【免费下载】复数与参数方程

合集下载

复数与参数方程( )

复数与参数方程(  )

2 i , z 2 1 3i ,则复数
B.第二象限
z1 z2
2
在复平面内对应点在( D.第四象限

C.第三象限 ) C. 13i
17、复数 A. 13
3 2i 4 6i 的值是( 1 i 2
B. 13
D. 13i
高考链接
1、 (2010 年安徽文)已知 i A.
上课时间
能够解决复数的常见考题及参数方程的常见题型 能够适当与其他知识相结合的应用
复数知识点总结
(一) 复数的概念和意义 1、复数:形如 a bi
ab R 的数叫做
2
复数(其中 i 叫做虚部单位,且满足 i
1 ) 。
2、复数的表示方法:复数常用字母 z 表示, 即z
a bia, b R。
3) z1 z 2
a bi c di ac bci adi bdi2 ac bd ad bci ;
第 1 页/共 8 页
教学设计方案
XueDa PPTS Learning Center
4)
z1 a bi a bi c di ac bd bc ad ic di 0 ; z 2 c di c di c di c 2 d 2 c 2 d 2
A. y x 2 B. y x 2 C. y x 2(2 x 3) ) D. y x 2(0 y 1)
例 2.化极坐标方程 cos 0 为直角坐标方程为(
2
) D. y 1
A. x y 0或y 1
2 2
B. x 1
3、实部和虚部:对于复数 z 1) 2) 3)

复变函数

复变函数
y y
z x iy
( x, y)
复数 z x iy 可以用复平 面上的点 ( x , y ) 表示.
o
x
x
16
2. 复数的模(或绝对值)
复数 z x iy 可以用复平面上的向量OP 表示,
向量的长度称为z 的模或绝对值,
记为 z r x y .
2 2
y y
显然下列各式成立
所以它的复数形式的参数方程为
z z1 t ( z2 z1 ) 参数 t ( , ),
28
故,由 z1 到 z2 的直线段的参数方程为
z z1 t ( z2 z1 )
0 t 1
1 若取 t , 2 z1 z2 . 得线段 z1 z2 的中点坐标为 z 2
27
例6 将通过两点 z1 x1 iy1 与 z2 x2 iy2 的直
线用复数形式的方程来表示.

通过两点 ( x1 , y1 ) 与 ( x2 , y2 ) 的直线的方程
x x1 t ( x2 x1 ) 参数 t ( , ), y y1 t ( y2 y1 )
2 2
(4) z z 2 Re( z ), z z 2i Im( z ).
以上各式证明略.
8
1 3i 例2 设 z , 求 Re( z ), Im( z ) 与z z . i 1 i

i 3i (1 i ) 3 1 1 3i i, z i i (1 i )(1 i ) 2 2 i 1 i
复数可以表示成 z r (cos i sin ) 复数的三角表示式 再利用欧拉公式 e i cos i sin , 复数可以表示成 z re i 复数的指数表示式

复变函数与场论简明教程:复数与复变函数

复变函数与场论简明教程:复数与复变函数

n
n
则1的n次方根分别为1, ω, ω2, …, ωn-1。
[例3] 求 解 因为
6
3+i 1 i
复数与复变函数
3
i
2
cos
π 6
i
sin
π 6
2e
πi 6
1i
2cosຫໍສະໝຸດ π 4isin
π 4
πi
2e 4
复数与复变函数
所以
3i 1i
πi
2e 6 i
2e 4
5πi
2e 12
z=reiθ
(1.1.7)
这种表示形式称为复数的指数表示式。 由于辐角的多值
性, 复数z的三角表示式和指数表示式并不是唯一的。 复数 的各种表示法可以互相转换, 以适应在讨论不同问题时的
需要。
复数与复变函数 [例2] 将复数z=1+sin1+icos1化为三角表示式与指数
解 先求出z的模r和辐角主值arg z:
1
cos
1
π 2
1
arctg
2
sin
π 4
1 2
cos
2
cos2
π 4
π 4 1 2
1 2
π 4
1 2
于是z的三角表示式为
复数与复变函数
z
2
cos
π 4
1 2
cos
π 4
1 2
i
sin
π 4
1 2
z的指数表示式为
z
2
cos
π 4
1 2
ei
π 4
1 2
复数与复变函数
3π 2(m n)π π 2kπ

复数课件ppt免费

复数课件ppt免费

02
复数的应用
Chapter
电路分析中的应用
电路分析中,复数是一种常用的数学工具,用于描述交 流电路中的电压、电流和阻抗等参数。
通过使用复数表示,可以简化计算过程,方便分析和设 计电路。
复数在交流电路分析中的应用包括计算交流阻抗、交流 功率和交流电流等。
信号处理中的应用
在信号处理中,复数常用于表示和处 理信号,如频谱分析和滤波器设计等 。
复数在信号处理中的应用还包括数字 滤波器设计和数字信号处理算法的实 现等。
通过将信号表示为复数形式,可以方 便地进行信号的频域分析和处理,如 傅里叶变换和离散余弦变换等。
控制系统中的应用
在控制系统中,复数常用于描 述系统的传递函数和稳定性等 特性。
通过使用复数表示,可以方便 地分析系统的频率响应和稳定 性,以及设计控制系统的参数 。
实例
$2(cos frac{pi}{3} + i sin frac{pi}{3}) + 1(cos frac{pi}{4} + i sin frac{pi}{4}) = sqrt{3}(cos frac{7pi}{12} + i sin frac{7pi}{12})$。
指数形式的计算
定义
复数指数形式是 $re^{itheta}$,其中 $r$ 是模长,$theta$ 是辐角 。
复数课件ppt免费
目录
• 复数的基本概念 • 复数的应用 • 复数的计算方法 • 复数的历史发展 • 复数的扩展知识
01
复数的基本概念
Chapter
复数的定义
总结词
复数是由实部和虚部构成的数,通常表示为a+bi,其中a是实部,b是虚部,i 是虚数单位。

《复变函数》第一章 复数与复变函数

《复变函数》第一章 复数与复变函数
( z ≠ 0)
的定义域, w 值的全体组成的集合称为函数 w = f ( z ) 的值域. 及 w = z +1
z 1
( z ≠ 1)
均为单值函数,w = n z
均为多值函数.
今后如无特别说明,所提到的函数均为单值函数.
设 w = f ( z ) 是定义在点集 则
容易验证复数的四则运算满足与实数的四则运算相应的运算规律. 全体复数并引进上述运算后称为复数域,必须特别提出的是,在复数域 中,复数是不能比较大小的.
2.复平面
从上述复数的定义中可以看出,一个复数 z = x + iy 实际上是由一对有 序实数 ( x, y ) 唯一确定.因此,如果我们把平面上的点 ( x, y )与复数 z = x + iy 对应,就建立了平面上全部的点和全体复数间的一一对应关系. 由于 x 轴上的点和 y 轴上非原点的点分别对应着实数和纯虚数,因而 通常称
对应相等,即 x1 = x2 且 y1 = y2 虚部为零的复数可看作实数,即x + ii0 = x ,
0 特别地, + ii0 = 0 ,因此,全体实数是全体复数的一部分.
实数为零但虚部不为零的复数称为纯虚数,复数 x + iy 为互为共轭复数,记为
( x + iy ) = x iy
和 x iy
2.区域与约当(Jordan)曲线
定义1.5 若非空点集 D 满足下列两个条件: (1) D 为开集. (2) D 中任意两点均可用全在 D 中的折线连接起来,则称 D 为区域 (图) 定义1.6 若 z0 为区域 D 的聚点且 z0 不是 D 的内点,则称 z0 为 D 的界点, D 的所有界点组成的点集称为 D 的边界,记为 D , 若 r > 0 ,使得 N r ( z0 ) ∩ D = ,则称 z 0 为 D 的外点 定义1.7 区域 D 加上它的边界 C 称为闭区域,记为 D = D + C

复变函数论

复变函数论

arg
z

arctg
3 1


3



2 3


Argz arg z 2k 2 2k ,
3
(k 0,1,2,3)
z

2(cos(
2

)

sin(
2

))

i(
2e
2 3
)
3
3
二、复数的运算:
1.相等: x1 iy1 x2 iy2 x1 x2, y1 y2 2.四则运算:运算规律
复数形式的方程表示时更简明。
2
2i
实数形式复数形式
z xiy
例 6: 连接 z1及 z2两点的线段的参数方程为:
z z1 t(z2 z1) (o t 1)
过 z1及z2两点直线的参数方程为:
z z1 t(z2 z1) ( t )
例 7: 求下列方程所表示的曲线
2
2
当 x 0, y 0 时,
x 0, y 0, arg z 0

x

0,
y

0, arg
z


当 x 0 时,
一象限 二象限
arg z( (0, )) arctan y ( (0, ))
2
x
2
arg
z (

(
,
))

arctan
y
(
(

,0))
(x 2)2 y2 9 .
2)几何上,该方程表示到复平面上点 2 和点 4
距离相等的点的轨迹,所以方程表示的曲线就是连接

复数、极坐标参数方程

复数、极坐标参数方程

1.复数2(12)i -的共轭复数是 _____ .2.设复数z 满足(2)12z i i +=-(为虚数单位),则z =___________3.已知i 为虚数单位,复数z 满足(1-i)z =2,则z = .4. 已知复数z 满足13=++i z ,则z 的最大值是___________5.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = ___________.6.已知曲线C 的参数方程为x t y t ⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.7.在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=t y t x 21 (t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.8.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧ x =3cos α,y =sin α (α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.9.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.。

明德 第一章 复数与复变函数

明德 第一章 复数与复变函数
y 虚轴
P x, y
复数z x iy可用xoy平面上 坐标为( x,y )的点p表示.此时,
x轴 — 实 轴 y轴 — 虚 轴 平 面— 复 平 面 或 z平 面
0
z x iy
x 实轴

数z与点z同义
2. 向量表示法
z x iy 点P ( x,y ) oP { x , y } 显然下列各式成立 可 用 向 量 oP表 示z x iy。 x z, y z, 称向量的长度为复数z=x+iy 的模或绝对值; 2 以x轴正方向为始边,OP 为终边的的夹角 θ 称为复数 2 z z z z . z x y, z=x+iy的辐角. y 虚轴 uu r
2 2
法 2. 将 z x iy 代入得: x y 1 i 2
x y 1 i 4 即 x y 1 4
2 2 2
2
z 2i z 2
解: 由几何意义, z 2i z 2 即 z 2i z 2
0
特别的,以z0为圆点?
z z0 Re i 0 2 , 为参数
x
0 2 , 为参数
例5 指出下列方程表示的曲线
1
解:法 1.
zi 2
由几何意义 z i 2 即 z i 2 表示到 i
距离为2的点的轨迹, 即圆 x y 1 4
n
k 0,1,,n 1
(1) 当k=0,1,…,n-1时,可得n个不同的根, 而k取其它整数时,这些根又会重复出现。
n n (2)几何上, z 的n个值是以原点为中心, r 为半 径的圆周上n个等分点,即它们是内接于该圆周 的正n边形的n个顶点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4)
;()()()()()0222221≠++-+++=-⋅+-⋅+=++=di c i d
c a
d bc d c bd ac di c di c di c bi a di c bi a z z 复数的练习题
1、若复数(为虚数单位),则的共轭复数( )()i i +=1z
i z =z A. B. C. D.i +1i +-1i -1i
--12、复数(为虚数单位)在复平面上对应的点位于(

()i
i z -+=122
i A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、复数满足,则的虚部等于(

z ()i i z
+=-11z A. B.
C.
D.1-1i -i
4、复数
的值为( )
i -12
A.
B.
C. D.
i -1i +1i --1i +-15、若复数是纯虚数,则实数(

()
()i m m m z
3652-++-==m A. B. C.或 D.32230
6、复数
在复平面内的对应点到原点的距离为( )i i
+1A. B. C. D.
212
212
7、设(为虚数单位)
,是的共轭复数,则的值为( )
i z
-=1i z z z
z z 2
+⋅A. B.
C.
D.i --1i +1i -3i
+38、设复数
是纯虚数,则(

()()21++i mi =m A. B.
C.
D.11-22
1
-
9、“”是“复数为纯虚数”的(

2-=a
()
()i a a z 142++-=()R b a ∈,A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条
10、如果复数
(其中为虚数单位,)的实部与虚部互为相反数,则(

i bi
212+-i R b ∈=b A. B. C. D.32-3
222。

相关文档
最新文档