动量动量守恒定律基础测试题
动量守恒定律测试题(含答案)

... .word.zl.第16章?动量守恒定律?测试题一、单项选择题〔每题只有一个正确答案〕1.质量为m ,速度为v 的棒球,与棒相互作用后以被原速率弹回,那么小球动量的变化量为〔取作用前的速度方向为正方向〕〔〕A .0B .-2mvC .2mvD .mv2.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,那么碰撞前的瞬间〔 〕A .A 车的动量一定大于B 车的速度 B .A 车的速度一定大于B 车的动量C .A 车的质量一定大于B 车的质量D .A 车的动能一定大于B 车的动能3.将质量为m 的铅球以大小为v 0、仰角为θ的初速度抛入一个装着沙子的总质量为m '的静止小车中,如以下图,小车与地面间的摩擦力不计,那么最后铅球与小车的共同速度等于〔〕A .0cos mv m m θ+'B .0sin mv m m θ+'C .0mv m m+' D .0tan mv m m θ+' 4.物体在恒定合力F 作用下做直线运动,在1t ∆速度由0增大到1E ,在2t ∆速度由v 增大到2v.设2E 在1t ∆做功是1W ,冲量是1I ;在2t ∆做功是2W ,冲量是2I ,那么( )A .1212I I W W <=,B .1212I I W W <<,C .1212,I I W W ==D .1212I I W W =<,5.沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图象如以下图。
那么以下判断错误的选项是〔〕A .碰撞前后A 的运动方向相反B .A 、B 的质量之比为1:2C .碰撞过程中A 的动能变大,B 的动能减小D .碰前B 的动量较大6.如以下图,质量M=3kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动。
质量m=2kg 的小球(视为质点)通过长L=0.5m 的轻杆与滑块上的光滑轴O 连接,开场时-滑块静止,轻杆处于水平状态,现让小球从静止开场释放,取g=10m/s2,以下说确的的是〔〕A.小球m从初始位置到第一次到达最低点的过程中,轻杆对小球的弹力一直沿杆方向B.小球m从初始位置到第一次到达最低点时,小球m速度大小为C.小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.2mD.小球m上升到的最高位置比初始位置低7.蹦极是一项刺激的极限运动,如图,运发动将一端固定的弹性长绳绑在腰或踝关节处,从几十米高处跳下(忽略空气阻力)。
动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。
F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。
以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。
A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。
物理动量守恒定律题20套(带答案)

考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q
物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
动量守恒定律题目

动量守恒定律题目一、两小球在光滑水平面上沿同一直线相向运动,碰撞后两球均静止,则可以断定碰撞前( )A. 两球的速度大小相等B. 两球的质量相等C. 两球的动量大小相等、方向相反D. 两球的动量相等(答案:C)二、在光滑的水平面上,有甲、乙两辆小车,甲车上放一物体,用水平力F甲推甲车,同时用相同的水平力F乙推乙车,两车均从静止开始运动,在相同的位移内( )A. 甲车对物体的做功较多B. 乙车对物体的做功较多C. 甲、乙两车对物体做功一样多D. 无法确定(答案:A)三、一静止的原子核发生α衰变,生成一新原子核,已知衰变前后原子核的质量数分别为A和A−4,电荷数分别为Z和Z−2,则( )A. 衰变过程中释放的核能转变为新原子核的动能B. 衰变过程中释放的核能转变为α粒子和新原子核的动能之和C. 衰变前后原子核的质量亏损为Δm=4u(u为质子和中子的质量)D. 衰变前后核子数减少,所以质量数和电荷数都减小(答案:B)四、在光滑水平面上,有两个小球A、B沿同一直线相向运动,碰撞后有一球静止,则( )A. 若A球质量大于B球质量,则B球一定静止B. 若A球初速度大于B球初速度,则B球一定静止C. 若A球动量大于B球动量,则一定是A球静止D. 以上说法均不正确(答案:A)五、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F1推A,同时用水平力F2推B,当它们相距一定距离时,两力同时撤去,则两物体( )A. 一定相碰B. 一定不相碰C. 若F1>F2,则一定相碰D. 若F1<F2,则一定相碰(答案:B)六、在光滑的水平面上停着一辆小车,小车上有一木块,现用一水平力拉小车,使小车和木块一起加速运动,则( )A. 小车对木块的摩擦力使木块加速B. 小车对木块的摩擦力方向与车加速度方向相同C. 小车受到的拉力与木块对小车的摩擦力是一对平衡力D. 小车受到的拉力与小车对木块的摩擦力是一对作用力与反作用力(答案:A)七、在光滑的水平面上,一质量为m1的小球A沿水平方向以速度v0与质量为m2的静止小球B发生正碰,碰撞后,A球的动能变为原来的1/9,则小球B的速度可能是( )A. v0/3B. 2v0/3C. v0/9D. 8v0/9(答案:A;B)八、在光滑的水平面上,有两个质量相等的物体,中间用弹簧相连,开始时弹簧处于原长,现给它们一个大小相等、方向相反的水平恒力,当它们的距离增大到某一值时,保持恒力不变,突然撤去弹簧,则( )A. 两物体的速度均增大B. 两物体的速度均减小C. 两物体的加速度均增大D. 两物体的加速度均不变(答案:D)九、在光滑的水平面上,一质量为m的球A沿水平方向以速度v与原来静止的质量为2m的球B发生正碰,碰撞后,A球的动能变为原来的1/9,则球B的速度可能是( )A. v/3B. v/6C. 2v/3D. 2v/9(答案:A;C)十、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F推A,同时用与F相同大小的水平力推B,当它们分别通过相同的位移时( )A. 若A、B均做匀加速直线运动,则力F对A、B所做的功一样多B. 若A做匀加速直线运动,B做匀速直线运动,则力F对A做的功较多C. 若A做匀加速直线运动,B做匀速直线运动,则力F对B做的功较多D. 若A、B均做匀速直线运动,则力F对A、B都不做功(答案:A;D)。
(完整word)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0。
2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1。
6kg,木块与小车之间的摩擦系数为0。
2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1。
分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=即为所求。
《动量守恒定律》测试题(含答案)

《动量守恒定律》测试题(含答案)一、动量守恒定律选择题1.—粒钢珠从静止状态开始自由下落,然后陷入泥潭中静止.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ, 不计空气阻力,则( )A.过程Ⅰ中的钢珠动量的改变量的大小大于过程Ⅱ中合力的冲量的大小B.过程Ⅱ中合力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ中重力做功D.过程Ⅰ中的钢珠动量的改变量小于过程Ⅱ中钢珠的重力的冲量2.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是()A.物块与木板相对静止时的速率为1m/sB.物块与木板间的动摩擦因数为0.3C.木板的长度至少为2mD.从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J3.如图所示,质量为m的小球从距离地面高度为H的A点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零不计空气阻力,重力加速度为g。
则关于小球下落过程中,说法正确的是A.整个下落过程中,小球的机械能减少了mgHB.整个下落过程中,小球克服阻力做的功为mg(H+h)C.在陷入泥潭过程中,小球所受阻力的冲量大于mD.在陷入泥潭过程中,小球动量的改变量的大小等于m4.如图所示,A、B、C三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A=2kg,m B=3kg,m C=1kg,初状态三个小球均静止,BC球之间连着一根轻质弹簧,弹簣处于原长状态.现给A 一个向左的初速度v 0=10m/s,A 、B 碰后A 球的速度变为向右,大小为2m/s ,下列说法正确的是A .球A 和B 碰撞是弹性碰撞B .球A 和B 碰后,球B 的最小速度可为0C .球A 和B 碰后,弹簧的最大弹性势能可以达到96JD .球A 和B 碰后,弹簧恢复原长时球C 的速度可能为12m/s5.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==6.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J7.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒8.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值9.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J10.如图所示,足够长的光滑水平面上有一质量为2kg 的木板B ,质量为1kg 的木块C 叠放在B 的右端点,B 、C 均处于静止状态且B 、C 之间的动摩擦因数为μ = 0.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、下列说法中正确的是()A.物体所受合外力越大,其动量变化一
定越大B.物体所受合外力越大,其动量变化一定越快
C.物体所受合外力的冲量越大,其动量变化一定越大
D.物体所受合外力
的冲量越大,其动量一定变化得越快
2、某物体受到一个-6 N·s的冲量作用,则()A.物体的动量一定减小
B.物体的末动量一定是负值
a
b
F
C.物体动量增量的方向一定与规定的正方向相反
D.物体原来动量的方向
一定与这个冲量的方向相反
3、从同一高度自由下落的玻璃杯,掉在水泥地上易碎,掉在软泥地上不
易碎,这是因为 ( )
A 掉在水泥地上,玻璃杯的动量大.
B 掉在水泥地上,玻璃杯的动量变化大.
C 掉在水泥地上,玻璃杯受到的冲量大,且与水泥地的作用时间短,因而受
到水泥地的作用力大.
D 掉在水泥地上玻璃杯受到的冲量和掉在软泥地上一样大,但与水泥地
的作用时间短,因而受到的水泥地的作用力大.
4、如图所示,水平面上叠放着a. b两木块,用手轻推木块b,a会跟着b
一起运动;若用锤子水平猛击一下木块b,a就不会跟着了运动,这说明 ( )A 轻推木块b时,b给a的冲量小 B 轻推木块b时,b给a的冲量大
C 猛击木块b时,b给a的冲量小
D 猛击木块b时,b给a的冲量大
5、一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。
若把它在空
中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,则( )
A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中钢珠所受阻
力的冲量大小等于过程Ⅰ中重力冲量的大小
C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D.
过程Ⅱ中钢珠的动量改变量等于阻力的冲量
6、如图5-3-5所示,木块A的右侧为光滑曲面,曲面下端极薄,其质量
,原来静止在光滑的水平面上,质量
的小球B以v=2m/s的速度从右向左做匀速直线运动中与木块A发生相互作用,则B球沿木块A的曲面向上运动中可上升的最大高度(设B球不能飞出去)是( )
A.0.40m B.0.20m C.0.10m D.0.5m
7、2005年7月26日,美国“发现号”航天飞机从肯尼迪航天中心发射升空,飞行中一只飞鸟撞上了航天飞机的外挂油箱,幸好当时速度不大,航天飞机有惊无险.假设某航天器的总质量为10 t,以8 km/s的速度高速
运行时迎面撞上一只速度为10 m/s、质量为5 kg的大鸟,碰撞时间为
1.0×10-5 s,则撞击过程中的平均作用力约为()
A.4×109 N
B.8×109 N
C.8×1012 N
D.5×106 N
8、某人身系弹性绳自高空P点自由落下,如图所示,a点是弹性绳的原长位置,c是人所到达的最低点,b是人静止地悬吊时的平衡位置.不计空气阻力,则下列说法中正确的是()
A.从P至c过程中重力的冲量大于弹性绳弹力的冲量
B.从P到c过程中重力所做功等于人克服弹力所做的功
C.从P至b过程中人的速度不断增大
D.从a至c过程中加速度方向保持不变
9、如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相等的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是( )
A.A开始运动时 B.A的速度等于v时
C.B的速度等于零时 D.A和B的速度相等时
10、如图所示,小平板车B静止在光滑水平面上,在其左端有一物体A
以水平速度v0向右滑行.由于A、B间存在摩擦,因而A在B上滑行后,A 开始做减速运动,B做加速运动,设车足够长,则B速度达到最大时,
应出现在 ( )
①A的速度最小时 ②A、B的速度相等时 ③A在B上相对静止时 ④B 开始做匀速直线运动时
A.只有①② B.只有③④ C.只有①②③ D.①②③④
11、质量M=100 kg的小船静止在水面上,船首站着质量m甲=40 kg的游泳者甲,船尾站着质量m乙=60 kg的游泳者乙,船首指向左方,若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s的速率跃入水中,则()
A.小船向左运动,速率为1 m/s B.小船向左运动,速率为0.6 m/s C.小船向右运动,速率大于1 m/s D.小船仍静止
12、如图所示,A、B两质量相等的物体,原来静止在平板小车C上,A和B间夹一被压缩了的轻弹簧,
A、B与平板车上表面动摩擦因数之比为3∶2,地面光滑。
当弹簧突然释放后,A、B相对C滑动的过程中
①A、B系统动量守恒 ②A、B、C系统动量守恒 ③小车向左运
动 ④小车向右运动以上说法中正确的是( )
A.①② B.②③ C.③① D.①④
13、小华做“蹦极”运动,用原长15 m的橡皮绳拴住身体从高空跃下,若小华质量为50 kg,从50 m 高处由静止下落,到运动停止所用时间为4 s,则橡皮绳对人的平均作用力约为_____________.(取g=10 m/s2)
14、质量m=2.5kg的物体静止在粗糙的水平面上,在如图所示的水平拉
力F作用下开始运动,则6 s末物体的速度大小为 m/s。
(已知物体与水平面间动摩擦因数0.2,g取10m/s2)
15、在“探究验证”的实验二中,若绳长L,球1、2分别由偏角α和β
静止释放,则在最低点碰撞前的速度大小分别为 、 。
若碰撞后向同一方向运动最大偏角分别为
和
,则碰撞后两球的瞬时速度大小分别为 、 。
16、以速度v0水平抛出一个质量为1kg的物体,若在抛出3s后它未与地
面及其他物体相碰,求它在3s内的动量的变化。
17、起跳摸高是学生常进行的 一项活动。
某中学生身高1.80m,质量70kg。
他站立举臂,手指摸到的高度为2.10m。
在一次摸高测试中,如果他下蹲,再用力瞪地向上跳起,同时举臂,离地后手指摸到高度为2.55m。
设他从蹬地到离开地面所用的时间为0.7s。
不计空气阻力,(g=10m/s2)求;(1)他跳起刚离地时的速度大小;
(2)上跳过程中他对地面平均压力的大小。
18、如图所示,两个质量都为M的木块A、B用轻质弹簧相连放在光滑的水平地面上,一颗质量为m的子弹以速度v射向A块并嵌在其中,求弹簧被压缩后的最大弹性势能。
A
B
v
19、一颗手榴弹在5m高处以v0= 10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)
20、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止在光滑水平地面上的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:
(1)木块和小车相对静止时小车的速度
(2)从木块
滑上小车到它们处于相对静止所经历的时间
(3)从木块滑上小车到它们处于相对静止时木块在小车上滑行的距离。