卡方检验

合集下载

统计方法卡方检验

统计方法卡方检验

统计方法卡方检验卡方检验(Chi-Square Test)是一种统计方法,用于检验两个或多个分类变量之间的关系。

它通过比较观察到的频数与期望的频数之间的差异,来判断这些变量是否独立或存在相关性。

卡方检验可以用于不同类型的问题,包括:1.两个分类变量之间的关系:例如,我们可以使用卡方检验来确定性别和吸烟偏好之间是否存在关联。

2.多个分类变量之间的关系:例如,我们可以使用卡方检验来确定教育水平、职业和收入之间是否有关联。

卡方检验的原理是基于观察到的频数与期望的频数之间的差异。

观察到的频数是指在实际数据中观察到的变量组合的频数。

期望的频数是指在假设独立的情况下,根据变量边际分布计算得到的预期频数。

卡方检验通过计算卡方统计量来衡量这两组频数之间的差异。

在进行卡方检验之前,需要设置零假设(H0)和备择假设(Ha)。

零假设通常是指两个或多个分类变量之间独立的假设,而备择假设则是指两个或多个分类变量之间存在相关性的假设。

卡方检验的计算过程可以分为以下几个步骤:1.收集观察数据:将观察到的数据以交叉表格的形式整理起来。

表格的行和列分别代表两个或多个分类变量的不同组合,表格中的数值表示观察到的频数。

2.计算期望频数:根据变量边际分布计算得到期望频数。

期望频数是在零假设成立的情况下,根据变量边际分布计算得到的预期频数。

3.计算卡方统计量:根据观察频数和期望频数之间的差异计算卡方统计量。

卡方统计量的计算公式为:X^2=Σ((O-E)^2/E)其中,Σ代表对所有单元格进行求和,O表示观察到的频数,E表示期望频数。

4. 计算自由度:自由度(degrees of freedom)是进行卡方检验时需要考虑的自由变量或条件的数量。

在卡方检验中,自由度等于(行数 - 1)乘以(列数 - 1)。

5.查找临界值:使用给定的自由度和显著性水平(通常为0.05)查找卡方分布表格,以确定接受或拒绝零假设。

6.比较卡方统计量和临界值:如果卡方统计量大于临界值,则拒绝零假设,认为两个或多个分类变量之间存在相关性;如果卡方统计量小于临界值,则接受零假设,认为两个或多个分类变量之间独立。

第四章 卡方检验

第四章   卡方检验

4.1 适合度检验
④ SPSS 点击确定。再点击菜单分析→非参数检验 →旧对话框→卡方:
4.1 适合度检验
④ SPSS
弹出对话框,将数量选择到检验变量列表中,在 期望值下面选择值,按比例从小到大分别输入1, 添加,3,添加:
4.1 适合度检验
④ SPSS
点击确定,即可得到结果:
4.1 适合度检验
② SPSS 点击继续,返回上级对话框,点击确定,得到结果:
df=1时,需要看连续校正的卡方值,为23.174,对应的p值为0.000, 小于0.01表明两种人群的气管炎患病率有非常显著的差异。
4.2.1.1 需要校正的四格表资料的χ2检验
例 某医师欲比较胞磷胆碱与神经节苷酯治疗脑 血管疾病的疗效,将78例脑血管疾病患者随机分 为两组,结果见表。问两种药物治疗脑血管疾病 的有效率是否相等?
4.1 适合度检验
④ SPSS 定义变量,输入数据,点击菜单数据→
加权个案,弹出对话框,选择加权个案, 将数量选择到频率变量下面,点击确定。 再点击菜单分析→非参数检验→旧对话框 →卡方,弹出对话框,将数量选择到检验 变量列表中,在期望值下面选择值,按比 例从小到大分别添加1,3,32×2表)分析:
4.2.1.3 四格表资料的Fisher确切概率法
① DPS 立刻得到结果:
4.2.1.3 四格表资料的Fisher确切概率法
② SPSS 定义变量,输入数据,点击菜单数据→加权个案,弹
出对话框,选择加权个案,将数量选择到频率变量下面, 点击确定。点击菜单分析→描述统计→交叉表:
4.2.1.1 需要校正的四格表资料的χ2检验
① DPS 在DPS中输入数据,选择数据,点击菜单分类
数据统计→四格表→四格表(2×2表)分析:

卡方检验名词解释

卡方检验名词解释

卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。

参数和非参数检验最明显的区别是它们使用数据的类型。

非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。

卡方检验分为拟合度的卡方检验和卡方独立性检验。

我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。

我们只是将个体分类,并想知道每个类别中的总体比例。

它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。

拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。

测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。

拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。

确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。

关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。

卡方检验医学统计学

卡方检验医学统计学

卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。

在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。

卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。

期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。

而实际频数则是实验中观察到的实际结果。

卡方检验的步骤如下:1.建立零假设和备择假设。

零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。

2.确定显著性水平 alpha,通常取值为0.05。

3.构建卡方检验统计量。

计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。

4.根据自由度和显著性水平,查卡方分布表得到 P 值。

5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。

卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。

卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。

举个例子,某药厂要研发一种新的药物来治疗心脏病。

为了验证该药的疗效,实验组和对照组各50 人。

在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。

卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。

除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。

卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。

其中比较明显的一点就是对样本量有一定的要求。

当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。

此外,在面对非常态分布数据时,卡方检验也会出现问题。

当数据呈现正态分布时,卡方检验的准确性最高。

然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。

卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。

卫生统计学卡方检验

卫生统计学卡方检验

卫生统计学卡方检验
26/94
(一) 多个样本率比较
例3 某研究者欲比较A、B、C 三种方案治疗轻、中度 高血压疗效,将年纪在50~70岁240例轻、中度高血压患 者随机等分为3组,分别采取三种方案治疗。一个疗程 后观察疗效,结果见表11.4。问三种方案治疗轻、中度 高血压有效率有没有差异?
卫生统计学卡方检验
卫生统计学卡方检验
29/94
④ 确定P值
υ=(3-1)(2-1)=2,查 2 界值表得P<0.01。
⑤ 下结论
因为P<0.01,按α=0.05水准,拒绝H0,接收 H1,差异有统计学意义。即可认为三种方案治疗轻 、
中度高血压有效率不等或不全等
卫生统计学卡方检验
30/94
例 某市重污染区、普通污染区和农村出生婴儿致畸情 况以下表,问三个地域出生婴儿致畸率有没有差异?
① 建立假设 H0:π1=π2 H1:π1≠π2
② 确定检验水准
α=0.05
③ 计算统计量 2 值
2(2 62-73 6-7 1/2 )27 12 .7 5 3 33 86 29
④ 确定P值
υ=(2-1) (2-1)=1,查 2界值表得P>0.05。
卫生统计学卡方检验
24/94
⑤ 下结论 因为P>0.05,按α=0.05水准,不拒绝H0,差 异无统计学意义。尚不能认为甲、乙两疗法对小 儿单纯性消化不良治愈率不等。
9/94
TRC
nR nC n
n R 为对应行累计
n C 为对应列累计
n 为总例数。
卫生统计学卡方检验
10/94
表1 两药治疗消化道溃疡4周后疗效
卫生统计学卡方检验
11/94

08卡方检验

08卡方检验
及格 农民 干部 32 55 不及格 13 17
知识分子
25
11
4. 初步统计频数卡方独立性检验:SPSS

New file > Variable View > define variables Data View > input data Data > Weight Cases > “Counts” to be weighted Run “Crosstabs” analysis
统计方法与数据分析
第七讲 卡方检验
1. 卡方检验:概述



卡方(Chi-square), 数学符号表示为χ2, 是一种非 参数检验方法。它适用于比较两组(或以上)互斥 的频数数据之间是否存在显著差异。 卡方比较的是观测频数(observed frequency)和 期待频数(expected frequency)之间的比例,以 考察是否存在显著差异。 期待频数也称理论频数,通常是指假定各组均等的 频数。

卡方检验结果显示,对语言教学影响因素的看法受教龄的 影响显著(χ2=35.300,df=2,p<0.05)。教龄5年以上的教 师认为语言/学习因素是主要的;教龄5年以下的教师认为 环境和学习者因素是主要的(下表)。这可能是因为…
4. 初步统计频数卡方独立性检验:练习

一项研究得到家庭背景不同的学生(农民、干部、 知识分子)的英语学习成绩(及格、不及格)。 现要考察“家庭背景”与“英语成绩”之间是否 彼此独立?
卡方拟合检验SPSS结果(2)
卡方拟合检验结果在论文中的呈现方式

卡方检验结果显示,双语教师的课堂用语有显著差异 (χ2=340.556,df=5,p<0.05)。大多数双语教师使用英语 的量多于汉语,或至少英语汉语使用比例差不多。仅使用 英语或汉语授课的教师极少(下表)。这可能是因为…

医学统计学-卡方检验

医学统计学-卡方检验
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义

卡方检验

卡方检验
2
列联表中, (1)在 r×c 列联表中,若 1/5 以上的格子的理论频数小于 5,或 有一个格子的理论频数小于 1,则应使理论频数小于 5 或小于 1 的格子 与临组合并,以增大理论频数。 或采用四格表资料的 (或采用 与临组合并,以增大理论频数。 或采用四格表资料的 Fisher 确切概率 ( 法) 。 检验中,若拒绝原假设, (2)在 r×c 列联表的 χ 检验中,若拒绝原假设,说明被比较的 )
专业运动年限 发病人数 未发病人数 合计 发病率 %
1 年一下 2-4年 5-7年 10年 8 - 10 年 合计 4 15 10 12 41 80 70 50 40 240 84 85 60 52 281 4.76 17.65 16.67 23.08 14.59
问:发病率的不同是由随机误差引起还是由条件误差(运动年限)引起? 发病率的不同是由随机误差引起还是由条件误差(运动年限)引起? 误差引起还是由条H0:发病率与运动年限无关;H0:发病率与运动年限有关
A2 2 − 1 ≈10.36 ○ χ = n ∑ n ⋅n r c 3 ○ 取α=0.05, n' = (r − 1)(c − 1) =(4-1)×(2-1)=3, , ( ) ) ,
2
2
检验的专用公式。 检验的专用公式。即 : χ
2
=∑
( A − T )2
T
(ad − bc )2 n 或χ = 。 (a + b )(c + d )(a + c )(b + d )
2 2
检验的校正公式。 (2) 总例数 n>40 且 1 格子的 1<T<5 时: 当 用四格表资料 χ 检验的校正公式。 : 即
定义
随机变量x1,x2……xn相对独立,并且服从 标准正态分布。则随机变量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a. 0 cells (.0%) have expected count less than 5. T he minimum expected count is 37.88.
AREA * BL OOD Crosstabulation BLOOD A AREA 亚洲 Count Expected Count % within AREA Count Expected Count % within AREA Count Expected Count % within AREA 321 379.4 29.7% 408 349.6 41.0% 729 729.0 35.1% B 369 247.2 34.2% 106 227.8 10.7% 475 475.0 22.9% AB 95 68.7 8.8% 37 63.3 3.7% 132 132.0 6.4% O 295 384.6 27.3% 444 354.4 44.6% 739 739.0 35.6% Total 1080 1080.0 100.0% 995 995.0 100.0% 2075 2075.0 100.0%
合计
11
36
15
27
26
53
11+2<40,使用校正公式计算卡方统计量
建立数据库
设立三个变量:jia、yi、weight jia代表甲法:+赋值为1,-赋值为0 yi代表乙法:+赋值为1,-赋值为0 Weight代表例数
对数据加权
配对卡方检验
Case Processing Summary Cases Missing N Percent 0 .0%
204(a+b)
64(c+d)
12.75
3.13
合 计
28(a+c.)
240(b+d.)
268(a+b+c+d=n)
10.45
总的病死率
2 ( A T ) 2 , ( R 1)(C 1) T

2 (178 182.7) 2 (2 6.7) 2 (62 57.3) 2 ( 26 21 . 3 ) 2 21.3 182.7 6.7 57.3 4.82 v (2 1)(2 1) 1
欧洲
北美洲
Total
Chi-Square Tests Value 297.375a 297.233 9.788 2592 df 6 6 1 Asymp. Sig. (2-sided) .000 .000 .002
Pearson Chi-Square Likelihood Ratio Linear-by-Linear Association N of Valid Cases
a. 0 cells (.0%) have expected count less than 5. T he minimum expected count is 30.72.
行x 列的分割
重复卡方检验操作
AREA * BLOOD Crosstabulation BLOOD A AREA 亚洲 Count Expected Count % within AREA Count Expected Count % within AREA Count Expected Count % within AREA 321 391.6 29.7% 258 187.4 49.9% 579 579.0 36.3% B 369 278.6 34.2% 43 133.4 8.3% 412 412.0 25.8% AB 95 79.1 8.8% 22 37.9 4.3% 117 117.0 7.3% O 295 330.7 27.3% 194 158.3 37.5% 489 489.0 30.6% Total 1080 1080.0 100.0% 517 517.0 100.0% 1597 1597.0 100.0%
检验统计量 值反映了实际频数与 理论频数的吻合程度。
2
若检验假设 H0:π1=π2 成立,实际频数 A 与 理论频数T 相差不应该很大,即统计量卡方值不应 该很大。如果 2 值很大,出现当前检验统计量 2 >χ2α,ν 的情形是一个小概率事件( P<α ) , 于是决 定拒绝H0. 反之,则不拒绝H0
实验1 两种药物治疗白色葡萄球菌败血症疗效的试 验结果见表10-2,问两种药物的疗效有无差别? (数据 :例10-2.sav)
表1 两种药物治疗白色葡萄球菌败血症结果
处理 甲药 有效例数 28 无效例数 2 合计 30 有效率 (%) 93.33
乙药
合计
12
40
4
6
16
46
75.00
86.96
步骤

2
检验
李霞 流行病与卫生统计学系
内容
四格表 检验
2
(实验1)
(实验2)
配对 2检验
行 列表 2 检验 (实验3)
一、卡方检验的基本思想
表1
疗法
两种疗法的心血管病病死率的比较
死亡 生存 合计 病死率(%)
盐酸苯乙双胍
安慰剂
26 (a)
2 (c)
178 (b)
62 (d)
Valid N 甲法 * 乙法 53 Percent 100.0%
Total N 53 Percent 100.0%
甲 法 * 乙 法 Cross tabulation 乙法 阴性 甲法 阴性 Count Expected Count %w ithin 甲 法 Count Expected Count %w ithin 甲 法 Count Expected Count %w ithin 甲 法 15 8.3 57.7% 2 8.7 7.4% 17 17.0 32.1% 阳性 11 17.7 42.3% 25 18.3 92.6% 36 36.0 67.9% Total 26 26.0 100.0% 27 27.0 100.0% 53 53.0 100.0%
Valid N trial * effect 46 Percent 100.0%
Total N 46 Percent 100.0%
trial * effect Crosstabulation effect 无效 trial 甲药 Count Expected Count % within trial Count Expected Count % within trial Count Expected Count % within trial 2 3.9 6.7% 4 2.1 25.0% 6 6.0 13.0% 有效 28 26.1 93.3% 12 13.9 75.0% 40 40.0 87.0% Total 30 30.0 100.0% 16 16.0 100.0% 46 46.0 100.0%
步骤
建立数据库 对数据进行加权 行x列表 检验
2
建立数据库
设立三个变量:Area、Blood、weight
对数据进行加权
Data-----weight cases-----weight cases by----将变量“weight”调入“frequency variable”对话框-----OK。
b c 40时,连续性校正: 2 ( b c 1) 2 bc ,v 1
实验2 用两种不同的方法对53例肺癌患者进行诊断, 结果见表10-4,问两种方法的检测结果有无差别? (数据 :例10-4.sav) 表2 两种方法检测肺癌的效果比较
乙法 甲法 + + 25 2 合计 27
医药
小 于
5
Total
Chi-Square Tests Value 3.092b 1.687 2.933 df 1 1 1 Asymp. Sig. (2-sided) .079 .194 .087 Exact Sig. (2-sided) Exact Sig. (1-sided)
Pearson Chi-Square Continuity Correction a Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases
配对设计的四格表资料,也就是将含量为n的随机样本同时按照 两个二项分类的属性进行交叉分类,形成二行二列的交叉 分类表。
甲种属性
+
乙种属性
+ a b
合计
a+b
合计
c
a+c
d
b+d
c+d
N=a+b+c+d
实验2:配对资料的卡方检验
甲乙的阳性率之差: (a+b)/n-(a+c)/n=(b-c)/n 因此,在比较两种属性的阳性率有无差异时a和d 不起作用。 H0:B=c ,即b,c代表的总体相等, b,c对应的 理论频数均为(b+c)/2 统计量: (b c) 2 2 ,v 1 bc McNemar’s 检验
.163 3.025 46 1 .082
.099
a. Computed only for a 2x2 table b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2. 09.
实验2:配对资料的卡方检验
实验3 某研究人员收集了亚洲、欧洲和北 美洲人的A、B、AB、O血型资料,结果见表 8-1所示,其目的是研究不同地区的人群血 型分类构成比是否一样。
表3 三个不同地区血型样本的频数分布
地区 亚洲 欧洲 北美洲 合计 A 321 258 408 987 B 369 43 106 518 AB 95 22 37 154 o 295 194 444 933 合计 1080 517 995 2592
相关文档
最新文档