二自由度机器人ppt
ER系列机器人技术基础PPT

研发中心电气工程部
We are offering Accuracy & Efficiency! 南京埃斯顿机器人工程有限公司
内容
一 埃斯顿机器人介绍 二 机器人基础知识 三 机器人控制系统 四 安全与维护事项
We are offering Accuracy & Efficiency!
轴名称 TX TY TZ TA TB
TC
动作 沿工具坐标系TX方向运动 沿工具坐标系TY方向运动 沿工具坐标系TZ方向运动 绕工具坐标系TX方向旋转 绕工具坐标系TY方向旋转
绕工具坐标系TZ方向旋转
We are offering Accuracy & Efficiency!
21
机器人基础知识
工具坐标的移动,以工具的有效方向为基准,与机器人的位置、姿势无关, 所以进行相对于工件不改变工具姿势的平行移动操作时最为适宜。
沿升降方向刚性好,尤其适合平面装配 作业。
SCARA-Selective Compliance Assembly Robot Arm —选择顺应性装配机器手臂
We are offering Accuracy & Efficiency!
8
埃斯顿机器人介绍
结构介绍
J2、J3、 J4轴电机
电机线缆、I/O、 气管
接触器 滤波器 风扇
We are offering Accuracy & Efficiency!
1
一 埃斯顿机器人介绍
We are offering Accuracy & Efficiency!
2
埃斯顿机器人介绍
工业机器人分类:方式一
按手臂机 构结构型 式
机器人第2讲.pptx

13
2-4 转动矩阵
3.绕一个坐标轴旋转的转动矩阵
绕X、Y、Z坐标轴的旋转(图2-3)变换矩阵是最基本的 转动矩阵,它们是一般转动矩阵的特例,故可直接由一般 转动矩阵得到。
2020/12/3
14
2-4 转动矩阵
3.绕一个坐标轴旋转的转动矩阵 由式(2-5)可得到绕x轴旋转θ角的转动矩阵为:
cos(x j , yi ) cos( y j , yi ) cos(z j , yi )
cos(
x
j
,
zi
)
(2-7)
cos( y j , zi )
cos(z
j
,
zi
)
[r] j [iR j ]1[r]i [ jRi ][r]i
[ jRi ] [iR j ]1 [iR j ]T
2020/12/3
1)
自由度(Degree DOF) :
of
Freedom,
Steห้องสมุดไป่ตู้art平台有18个关节,14
个连杆,18个关节有36个自由
度,代入上式得
F 6(14 18 1) 36 6
2020/12/3
4
第二章 机器人运动学
2-1概 述
机器人运动学是研究机器人各关节运动的
几何关系。
•
机器人可以看成开式运动链,由一系列连杆通过转动 或移动关节串联而成。
2020/12/3
1
自由度计算
1)对自于由6度自(由De度gr并ee联o机f器Fr人ee,do其m,结D构OF是)闭:环结构,主要优点是结构刚度大,
由6个油缸驱动,决定末端执行器的位置和姿态。油缸的1端与基座相连 (2自由度虎克铰),另1端与末端执行器相连(3自由度球铰),该机 器人将手臂和手腕的自由度集成在一起。主要特点为:刚度大,但运动 范围十分有限,运动学反解特别简单,而运动方程的建立特别复杂,有 时还不具备封闭的形式
机器人机构实用PPT课件PPT课件

• 2.手臂:手臂件是机器人的主要执行部件. • 作用:支撑腕部和手部,带动手及腕在空间 • 特点:结构类型多,受力复杂.
运动。
第14页/共58页
机身和臂部设计的特点
• 自由度、结构类型、工作空间、负荷能力、精度等都取决于机身和手臂。 • 1.刚度 • 2.精度 • 3.平稳性 • 4.其他
第15页/共58页
机身和臂部的形式
•1.横梁式
• 运动形式大多为直移型 • (1)单臂悬挂式 • (2)双臂悬挂式 • (3)多臂悬挂式
第16页/共58页
•2.立柱式
• 这类机器人多采用回转型、俯仰型或曲伸型 • (1)单臂 • (2)双臂
第17页/共58页
•3.机座式
• 各种运动形式 • 均可设计成机座式
第42页/共58页
• 2)液压动力源
• 组成:a.直线液压缸
ቤተ መጻሕፍቲ ባይዱ
•
b.旋转液压缸
单杆活塞液 压缸
•
c.电液伺服阀
•
d.液压源及各种辅助阀
• 优点:
• 缺点:
旋转液 压缸
电液压力流量 伺服阀
第43页/共58页
• 3)气压驱动
• 组成:a.直线气缸
•
b.旋转气缸
•
c.气源及各种阀门
• 优点:
• 缺点:
第44页/共58页
第55页/共58页
• 有关动力源和控制方面的性能指标
• (1)驱动方式和容量
• (2)程序存储容量
• (3)插补方式
• (4)编程方式
• (5)分辨率-操作机各轴可有效反应的最小距离或
角
度
第56页/共58页
毕业设计-二自由度机器人的结构设计与仿真

二自由度机器人的结构设计与仿真学院:专业:姓名:指导老师:机械与车辆学院机械电子工程学号:职称:教授中国·XX二○一二年五月毕业设计诚信承诺书本人郑重承诺:本人承诺呈交的毕业设计《二自由度机器人的结构设计与仿真》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。
本人签名:日期:年月日二自由度机器人的结构设计与仿真摘要并联机器人有着串联机器人所不具有的优点,在应用上与串联机器人形成互补关系。
二自由度并联机器人是并联机器人家族中的重要组成部分,由于结构简单、控制方便和造价低等特点,有着重要的应用前景和开发价值。
本论文研究了一种新型二自由度平移运动并联机构,该并联机构采用类五杆机构,平行四边形刚架结构来实现,可有效地消除铰链间隙,提高动平台的工作性能,同时有抵抗切削颠覆力矩的能力。
根据该二自由度平面机构的工作空间,利用平面几何的方法求得连杆的长度,并通过Pro/E软件进行仿真检验,并通过软件仿真的方式,优化连杆长度,排除奇异点,同时合理设计机械结构的尺寸,完成结构设计。
对该二自由度并联机器人,以Pro/E为平台,建立两自由度平移运动并联机器人运动仿真模型,验证了机构的实际工作空间和运动情况。
最后指出了本机构的在实际中的应用。
并使用AutoCAD软件进行了重要装置和关键零件的工程图绘制工作,利用ANSYS 软件分析了核心零件的力学性能。
研究结果表明,本文所设计的二自由度机器人性能良好、工作灵活,很好地满足了设计指标要求,并已具备了一定的实用性。
关键词:二自由度;并联机器人;仿真;结构设计;Pro/E2-DOF robot structure design and simulationAbstractParallel robot has a series of advantages of the robot does not have to form a complementary relationship between the application and the series robot. The 2-DOF parallel robot is an important part of the family of parallel robots. The structure is simple, convenient and cost control and low, with significant potential applications and the development value. In this thesis, a new 2- DOF translational motion parallel mechanism, the analogous mechanism for class five institutions, parallelogram frame structure, which can effectively eliminate the hinge gap and improve the performance of the moving platform, while resistance to cutting subvert the torque capacity.The working space of the 2-DOF planar mechanism, the use of plane geometry to obtain the length of the connecting rod, and the Pro/E software simulation test, and software simulation to optimize the connecting rod length, excluding the singular point, while the size of the rational design of mechanical structure, complete the structural design. And important equipment and key parts of the engineering drawings using AutoCAD software, using ANSYS software to analyze the mechanical properties of the core parts.The 2-DOF parallel robot to the Pro/E platform, the establishment of the 2-DOF of translational motion parallel robot simulation model to verify the organization's actual work space and movement. Finally, this institution in the practical application. The results show that the combination of good motor performance of the 2-DOF parallel robot,good to meet the index requirements, and already have a certain amount of practicality.Keywords: 2-DOF; parallel robot; simulation; structural design; Pro/E目录1前言 (1)1.1本课题的研究背景及意义 (1)1.1.1什么是机器人 (1)1.1.2机器人技术的研究意义 (1)1.2机器人的历史与发展现状 (2)1.2.1机器人的发展历程 (2)1.2.2机器人的主要研究工作 (3)1.2.3少自由度机器人的发展历程 (4)1.3本课题的研究内容 (5)2二自由度机器人系统方案设计 (7)2.1二自由度并联机器人机构简介 (7)2.2执行机构方案设计及分析 (7)3二自由度机器人的结构设计与运动分析 (8)3.1已知设计条件及参数 (8)3.1.1连杆机构自由度计算 (8)3.1.2五杆所能达到的位置计算 (8)3.2对机构主体部分的运动学逆解分析 (10)3.2.1位置分析 (10)3.2.2速度与加速的分析 (11)3.3受力分析 (12)4基于Pro/E软件环境下二自由度机器人的结构设计 (16)4.1 Pro/E软件简介 (16)4.2驱动元器件的选择 (17)4.2.1步进电机的选择 (17)4.2.2联轴器选择 (18)4.3平面连杆机构的结构参数确定 (19)4.4输入轴的设计 (20)4.5安装支架的参数确定 (21)5基于Pro/E软件环境下的机器人装配及动态仿真 (23)5.1虚拟装配过程 (23)5.1.1连杆机构的装配 (23)5.1.2安装支架的装配 (24)5.1.3完成二自由度机器人的最终装配 (24)5.2基于Pro/E软件环境下的动态仿真 (25)6基于AutoCAD软件环境下的机械结构设计 (31)6.1AutoCAD软件简介 (31)6.2平面连杆机构的结构设计 (32)6.3机架的结构部件图绘制 (33)6.4二自由度机器人工程图绘制 (34)7基于Ansys软件环境下的有限元分析 (36)7.1Ansys软件简介 (36)7.2对输入轴的有限元分析 (37)7.3对输入连杆的有限元分析 (37)8 总结与展望 (40)8.1课题研究工作总结 (40)8.2研究展望 (41)参考文献 (42)致谢 (44)附录(一) (45)附录(二) (52)1前言机器人技术是一门光机电高度综合、交叉的学科,它涉及机械、电气、力学、控制、通信等诸多方面。
机器人学_第2章_机器人机械结构

– 肩关节的摆动:
• 电机M2→同步带传动B2→减速器R2→肩关节摆动n2
29
腕部俯仰
关节型机器人传动 系统图:
肘关节摆动
肩关节的摆动
腕部的旋转
30
腕部旋转局部图例:
电机M5→减速器R5→链轮 副 C5→锥齿轮副G5→旋转运动n5
上料道与下料道分 别设在机床的两侧, 双臂能同时动作, 两臂同步沿横梁移 动,缩短辅助时间
b.双臂交叉配置,
两臂轴线交于机床 的中心,两臂交错 伸缩进行上下料, 并同时沿横梁移动
c.双臂交叉配置,
悬伸梁式,横梁长 度较a,b短,双臂位 于横梁的同一侧
5
(2).双臂悬挂式(b)
双臂回转型,双 臂交叉且绕同轴 回转,分别负责 上下料(主要是 盘状零件),只 需一个动力源, 结构紧凑,动作 范围大
第2章 机器人的机械结构
2.1 机身和臂部 2.2 腕部和手部结构 2.3 传动部件设计
1
2.1 机身和臂部
• 一.机身和臂部的作用
• 机身是直接连接支承传动手臂和行走机 构的部件,机身可以是固定的,也可以 是行走式的
• 手臂部件用来支承腕部(关节)和手部 (包括工件和工具),并带动它们在空 间运动
• 远距离传动手腕:
–有时为了保证具有足够大的驱动力,驱动装 置又不能做得足够小,同时也为了减轻手腕 的重量,采用远距离的驱动方式,可以实现 三个自由度的运动。
44
1)液压直接驱动BBR手腕图例:
回转 R
俯仰 B
偏转 B
45
2). 单回转腕部 结构示例
46
3)双回转油缸驱动手腕
二连杆平面机器人

4-2 引入平面矢量
我们都知道矢量是一个数学概念,它用于表示一个具有 大小和方向的物理量。简单地说,一个位移矢量表空间 任意两点之间的有向距离。为了进行机构分析,机构中 每一根连杆都可以表示为一个位移矢量,矢量的起点就 是连杆的某一端点,而其另一端点就是矢量的终点。这 个位移矢量的大小就是连杆的长度,矢量与x轴正向间的 夹角就是连杆的夹角。 矢量方程 那么显而易见对于简单的平面两连杆机器人的矢量方程 可以写为:
RP1=R1 +R2
2021年3月31日6时57分
y
R2
Rp1
2
R1
1
x
那么该平面坐标系对应的x和y的标量方程如下:
x=r1 cosθ1+r2 cos θ2 y=r1 sinθ1 + r2 sinθ2
1式
2021年3月31日6时57分
那么对上式求一阶导(位移的一阶导为速度) 然后转化为雅可比矩阵则有:
x′ - r1 sinθ1 -r2 sinθ2
W1
y′ r1 cosθ1+r2 cos θ2 W2
2式
对其再求二阶导则为加速度:
x〝 = -a1r1 sinθ1 –w1 2sinθ1- r1 w1cos θ1 –a1 r2 sinθ2-w22 sinθ2 -a2 r2 cos θ2
y〝 = a1 r1 cosθ1+ w1 2 cosθ1-w1 r1 sinθ1 +a2 r2 cosθ2 +w22 cos θ2 w2r2 sinθ2
研究操作机器人的运动,不仅涉及机械手本身,而且 涉及各物体间以及物体与机械手的关系。我们将要讨论 的齐次坐标及其变换,就是用来表达这些关系的。齐次 坐标变换不仅能够表示动力学问题,而且能够表达机器 人控制算法、计算机视觉和计算机图形学等问题。因此, 我们对这种数学表示方法特别感兴趣。
第八讲机器人的腕部结构

一、手腕的自由度
1.手腕的自由度 .
为了使手部能处于空间任意方向,要求 腕部能实现对空间三个坐标轴X、Y、Z 的旋转运动。这便是腕部运动的三个自 由度,分别称为翻转R(Roll)、俯仰P (Pitch)和偏转Y(Yaw)。 并不是所有的手腕都必须具备三个自由 度,而是根据实际使用的工作性能要求 来确定。
直线运动转化为旋转运动
轮系驱动三自由度手腕图例(3):
偏转运动
油缸1中的活塞左右移动→带动链轮2旋转→锥齿轮副 Z3/Z4→带动花键轴5、6旋转→花键轴6与行星架9连在 一起→带动行星架及手腕作偏转运动
轮系驱动三自由度手腕图例(4):
附加俯仰运动: 附加俯仰运动:
轴B、轴S不转而T轴回转→齿轮Z23、Z21不转→当行星架 回转时→迫使齿轮Z22 绕齿轮Z21 的过程中自转→经过Z20、 Z16、Z17、Z18实现附加俯仰运动
直接驱动手腕: 直接驱动手腕: 手腕
驱动源直接装在手腕上。这种直接驱动手腕的 关键是能否设计和加工出尺寸小、重量轻而驱 动扭矩大、驱动性能好的驱动电机或液压马达。
远距离传动手腕: 远距离传动手腕: 手腕
有时为了保证具有足够大的驱动力,驱动装置 又不能做得足够小,同时也为了减轻手腕的重 量,采用远距离的驱动方式,可以实现三个自 由度的运动。
轮系驱动二自由度手腕图例(4)
思考题: 思考题:
图中所示的情况,当 S轴不输入,只有B轴 输入时,腕部存在哪 些运动,为什么?
4.轮系驱动的三自由度手腕 .
结构特点: 结构特点: 特点
该机构为由齿轮、链轮传动实现的偏转、 俯仰和回转三个自由度运动的手腕结构。
直线运动转化为旋转运动
俯仰
轮系驱动三自由度手腕图例(1):
球形机器人运动原理

球形机器人运动的运动原理一、球形机器人简介球形机器人在许多国家的科研领域目前还是一个较新的概念,从获得的十分有限的资料来看,分为两大类。
第一类由内部独立的动装置驱动球壳运动的球形机器人虽然实现运动的原理很简单,但是它的内部驱动部分是一个非完整系统,球壳的运动也是一个非完整系统,使得精确控制变得不可能。
第二类通过改变系统重心,产生偏心力矩驱动球壳运动的球形机器人,其机构都很复杂,稳定性较差,预定轨迹的控制方法也非常难以求得。
因此要提高机器人的动态稳定性、低速稳定性,以及实现它的精确控制,内部驱动机制的设计成了球形机器人设计的核心。
二、二自由度摆臂驱动式球形机器人运动的机械原理由于球体的运动不能借助外力,只能依靠内部驱动,而内部驱动的根本要素在于使球体的质心发生变化,因此,如果能设计出使球体质心发生改变的机构,就可以实现驱动球壳运动的目的。
而借助摆臂改变质心位置无疑是一种最简洁的方法。
运动原理该结构采用内部二自由度摆臂驱动,通过摆臂绕悬轴(x 轴)改变球体在 Y方向的质心,同时还可以通过前段摆臂绕关节(y 轴)的旋转改变球体在 X 方向上的质心,如二摆臂同时运动,则可以实现球体质心位置的任意改变,从而驱动球体在任意方向的运动方案简图如下:图2-1 二自由度摆臂球形机器人示意图建立二自由度摆臂球形机器人三维模型仔细分析其运动机理和各个零件的相互作用,之后根据简图和其运动原理用SolidWorks画出各个零件,然后在装配图中进行配合,最终建立如下图所示的三维模型:图2-2二自由度摆臂球形机器人三维模型导入到adams中进行动力学仿真在SolidWorks中将上图的三维模型保存为X_T格式,打开adams将该X_T格式文件导入,导入之后如图所示。
图2-3 二自由度摆臂球形机器人动力学模型导入之后添加运动副,给零件定义材料属性和质量属性,最后在确定合适步长和仿真时间之后进行仿真计算,观察运动情况了解其运动的机械原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另一运动学分析方法:雅可比矩阵
x y
l1c1 l1s1
l2c12 l2s12
将其微分得
写成矩阵形式
2020/6/15
雅可比矩阵
J
l1 s1 l 2 s12
l1c1
l 2 c12
l2 s12
l 2 c12
J阵的值随手爪位置的不同而不同,即θ1和θ2的改变会导致J的变化。
J
1
1 l1l2s2
求雅可比矩阵的MATLAB程序:
2020/6/15
2020/6/15
2020/6/15
l 2 c12 l2 s12
逆运动学:
cos1 ( (x2
y2)
l12
l
2 2
)
2l1l2
2
1
tan 1 (
y x
)
tan 1 ( l1
l2 sin2 l2 cos2
)
2020/6/15
两自由度平面机械手
Simulink正运动学子程序: 2020/6/15
逆运动学子程序: 2020/6/15
末端点的期望轨迹:xd (t) 0.45 0.3cos2t 0.3sin 2tT
2020/6/15
运动学的Simulink仿真程序: 2020/6/15
Simulinnk仿真结果:关节转角(黄色色为关节1,紫色为关节2) 2020/6/15
2020/6/15
运动学模型
1。已知杆件几何参数和关节变 量,求末端执行器相对于参考坐 标系的位置和姿态;
-----运动学正向问题 2。已知杆件几何参数和关节变 量,给定末端执行器相对于参考 坐标系的位置和姿态,确定关节 变量。
-----运动学逆向问题
2020/6/15
正运动学:
x y
l1c1 l1s1
l2c12 l1c1 l2c12
l2s12
l1s1
l2s12
只要知道机械手的雅可比J是满秩的方阵,相应的关节速度即可求 出,即
2020/6/15
采用雅可比矩阵的Simulink逆运动学子程序:
2020/6/15
运动学仿真程序:
2020/6/15
仿真结果:
2020/6/15
关节转角(黄色为关节1,紫色为关节2) 2020/6/15
两自由度平面机器人运动学仿真
姓名:陈鑫 学号:140237
表1 机器人仿真参数
连杆1 连杆2 连杆1 连杆 参 长度 长度 质量 2质 数 (m) (m) (kg) 量(kg)
值 0.75 0.75 1
1
机器人末端执行器的期望轨迹
xd (t) 0.45 0.3cos2t 0.3sin 2tT
两自由度平面机械手