进出口总额数据建模及预测1、模型识别和定阶(1)数据录入打开 Eviews 软件,选择"File ”菜单中的"New--Workfile ”选项,在"Workfile structure type ”栏选择"Dated -regular frequency”,在"Date specification”栏中分别选择“ Annual ” (年数据),分别在起始年输入 1952,终止年输入 2011,文件名输入 “im_ex ”,点击ok ,见下图,这样就建立了一个工作文件。

在 workfile 中新建序列im_ex , 并录入数据 (点击 File/Import/ReadText-Lotus-Excel …,File | Edit Object View 卩iroc Quick Options Window HelpNew ► □pen iSaveFetch from DB... T5D Fi le Im port-.DRI Bask Economics Database... Read Text-Lctu s-Excel...找到相应的Excel 数据集,打开数据集,出现如下图的窗口,在“ Data order ”选项中 选择“ By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,所以在“ Upper-left data cell ”中输入B15,本例只有一列数据,在“ Namesfor series or number if named in file ”中输入序列的名字 im_ex ,点击ok ,则录入了数据):import Ex port PrintPtFrtl Setup-.,.Excel Spreadthtei Import —JData orderQ By Obssrvalkn「senes h cokums目Y Scries - series in rowiUpper^eft daiacefl Excd 5 4 sheet name Names for scries or Nuniw if named in fteIHIJK IinCKKt sample 1952 2D 11""I Write dak/ote 曰髓比$ H申烧1和rm审tFrst caiiendar dayLast Qtendsr day■Vrltfi senes namesReset iflEpk to:O Current sample-Q WafkHe rangeQ To md af rangeOK | Cwictl(2) 时序图判断平稳性双击序列im_ex,点击view/Graph/line ,得到下列对话框:显著非平稳。

eviews实验指导ARIMA模型建模与预测

eviews实验指导ARIMA模型建模与预测

eviews实验指导ARIMA模型建模与预测在数据分析和时间序列预测的领域中,ARIMA 模型是一种非常强大且实用的工具。

通过eviews 软件来实现ARIMA 模型的建模与预测,可以帮助我们更高效地处理和分析数据,做出更准确的预测。

接下来,让我们逐步深入了解如何使用eviews 进行ARIMA 模型的建模与预测。

首先,我们要明白什么是 ARIMA 模型。

ARIMA 全称为自回归移动平均整合模型(Autoregressive Integrated Moving Average Model),它由三个部分组成:自回归(AR)部分、差分(I)部分和移动平均(MA)部分。

自回归(AR)部分是指当前值与过去若干个值之间存在线性关系。

例如,如果说一个时间序列在 AR(2)模型下,那么当前值就与前两个值有关。

移动平均(MA)部分则表示当前值受到过去若干个随机误差项的线性影响。

差分(I)部分用于将非平稳的时间序列转化为平稳序列。

平稳序列在统计特性上,如均值、方差等,不随时间变化而变化。

在 eviews 中进行 ARIMA 模型建模与预测,第一步是数据的导入和预处理。

打开 eviews 软件后,选择“File”菜单中的“Open”选项,找到我们要分析的数据文件。

数据的格式通常可以是 Excel、CSV 等常见格式。

导入数据后,需要对数据进行初步的观察和分析,了解其基本特征,比如均值、方差、趋势等。

接下来,判断数据的平稳性。

这是非常关键的一步,因为 ARIMA 模型要求数据是平稳的。

我们可以通过绘制时间序列图、计算自相关函数(ACF)和偏自相关函数(PACF)来直观地判断数据的平稳性。

如果时间序列图呈现明显的趋势或周期性,或者自相关函数和偏自相关函数衰减缓慢,那么很可能数据是非平稳的。

对于非平稳的数据,我们需要进行差分处理。

在 eviews 中,可以通过“Quick”菜单中的“Generate Series”选项来实现差分操作。

ARIMA模型预测【范本模板】

ARIMA模型预测【范本模板】

ARIMA模型预测一、模型选择预测是重要的统计技术,对于领导层进行科学决策具有不可替代的支撑作用.常用的预测方法包括定性预测法、传统时间序列预测(如移动平均预测、指数平滑预测)、现代时间序列预测(如ARIMA模型)、灰色预测(GM)、线性回归预测、非线性曲线预测、马尔可夫预测等方法。

综合考量方法简捷性、科学性原则,我选择ARIMA模型预测、GM(1,1)模型预测两种方法进行预测,并将结果相互比对,权衡取舍,从而选择最佳的预测结果。

二ARIMA模型预测(一)预测软件选择-—--R软件ARIMA模型预测,可实现的软件较多,如SPSS、SAS、Eviews、R等。

使用R 软件建模预测的优点是:第一,R是世最强大、最有前景的软件,已经成为美国的主流。

第二,R是免费软件。

而SPSS、SAS、Eviews正版软件极为昂贵,盗版存在侵权问题,可以引起法律纠纷.第三、R软件可以将程序保存为一个程序文件,略加修改便可用于其它数据的建模预测,便于方法的推广。

(二)指标和数据指标是销售量(x),样本区间是1964-2013年,保存文本文件data。

txt中.(三)预测的具体步骤1、准备工作(1)下载安装R软件目前最新版本是R3。

1.2,发布日期是2014-10—31,下载地址是http://www。

r—/.我使用的是R3。

1.1。

(2)把数据文件data.txt文件复制“我的文档"①。

(3)把data.txt文件读入R软件,并起个名字。

具体操作是:打开R软件,输入(输入每一行后,回车):①我的文档是默认的工作目录,也可以修改自定义工作目录。

data=read.table("data.txt",header=T)data #查看数据①回车表示执行。

完成上面操作后,R窗口会显示:(4)把销售额(x)转化为时间序列格式x=ts(x,start=1964)x结果:2、对x进行平稳性检验ARMA模型的一个前提条件是,要求数列是平稳时间序列。

eviews实验指导ARIMA模型建模与预测

eviews实验指导ARIMA模型建模与预测

eviews实验指导ARIMA模型建模与预测在当今的数据分析领域,时间序列分析是一项至关重要的技术,而ARIMA 模型则是其中的一种常用且强大的工具。

通过 Eviews 软件来进行 ARIMA 模型的建模与预测,可以帮助我们更好地理解和处理时间序列数据,从而为决策提供有力的支持。

接下来,让我们一起深入了解如何使用 Eviews 进行 ARIMA 模型的建模与预测。

一、ARIMA 模型的基本原理ARIMA 模型,全称为自回归移动平均整合模型(Autoregressive Integrated Moving Average Model),它由三个部分组成:自回归(AR)、差分(I)和移动平均(MA)。

自回归(AR)部分表示当前值与过去若干个值之间的线性关系。

简单来说,如果一个时间序列在当前时刻的值受到过去若干个时刻的值的影响,那么就存在自回归关系。

移动平均(MA)部分则反映了随机干扰项对当前值的影响。

它通过将当前值表示为过去若干个随机干扰项的线性组合,来描述时间序列中的随机波动。

差分(I)操作则用于将非平稳的时间序列转化为平稳序列。

平稳性是时间序列分析中的一个重要概念,指的是时间序列的统计特性(如均值、方差等)不随时间变化而变化。

二、Eviews 软件操作环境介绍在开始建模之前,我们先来熟悉一下 Eviews 软件的操作环境。

打开 Eviews 软件,我们会看到一个简洁明了的界面。

菜单栏提供了各种功能选项,如文件操作、数据处理、模型估计等。

工作区用于显示数据、图表和分析结果。

在进行 ARIMA 模型建模时,我们主要会用到“Quick”菜单中的“Estimate Equation”选项,以及“View”菜单中的各种分析功能。

三、数据准备与导入首先,我们需要准备好要分析的时间序列数据。

数据可以以 Excel表格或其他常见的数据格式保存。

在 Eviews 中,可以通过“File”菜单中的“Import”选项将数据导入到软件中。

eviews实验指导(ARIMA模型建模与预测)

eviews实验指导(ARIMA模型建模与预测)

eviews实验指导(ARIMA模型建模与预测) eviews实验指导(ARIMA模型建模与预测)ARIMA模型是一种常用的时间序列分析方法,可以用于建模和预测时间序列数据。

在eviews软件中,我们可以利用其强大的功能进行ARIMA模型的建模和预测分析。

一、数据准备与导入在进行ARIMA模型建模之前,首先需要准备好相关的时间序列数据,并导入eviews软件中。

可以通过以下步骤进行操作:1. 创建一个新的工作文件,点击"File" -> "New" -> "Workfile",选择合适的时间范围和频率。

2. 在eviews软件中,点击"Quick" -> "Read Text",导入包含时间序列数据的文本文件。

确保文本文件中的数据格式正确,并根据需要设置导入选项。

3. 确认数据已经成功导入,可以通过在工作文件窗口中查看和编辑数据。

二、ARIMA模型建模在eviews中,建立ARIMA模型需要进行以下步骤:1. 点击"Quick" -> "Estimate Equation",打开方程估计对话框。

2. 在对话框中,选择要建模的时间序列变量,并选择ARIMA模型。

根据数据的特点,可以选择不同的AR、MA和差分阶数。

3. 设置其他参数,如是否包含常数项、是否进行季节性调整等。

根据具体分析需求进行选取。

4. 点击"OK",进行模型估计。

eviews将自动计算出ARIMA模型的系数估计和相应的统计指标。

5. 检查模型的拟合优度,可以通过观察残差序列的ACF和PACF图、Ljung-Box检验等方法来判断模型是否合适。

三、模型诊断与改进建立ARIMA模型后,需要对模型进行诊断,以确保其满足建模的基本假设。

常见的诊断方法包括:1. 检查模型的残差序列是否为白噪声,可以通过观察残差序列的ACF和PACF图、Ljung-Box检验等方法来判断。

ARIMA模型预测案例

ARIMA模型预测案例

ARIMA模型预测案例假设我们要预测公司未来一年的销售额,已经收集到了该公司过去几年的销售额数据,我们希望通过ARIMA模型对未来的销售额进行预测。

首先,我们需要对销售额数据进行初步的可视化和分析。

通过绘制时间序列图,可以观察到销售额的趋势、季节性和随机性。

这些特征将有助于我们选择ARIMA模型的参数。

接下来,我们需要对数据进行平稳性检验。

ARIMA模型要求时间序列具有平稳性,即序列的均值和方差不随时间变化。

可以通过ADF检验或单位根检验来判断序列是否平稳。

如果序列不平稳,我们需要对其进行差分处理,直到达到平稳性。

接下来,我们需要确定ARIMA模型的参数。

ARIMA模型由AR(自回归)、I(差分)和MA(移动平均)三个部分组成。

AR部分反映了序列的自相关性,MA部分反映了序列的滞后误差,I部分反映了序列的差分情况。

我们可以使用自相关函数(ACF)和部分自相关函数(PACF)的图像来帮助确定ARIMA模型的参数。

根据ACF和PACF图像的分析,我们可以选择初始的ARIMA模型参数,并使用最大似然估计方法来进行模型参数的估计和推断。

然后,我们可以拟合ARIMA模型,并检查拟合优度。

接着,我们需要进行模型诊断,检查模型的残差是否满足白噪声假设。

可以通过Ljung-Box检验来判断残差的相关性。

如果残差不满足白噪声假设,我们需要重新调整模型的参数,并进行重新拟合。

最后,我们可以利用已经训练好的ARIMA模型对未来的销售额进行预测。

通过调整模型的参数,我们可以得到不同时间范围内的销售额预测结果。

需要注意的是,ARIMA模型的预测结果仅仅是一种可能的情况,并不代表未来的真实情况。

因此,在实际应用中,我们需要结合其他因素和信息来进行决策。

综上所述,ARIMA模型是一种经典的时间序列预测方法,在实际应用中具有广泛的应用价值。

通过对时间序列数据的分析和模型的建立,我们可以对未来的趋势进行预测,并为决策提供参考。

然而,ARIMA模型也有一些限制,如对数据的平稳性要求较高,无法考虑其他因素的影响等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验指导书ARIMA 模型建模与预测
实验指导书(ARIMA模型建模与预测)
例:中国1952- 的进出口总额数据建模及预测
1、模型识别和定阶
(1)数据录入
打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1952,终止年输入,文件名输入“im_ex”,点击ok,见下图,这样就建立了一个工作文件。

在workfile中新建序列im_ex,并录入数据(点击File/Import/Read Text-Lotus-Excel…,
找到相应的Excel数据集,打开数据集,出现如下图的窗口,
在“Data order”选项中选择“By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,因此在“Upper-left data cell”中输入B15,本例只有一列数据,在“Names for series or number if named in file”中输入序列的名字im_ex,点击ok,则录入了数据):
(2)时序图判断平稳性
双击序列im_ex,点击view/Graph/line,得到下列对话框:
得到如下该序列的时序图,由图形能够看出该序列呈指数上升趋势,直观来看,显著非平稳。

IM_EX
240,000
200,000
160,000
120,000
80,000
40,000
556065707580859095000510
(3
因为数据有指数上升趋势,为了减小波动,对其对数化,在Eviews命令框中输入相应的命令“series y=log(im_ex)”就得到对数序列,其时序图见下图,对数化后的序列远没有原始序列波动剧烈:
4
5
6
7
8
9
10
11
12
13
556065707580859095000510Y
从图上依然直观看出序列不平稳,进一步考察序列y 的自相关图和偏自相关图:
从自相关系数能够看出,呈周期衰减到零的速度非常缓慢,因此断定y 序列非平稳。

为了证实这个结论,进一步对其做ADF 检验。

双击序列y ,点击view/unit root test ,出现下图的对话框,。

相关文档
最新文档