番禺区2016学年第二学期七年级数学科期末测试题
广东省2016-2017学年七年级下学期期末数学试卷

广东省2016-2017学年七年级下学期期末数学试卷广东省2016-2017学年七年级下学期期末数学试卷一、选择题:每小题3分,共30分.在四个选项中只有一项是正确的.1.在平面直角坐标中,点P(1,﹣3)在()A.第一象限。
B.第二象限。
C.第三象限。
D.第四象限2.下列调查中,适宜采用全面调查方式的是()A.旅客上飞机前的安全检查。
B.对广州市2014-2015学年七年级学生身高现状的调查。
C.多某品牌食品安全的调查。
D.对一批灯管使用寿命的调查3.下列实数中,属于无理数的是()A.。
B.。
C.3.14.D.4.的算术平方根是()A.3.B.±3.C.±。
D.5.点M(2,﹣1)向上平移3个单位长度得到的点的坐标是()A.(2,﹣4)。
B.(5,﹣1)。
C.(2,2)。
D.(﹣1,﹣1)6.甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是()A.24km/h,8km/h。
B.22.5km/h,2.5km/h。
C.18km/h,24km/h。
D.12.5km/h,1.5km/h7.已知下列命题:①相等的角是对顶角;②邻补角的平分线互相垂直;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行.其中真命题的个数为()A.个。
B.1个。
C.2个。
D.3个8.若m>n,则下列不等式中成立的是()A.m+a<n+b。
B.ma<nb。
C.ma>na。
D.a﹣m<a ﹣n9.方程kx+3y=5有一组解是,则k的值是()A.1.B.﹣1.C.。
D.210.天河区某中学组织师生共500人参加社会实践活动,有A,B两种型号的客车可供租用,两种客车载客量分别为40人、50人.要求每辆车必须满载.则师生一次性全部到达公园的乘车方案有()A.1种。
B.2种二、填空题:每小题3分,共18分.11.12.不等式组的解集是__________.13.若点M(a+3,a﹣2)在x轴上,则a=__________.14.若3x﹣2y=11,则用含有x的式子表示y,得y=__________.15.若a+1和﹣5是实数m的平方根,则a的值为__________.16.若|x+2y﹣5|+|2x﹣y|=0,则3x+y=__________.广东省2016-2017学年七年级下学期期末数学试卷一、选择题:每小题3分,共30分。
2016--2017学年度下期末七年级数学试题及答案

2016~2017学年度第二学期期末考试七年级数学试卷一.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.64的算术平方根是( ) A .8 B .-8 C .4 D .-4 2.在平面直角坐标系中,点P (-3,-4)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列调查中,适宜采用全面调查方式的是( )A .调查春节联欢晚会在武汉市的收视率B .调查某中学七年级三班学生视力情况C .调查某批次汽车的抗撞击能力D .了解一批手机电池的使用寿命 4.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A .x >2 B .x ≤4 C .2≤x <4 D .2<x ≤45.如图,若CD ∥AB ,则下列说法错误的是( ) A .∠3=∠A B .∠1=∠2 C .∠4=∠5 D .∠C +∠ABC =180°6.点A (﹣1,4)关于y 轴对称的点的坐标为( ) A .(1,4) B .(﹣1,﹣4) C .(1,﹣4) D .(4,﹣1) 7.若x >y ,则下列式子中错误的是( ) A .31+x >31+y B . x -3>y -3 C .3x >3yD .-3x >-3y 8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”若设有鸡x 只,有兔y 只,则可列方程组正确的是( ) A .⎩⎨⎧=+=+942235y x y xB .⎩⎨⎧=+=+942435y x y xC .⎩⎨⎧=+=+944235y x y xD .⎩⎨⎧=+=+94235y x y x9.下列说法:① 3.14159是无理数;② -3是-27的立方根;③ 10在两个连续整数a 和b 之间,那么a +b =7;④如果点P (3-2n ,1)到两坐标轴的距离相等,则n =1;其中正确说法的个数为( )A .1个B .2个C .3个D .4个 10.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,则12+m的值为( )A .5或50B .49C .4或49D . 5二.填空题(共6小题,每小题3分,共18分) 11.若x +2有意义,则x 的取值范围是 .12.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,∠COB =145°, 则∠DOE =__________13.如图,将王波某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .33%43%4%长途话费短信费本地话费月基本费14.一艘轮船从长江上游的A 地匀速驶到下游的B 地用了10h , 从B 地匀速返回A 地用了不到12h ,这段江水流速为3km /h ,轮船在静水里的往返速度vkm /h 不变,则v 满足的条件是 . 15.如图, AB ∥CD ,直线EF 与直线AB ,CD 分别交于点E ,F , ∠BEF <150°,点P 为直线EF 左侧平面上一点,且 ∠BEP =150°,∠EPF =50°,则∠DFP 的度数是 .16.在等式c bx ax y ++=2中,当x =-1时,y =0;当x =2时,y =3;当x =5时,y =60;则a +b +c 的值分别为_______.三.解答题(共8小题,共72分) 17.(本题10分)解方程组:(1)⎩⎨⎧=--=1376y x y x (2)⎪⎪⎩⎪⎪⎨⎧-=-=+312612174332y x y x18.(本题8分)解不等式332-x ≤153+-x ,并在数轴上表示其解集.19.(本题8分)某校为了调查学生书写汉字能力,从八年级400名学生中随机抽选50名学生参加测试,这50名学生同时听写50个常用汉字,每正确听写出一个汉字得1分.根据测试成绩绘制频数分布图表. 频数分布表 频数分布直方图请结合图表完成下列各题:(1)表中a 的值为 ;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为合格,请你估计该校八年级汉字书写合格的人数为 .Cx20.(本题7分)养牛场原有15头大牛和5头小牛,每天约用饲料325kg ;两周后,养牛场决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需多少饲料?21.(本题8分)如图,线段CD 是线段AB (1)若点A 与点C 、点B 与点D 是对应点. 在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示)(2)若点A 与点D 、点B 与点C 、是对应点,在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示) (3)连接BD ,AC ,直接写出四边形ABDC 的面积为22. (本题9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,经调查:购买一套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m 、n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,有哪几种购买方案?为了节约资金,请你为公司设计一种最省钱的购买方案.图2 x y M C B A 12345–1–2–3–4–512345–1o x y123456–1–2123456–1–2o 23.(本题10分)如图1,将线段AB 平移至CD ,使点A 与点D 对应,点B 与点C 对应,连AD 、BC (1) 填空:AB 与CD 的位置关系为__________,BC 与AD 的位置关系为__________; (2) 点G 、E 都在直线DC 上,∠AGE =∠GAE ,AF 平分∠DAE 交直线CD 于F . ①如图2,若G 、E 为射线DC 上的点,∠F AG =30°,求∠B 的度数;②如图3,若G 、E 为射线CD 上的点,∠F AG =α,求∠C 的度数.24.(本题12分)如图,点A 的坐标为(4,3),点B 的坐标为(1,2),点M 的坐标为(m ,n ).三角形ABM 的面积为3.(1)三角形ABM 的面积为3.当m=4时,直接写出点M 的坐标 ; (2)若三角形ABM 的面积不超过3.当m=3时,求n 的取值范围;(3)三角形ABM 的面积为3.当1≤m ≤4时,直接写出m 与n 的数量关系 .图3 图1y 123456–1–2123456–1–2o 备用图硚口2016—2017学年度下学期期末考试七年级数学答案11.x ≥-2 12.55° 13.72° 14.v >33 15.100°或160° 16.-4. 17.(1)解:把①代入②得:6y -7-y =13 y =4 ……3分把y =4代入①得:x =17 ………………………………………4分 ∴原方程组的解是⎩⎨⎧==417y x ………………………………………5分(2)解:原方程组可化为: ⎩⎨⎧-=-=+231798y x y x ………7分∴原方程组的解是⎩⎨⎧==11y x ………10分18.解:去分母得: 5(2x -3)≤3(x -3)+15 ………………2分去括号得: 10x -15 ≤3x -9+15 ………………3分 移项得: 10x -3x ≤15-9+15 ………………4分 合并同类项得:7x ≤21 ………………5分 系数化为1得:x ≤ 3 ………………6分………………8分19.(1) a=12 …………………………………………………2分 (2)16,12 (图略)作出一个正确的条形给2分 ………………… 6分 (3)304人 …………… …… …………… ……………………8分 20.(1)解:设每头大牛1天需饲料x kg ,每头小牛1天需饲料y kg . ………1分 依题意得:⎩⎨⎧=+++=+550)515()1015(325515y x y x ……2分解方程组得:⎩⎨⎧==520y x …………3分答: 每头大牛1天需饲料20 kg ,每头小牛1天需饲料5 kg . …………4分(2) 解:设大牛购进a 头,小牛购进b 头. ………. . …………………………5分 根据题意可列方程: 20a +5b =110b =22-4a ………. . ………………………7分∵根据题意a 与 b 为非负整数,∴b ≥0 ∴22-4a ≤0 ∴a ≤5.5∴a 最大取5 ………. . …………………………8分 答: 大牛最多还能购进5头. ………. . …………………………9分 21.(1)(m -5,n -5);…2分 (2)(-m ,-n );……4分 (3)10 .………8分 22.(1)解:根据题意可列方程组:{nm n m =-=+6103,解方程组得:{71==m n ……………3分答:m 的值为7,n 的值为1. …………………………4分 (2) 解:设购买甲型设备x 套,购买乙型设备)10(x -套, ……………5分根据题意列不等式组:{26)10(71020)10(100120≤-+≥-+x x x x , ……………6分解不等式组得:381≤≤x∵x 为整数,∴x 为1或2 ……………7分所以购买方案有:方案1、甲型设备1套,乙型设备9套;方案2、甲型设备2套,乙型设备8套.……8分所需费用:方案1、7+9=16万元,方案2、14+8=22万元, 方案1最省钱.………………9分 23.(1)AB ∥ CD, BC ∥ AD ………………………………………………………2分 (2)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………3分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠EAF +∠GAE )=∠EAD +∠BAE =∠BAD ……………………5分 又∵∠F AG =30° ∴∠BAD =60°又∵BC ∥ AD ∴∠B+∠BAD =180° ∴∠B =120°………………6分 (3)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………7分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠GAE —∠EAF )=∠BAE —∠EAD =∠BAD又∵∠F AG =α ∴∠BAD =2α …………………………………9分 ∵BC ∥ AD ∴∠B+∠BAD =180° ∵AB ∥ CD ∴∠B+∠C =180° ∴ ∠C =∠BAD =2α …………10分24.(1) (4,5)或(4,1) ………………………………………………………2分(2)作AD ⊥x 轴于D ,作BC ⊥x 轴于C ,作ME ⊥x 轴于E 交AB 于F ,设F 点坐标为(3,a ) 则点E 为(3,0)、点D 为(4,0),∴BC =2, EF =a , AD =3,CE =2,DE =1,CD =3,又∵FEDA BCEF S S S 梯形梯形梯形+=ABCD ∴ )38,3(,38)32(321)3(121)2(221F a a a =+⨯⨯=+⨯++⨯……………6分作AP ⊥MF 于P ,作BQ ⊥MF 于Q ,23)(213≤≤+≤+=∆∆∆MF MF AP BQ S S S MFA MFB MAB …………7分∵点M 的坐标为(3,n ), 点F 的坐标为(3,38) ∴238≤-n , ∴n -38≤2且-(n -38)≤2,三点共线,(舍去),,时,当M B A 38=n∴当32≤n ≤314且n ≠38时,三角形ABM 的面积不超过3 ………………………………9分(3)当1≤m ≤4时,直接写出m 与n 的数量关系为:3n -m =11或3n -m =-1. …………12分。
2016七年级下学期数学期末复习题及答案

2016七年级下学期数学期末复习题及答案一、选择题:(10题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx a x 4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6. 有23000名初中毕业生参加了升学考试,为了了解23000名考生的升学成绩,从中抽取了200名考生的试卷进行统计分析,以下说法正确的是() A .23000名考生是总体 B .每名考生是个体 C .200名考生是总体的一个样本 D .样本容量是2007,小明说 为方程ax +by=10的解,小惠说为方程ax +by=10的解.两人谁也不能说服对方.如果你想让他们的解都正确,需要添加的条件是( )A .a=12,b=10B .a=10,b=10C .a=10,b=11D .a=9,b=108. 在实数:3.14159,,1.010010001…,,π,中,无理数有( )个。
2016~2017学年第二学期初一数学期末试卷(含答案)

2016~2017学年第二学期初一数学期末试卷 2017.6一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填写在题后的括号内)1.下列运算中,正确的是( )A .22x x x =⋅B .22)(xy xy = C .632)(x x = D .422x x x =+2.如果,下列各式中正确的是( )a b <A . B .C .D .22ac bc <11a b >33a b ->-44a b >3.不等式组 的解集在数轴上可以表示为( )24357x x >-⎧⎨-≤⎩4.已知是二元一次方程的一个解,则的值为( )21x y =⎧⎨=-⎩21x my +=m A .3 B .-5 C .-3 D .55.如图,不能判断l 1∥l 2的条件是( )A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠36.下列长度的四根木棒,能与长度分别为2cm 和5cm 的木棒构成三角形的是( ) A .3 B .4 C .7 D .107.下列命题是真命题的是( )A .同旁内角互补B .三角形的一个外角等于两个内角的和C .若a 2=b 2,则a =bD .同角的余角相等8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE 的依据是( )A .SASB .AASC .HLD .ASA9.若关于的不等式组的所有整数解的和是10,则m 的取值范围是( )x 0321x m x -<⎧⎨-≤⎩A .B .C .D .45m <<45m <≤45m ≤<45m ≤≤(第5题图)(第8题图)(第15题图)(第17题图)10.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则S 5的值为( )A .B .8191二、填空题(本大题共有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在题中的横线上)11.肥皂泡额泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm .12.分解因式:= .23105x x -13.若,则= .4,9nnx y ==()nxy 14.内角和是外角和的2倍的多边形是 边形.15.如图,A 、B 两点分别位于一个池塘的两端,C 是AD 的中点,也是BE 的中点,若DE =20米,则AB 的长为____________米.16.若多项式是一个完全平方式,则的值为 .9)1(2+-+x k x k 17.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =88°,则∠C 的度数为= .18.若二元一次方程组的解,的值恰好是一个等腰三角形两边的长,⎩⎨⎧=++=+m y x m y x 232x y 且这个等腰三角形的周长为7,则的值为____________.m 三、解答题(本大题共有8小题,共54分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题共有2小题,满分8分)计算:(1) (2)201701)1()2017()21(---+-π32423)2()(a a a a ÷+⋅-1FEDB A 20.(本题共有2小题,满分8分)因式分解:(1) (2)a a a +-23214-x 21.(本题共有2小题,满分8分)(1)解方程组: (2)求不等式的最大整数解.⎩⎨⎧=++=18223y x y x 241312+<--x x 22.(本题满分5分)先化简,再求值: ,其中.22(3)(2)(2)2x x x x +++--1x =-23.(本题满分5分)已知.63=-y x (1)用含的代数式表示的形式为 ;x y (2)若,求的取值范围.31≤<-y x 24.(本题满分6分)如图,在△ABC 和△DEF 中,已知AB = DE ,BE = CF ,∠B =∠1,求证:AC ∥DF .25.(本题满分7分)规定两数a ,b 之间的一种运算,记作(a ,b ):如果,那么(a ,b )=c .b a c例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.41(2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n 所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)25.(本题满分7分)9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机(普通舱)全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:住宿费(2人一间的标准间)伙食费市内交通费旅游景点门票费(身高超过1.2米全票)每间每天x 元每人每天100元每人每天y 元每人每天120元假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x ,y 的值;(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用?如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?2016~2017学年第二学期初一数学期末试卷答案 2017.6一、选择题:1.C 2.C 3.B 4.A 5.D 6.B 7.D 8.B 9.B 10.D 二、填空题:11. 12. 13.36 14.六4107-⨯)2(52-x x 15.20 16.7或-5 17.46° 18.2三、解答题:19.(1)原式= (2分) )1(12--+ = (4分)4(2)原式= (2分)3854a a a ÷+- = (4分)53a 20.(1)原式= (2分))12(2+-a a a = (4分) 2)1(-a a (2)原式= (2分))1)(1(22-+x x = (4分))1)(1)(1(2-++x x x 21.(1)(解对一个得2分,共4分)⎩⎨⎧==28y x (2)(3分),的最大整数解是19(4分)20<x x 22.化简得(2分),求值得(4分) 56+x 1-23.(1)(2分)63-=x y (2)(5分)335≤<x 24. 证得:BC=EF (1分)证得:△ABC ≌△DEF (3分)证得:∠ACB =∠F (4分) 证得:AC ∥DF (6分)25.(1)3,0,-2(每空1分)(2)(具体情况具体给分,满分4分)设(3,4)=x ,(3,5)=y 则,=543=xy3 ∴20333=⋅=+y x y x ∴(3,20)=x+y∴(3,4)+(3,5)=(3,20)26.(1)往返高铁费:(524×3+524÷2)×2=3668元 ⎩⎨⎧++++=++⨯⨯=⨯1920202000103668136681920204510052y x y x 解得: (3分)⎩⎨⎧==54500y x (2)往返交通费:524×3+524÷2+1240×0.55×3+1240÷2=45004500+5000+2000+1080+1920=14500>14000,不够;(5分) 设预定的房间房价每天a 元则4500+2000+1080+1920+10a ≤14000,解得a ≤450,答:标准间房价每日每间不能超过450元.(7分)。
2016七年下期末数学试卷

2016七年下期末数学试卷D4.如图,将三角形纸板ABC沿直线AB向右平行移动,使∠A到达∠B的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A.50°B.40°C.30°D.100°5.实数,0,﹣π,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.1个B.2个C.3个D.4个6.已知样本容量为30,在以下样本频数分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第2组的频数为()A.12 B.10 C.9D.67.用加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去xC.②×2+①,消去yD.②×2﹣①,消去y8.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.9.若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b <ab;④<中,正确的有()A.1个B.2个C.3个D.4个10.已知a,b为非零有理数,下面四个不等式组中,解集有可能为﹣2<x<2的不等式组是()A.B.C.D.二、填空题(每小题3分,共18分)11.36的平方根是_________.12.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=_________.13.线段CD是由线段AB平移得到的.点A(﹣2,5)的对应点为C(3,7),则点B(﹣3,0)的对应点D的坐标为_________.14.如图1是长方形纸袋,将纸袋沿EF折叠成图2,再沿BF折叠成图3,若∠DEF=α,用α表示图3中∠CFE的大小为 _________ .15.如图,AB ∥CD ,BE ⊥DE 。
则∠B 与∠ D 之间的关系________,16.已知关于x 的不等式组的解集恰含有2个整数解,则实数a 的取值范围是 _________ .三、解答题(本大题共7小题,共72分)17.(5分)(Ⅰ)解方程组:;A B C D E(5分)(Ⅱ)解不等式组:.18.(5分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.19.(5分)甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?20.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=_________()又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥_________()∴∠BAC+_________=180°()∵∠BAC=70°(已知)∴∠AGD=_________.21.(8分)如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.(Ⅰ)建立以点B为原点,AB边所在直线为x轴的直角坐标系.写出点A、B、C、D的坐标;(Ⅱ)求出四边形ABCD的面积;(Ⅲ)请画出将四边形ABCD向上平移5格,再向左平移2格后所得的四边形A′B′C′D′.22.(8分)解应用题:两位搬运工人要将若干箱同样的货物用电梯运到楼上.已知一箱货物的质量是65千克,两位工人的体重之和是150千克,电梯的载重量是1800千克,问两位工人一次最多能运多少箱货物?23.(8分)某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为_________度;(2)共抽查了_________名学生;(3)在图2中,将“体育”部分的图形补充完整;(4)爱好“书画”的人数占被调查人数的百分比_________;(5)估计现有学生中,有_________人爱好“书画”.24.(10)如图,在直角坐标系xOy中,A(﹣1,0),B(3,0),将A,B同时分别向上平移2个单位,再向右平移1个单位,得到的对应点分别为D,C,连接AD,BC.(1)直接写出点C,D的坐标:C(,),D(,);(2)四边形ABCD的面积为;(3)点P为线段BC上一动点(不含端点),连接PD,PO.求证:∠CDP+∠BOP=∠OPD.25.(10分)为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.。
番禺区期末试卷七年级数学

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 0.1010010001…B. √4C. -1/3D. π2. 已知a、b是实数,若a+b=5,ab=-6,则a²+b²的值为()A. 13B. 14C. 15D. 163. 下列函数中,y是x的一次函数的是()A. y=2x+3B. y=√xC. y=x²+1D. y=3x²-2x+14. 在直角坐标系中,点P(-2,3)关于x轴的对称点坐标是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)5. 如果等腰三角形底边长为10,腰长为8,那么这个等腰三角形的面积是()A. 40B. 45C. 50D. 556. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 正方形B. 等边三角形C. 矩形D. 等腰梯形7. 若一个等腰三角形的底边长为6,腰长为8,那么这个三角形的周长是()A. 22B. 24C. 26D. 288. 在下列各式中,正确的是()A. 3a=3a²B. a³=a×a×aC. a²=a×aD. (a+b)²=a²+2ab+b²9. 下列命题中,正确的是()A. 相等的角是邻补角B. 直线外一点与直线上所有点的连线都是垂线C. 相等的角一定是对顶角D. 直线外一点到直线的距离是垂线段A的坐标是(1,0),点B的坐标是(0,b),则函数图象与x轴的交点坐标是()A. (b,0)B. (0,b)C. (-b,0)D. (0,-b)二、填空题(每题3分,共30分)1. 3的平方根是______,2的立方根是______。
2. 如果a=2,b=-3,那么a²+b²的值是______。
3. 在直角坐标系中,点P(-3,4)关于原点的对称点坐标是______。
番禺七年级期末考试卷数学
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. -3C. √4D. π2. 如果a > b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. a + 2 < b - 2D. a - 2 > b + 23. 下列方程中,x的值为2的是()A. 2x - 4 = 0B. 3x + 1 = 7C. 5x - 5 = 10D. 4x - 8 = 04. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 等腰三角形5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = 5x - 36. 在直角坐标系中,点P(3, 4)关于x轴的对称点是()A. (3, -4)B. (-3, 4)C. (3, 4)D. (-3, -4)7. 下列数中,绝对值最小的是()A. -2B. 0C. 1D. -38. 下列分数中,约分后与原分数相等的是()A. 18/24B. 12/16C. 24/36D. 36/489. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 下列几何图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题3分,共30分)11. 若a = 3,b = -2,则a + b的值为______。
12. 解方程:5x - 3 = 2。
13. 下列图形的面积是______。
14. 若x = 2,则y = 3x - 1的值为______。
15. 下列函数中,是正比例函数的是______。
2015—2016学年度第二学期期末考试七年级数学试题带答案
2015—2016学年度第二学期期末考试七年级数学试题是正确的,请将正确选项的代号填在题后的括号内.) 1.下列实数是无理数的是( ) (A (B )3.14 (C )227(D 分析:考查实数的分类,简单题,选A . 2.下列运算正确的是( )(A )222(3)6mn m n -=- (B )4444426x x x x ++=(C )2()()xy xy xy ÷-=- (D )22()()a b a b a b ---=-分析:考查整式的运算,简单题,选C . 3.不等式组21024x x +>⎧⎨<⎩的整数解的个数是( )(A )1 (B )2 (C )3 (D )4 分析:考查不等式组的解集,简单题,选B . 4.如图,BC ∥DE ,AB ∥CD ,∠B =40°,则∠D 的度数是( )(A )40° (B )100° (C )120° (D )140°分析:考查平行线的性质,简单题,选D . 5.若m n >,下列不等式不一定...成立的是( ) (A )22m n ->- (B )22m n > (C )22m n> (D )22m n > 分析:考查不等式的性质,简单题,选D .6.若2(8)(1)x x x mx n +-=++对任意x 都成立,则m n +=( ) (A )8- (B )1- (C )1 (D )8 分析:考查多项式乘法运算,简单题,选B .EDCBA(第4题图)7.有旅客m 人,若每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A )1m n + (B)1m n + (C )1m n - (D )1m n- 分析:考查分式的知识,简单题,选D . 8.如图,在数轴上标注了四段范围,则表示的点落在( )(A )段① (B )段② (C )段③ (D )段④分析:考查无理数的近似值,简单题,选C .9.如图,直线AC ∥BD , AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) (A )互余 (B )相等 (C )互补 (D )不等分析:考查平行线的性质、角平分线、互余的知识,简单题,选A .10.已知3a b -=,2ab =,则22a b +的值为( ) (A )13(B )9 (C )5 (D )4分析:考查完全平方公式的应用,中等题,选A .二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上) 11.64-的立方根是 . 分析:考查立方根,简单题,答案:4-. 12.不等式组12010x x ->⎧⎨+≤⎩的解集为 .分析:考查解不等式组,简单题,答案:1x ≤-. 13.分解因式:282x -= __________.分析:考查因式分解,简单题,答案:2(2)(2)x x -+ .14.规定:[]x 表示不超过x 的最大整数,例如:[3.69]3=,[ 3.69]4-=-,1=. 计算:1-= .分析:考查实数知识,简单题,答案:2.15.如图,将长方形纸片ABCD 折叠,使边AB ,CB 均落(第8题图)(第9题图) FEDCBA在BD 上,得折痕BE 、BF ,则∠EBF = °. 分析:考查角平分线知识的应用,简单题,答案:45.16.从一个边长为2a b +的大正方形中剪出一个边长为b 的小正方形,剩余的正好能剪拼成四个宽为a 的长方形,那么这个长方形的长为 . 分析:考查整式运算的应用,中等题,答案:a b +.17.如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,则∠BCE= °.分析:考查角平分线的性质及角的运算,简单题,答案:20°.18.若关于x 的方程2222x mx x++=--的解为正数,则m 的取值范围是 . 分析:考查分式方程及不等式的应用,中等题,答案:6m <且0m ≠. 三、解答题(本大题共6小题,共46分) 19.(本题共6分)计算:(1)2237.512.5- (2)2(2)(2)x a a a x ---解:(1)原式(37.512.5)(37.512.5)=-+………………………2分25501250=⨯=………………………3分(2)原式222442x ax a a ax =-+-+………………………5分 2232x ax a =-+………………………6分分析:(1)考查利用因式分解进行简便运算,简单题;(2)整式乘法的应用,简单题.20.(本题共8分)解不等式:135432y y +--≥,并将其解集在数轴上表示出来.解:去分母,得:2(1)3(35)24y y +--≥………………………4分 去括号,得: 2291524y y +-+≥, 移项、合并同类项,得:77y -≥,系数化为1,得:1y ≤-………………………6分FE DCBA(第17题图)在数轴上表示不等式的解集为:……………………8分分析:考查解一元一次不等式,简单题.21.(本题共8分)先化简,再求值:235(2)236m m m m m -÷+---,其中23m =. 解:原式323(2)(3)(3)m m m m m m --=⋅-+- ……………………3分13(3)m m =+ ………………………6分当23m =时,原式322= ……………………………8分分析:考查分式的化简、求值,简单题.22.(本题共8分)如图,直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G ,若∠EFG =72°,求∠MEG 的度数. 解:因为AB ∥CD所以∠MEB =∠EFG =72°(两直线平行,同位角相等),∠FEB +∠EFG =180°(两直线平行,同旁内角互补),即∠FEB =108°…………………………4分 而EG 平分∠BEF ,所以∠GEB =12∠FEB =54°(角平分线定义)…………………………6分故∠MEG =∠GEB +∠MEB =54°+72°=126°…………………………8分 说明:括号中的理由可以不写.分析:考查平行线的性质、角平分线及角的计算,简单题.23.(本题共8分)某商家预测一种衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.G F EMNDCBA-4 -3 -2 -1 0 1 2 3 4(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,如果两批衬衫全部售完利润率不低于30%(不考虑其它因素),那么每件衬衫的标价至少是多少元?(结果保留整数)解:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件, 由题意可得:2880013200102x x-=,……………………2分 解得120x =,经检验120x =是原方程的根.……………………3分 答:该商家购进的第一批衬衫是120件.…………………………4分(2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:28800240120÷=(元/件).…………5分由题意可得:120(110)1202(120)30%(2880013200)a a -+⨯-≥⨯+……7分 解得21513a ≥,即每件衬衫的标价至少是152元.………………8分分析:(1)考查列分式方程解应用题,简单题;(2)考查列一元一次不等式解应用题,中等题.24.(本题共8分)如图是用总长为8米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC =EB=x 米. (1)用含x 的代数式表示AB 、BC 的长;(2)用含x 的代数式表示长方形ABCD 的面积(要求化简). 解:(1)由题意得,AE=DF=HG=2x ,DH=HA=GE=FG ,所以AB=23x x x +=(米)……3分 BC=AD=EF=83328833x x x x----=(米)…………6分(2)8833ABCD xS AB BC x -=⨯=⨯………………………7分 2(88)88x x x x =-=-(平方米)………………………8分 分析:考查列代数式,及整式的应用,较难题.x区域③②区域①区域A BCEFHGD。
2023-2024学年广东省广州市番禺区七年级(下)期末数学试卷(含答案)
2023-2024学年广东省广州市番禺区七年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各式中,正确的是( )A. 16=±4B. ±16=4C. 3−27=−3D. (−4) 2=−42.下列各图中,∠1和∠2是对顶角的是( )A. B. C. D.3.下列实数中是无理数的是( )A. −12B. 3.14C. 5D. 3−84.不等式3−3x>0的解集在数轴上表示正确的是( )A. B.C. D.5.如果a>b,那么下列各式中错误的是( )A. a−2>b−2B. a3>b3C. −3a>−3bD. 5a+2>5b+26.如图所示,下列条件中能说明a//b的是( )A. ∠1=∠2B. ∠3=∠4C. ∠2+∠4=180°D. ∠1+∠4=180°7.如图所示是某校举行学生“环保知识”竞赛成绩的频数分布直方图(每一组含前一个边界值,不含后一个边界值),其中成绩在80分以下的学生有( )人.A. 140B. 120C. 70D. 608.下列命题是真命题的是( )A. 若a >b ,则a 2>b 2B. 相等的角是对顶角C. 同旁内角互补D. 如果直线a ⊥b ,b//c ,那么a ⊥c9.若点A(a−4,3−a)在x 轴上,则点A 的坐标为( )A. (−1,0)B. (−2,0)C. (3,0)D. (−4,3)10.如图,把一个含30°角的直角三角尺的一个顶点放在直尺的一边上,若∠1=33°,则∠2的度数为( )A. 33°B. 27°C. 25°D. 17°二、填空题:本题共8小题,每小题3分,共24分。
11.实数− 6的相反数是______.12.不等式2x +4≥6的解集为______.13.方程组{x =y +33x−8y =14的解是______.14.若|x|=23,则x = ______.15.如图,点E 在AC 的延长线上,请添加一个恰当的条件______,使AB//CD .16.点A(5,−3)向左平移3个单位,再向下平移2个单位后的坐标是______.17.已知,x =3、y =2是方程组{6x +by =32ax−by =4的解,则a−b = ______.18.如图,AF//CD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC//BE ;③∠CBE +∠D =90°;④∠DEB =2∠BCD.其中正确结论为 (只填写序号).三、计算题:本大题共1小题,共7分。
番禺七年级下数学期末试卷
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -3.5B. 0C. 2.5D. -2.32. 下列运算正确的是()A. -2 + 3 = 1B. -5 - (-2) = -3C. -3 × 2 = -6D. -4 ÷ 2 = 23. 若a > b,则下列不等式正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a × 2 < b × 2D. a÷ 2 > b ÷ 24. 下列代数式中有理数指数幂的是()A. a^3B. (a^2)^3C. a^(1/2)D. a^(-1)5. 已知a = 2,b = -3,则下列式子值为正数的是()A. a + bB. a - bC. abD. a ÷ b6. 下列函数中,自变量的取值范围是全体实数的是()A. y = x^2B. y = √xC. y = 1/xD. y = 2x + 17. 在平面直角坐标系中,点A(-2,3)关于y轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)8. 下列图形中,是平行四边形的是()A. 矩形B. 菱形C. 等腰梯形D. 等腰三角形9. 已知直角三角形的一条直角边长为3,斜边长为5,则另一条直角边长为()A. 2B. 3C. 4D. 510. 下列各式中,符合勾股定理的是()A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 + c^2 = b^2D. b^2 - c^2 = a^2二、填空题(每题3分,共30分)11. 2 - 3 + 4 = _______12. (-2) × (-3) × (-4) = _______13. a^2 ÷ a = _______14. 1/x^2 的倒数是 _______15. 2x - 3 = 7 的解是 x = _______16. 3a + 2b = 12,若a = 2,则b = _______17. 下列函数中,自变量的取值范围是全体实数的是 _______18. 在平面直角坐标系中,点P(2,-3)关于x轴的对称点是 _______19. 下列图形中,是矩形的是 _______20. 下列各式中,符合勾股定理的是 _______三、解答题(每题10分,共40分)21. 简化下列各式:a. 3a^2 - 2a + 5b^2b. 4x^2 - 9y^2 + 6xyc. 2(a^3 - b^3) + 3a^2b22. 已知a = -2,b = 3,求下列各式的值:a. a^2 + b^2b. abc. a^2 - b^223. 已知函数y = 2x - 3,求下列各题:a. 当x = 2时,y的值为多少?b. 若y = 5,求x的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016学年第二学期七年级数学科期末测试题
一、选择题:(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有 一项是符合题目要求的)
1.如下图所示,1和2是对顶角的图形有( )
(A) 1个 (B) 2个 (C) 3个 (D) 4个 2.2是4的( )
(A) 算术平方根 (B) 平方根 (C) 绝对值 (D) 相反数 3.若3x ,贝x
( )
(A)
3 (B) 3 (C) 3 (D) 9 4.在3221
0.25,,9,,0.0210210212712
中,无理数有( )
(A) 1个 (B) 2个 (C) 3个 (D) 4个
5.轮船在B 处测得小岛A 在其北偏东32方向,从小岛A 观测B 处的方向为 ( ) (A)北偏东32 (B)南偏东32 (C)南偏西58 (D)南偏西32 6.下列调查中,适合全面调查的是( )
(A) 了解本班同学的课外阅读情况 (B) 了解同批次LED 灯泡的使用寿命 (C) 了解全国中学生体重情况 (D) 了解市桥河的水质情况 7.如果a b ,下列各式中正确的是( ) (A)0a
b
(B)
11
22
a b (C) 22a b (D) 33b
8. 若2
(2)
1x ,则x ( ) (A) 1 (B) 3 (C) 1或3 (D) 2 或4
9. 平面直角坐标系中,点A(-3,2),B(l ,4),C(x ,y),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )
(A) 2,(1,2) (B) 6,(一3,4) (C) 4,(1,0) (D) 1,(0,4)
10. 某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方程组中符合题意的有( )
(A)
24622
x y y
x
(B)
24622
x y x
y
(C)
24622
x y y
x
(D)
24622
x y y
x
二、填空题:本大题共6小题,每小题3分,共18分.
11.为了测算一片1 000亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 . 12.
3
827
13.方程组
2395978
x y z x
y
z
消去y 得到的二元一次方程是 .
14.甲种蔬菜保鲜适宜的温度是0C ~7C ,乙种蔬菜保鲜适宜的温度是3C ~9C ,将这两种蔬菜放在一起同时保鲜,适宜的温度是
15.如图1,是我们学过的用直尺和三角尺画平行线的方法的示意图,画图的原理是 . 16.如图2所示,已知A B ∥CD ,EF 平分CEG ,180,则2的度数为 ,
三、解答题:本大题共62分,解答应写出文字说明、推理过程或演算步骤. 17.(本小题满分10分) 分别用代入消元法与加减消元法解方程组2536
x y x y +=⎧⎨-=⎩①②
18.(本小题满分6分)解不等式组
3423(1)
6
x x x
x
①②
19.(本小题满分6分)为了创设“书香校园”,进一步组织学生开展“阅读进校园”暨“全民阅读”实践活动,某校活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如图3和图4:请根据以上信息解答下列问题:
(1) 该校对多少名学生进行了抽样调查? (2) 请将图3和图4补充完整;
(3) 已知该校共有学生2 000人,利用样本数据估计全校学生中最喜欢科技图书的人数约为多少人? 20.(本小题满分6分)
命题“互补的角是同旁内角”是真命题吗?如果是,说明理由;如果不是,请举反例, 要求:画出图形,并用相应符号(文字)语言说明理由或表述所举反例. 21.(本小题满分6分)
如图5,在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为
(5,1),(4,4),(1,1)A B C 将三角形ABC 向右平移5个单位长度,再向上平移1个单位长度,得到三角形'''A B C ,其中点',','A B C 分别为点,,A B C 的对应点.
(1) 请在所给坐标系中画出三角形'''A B C ,并直接写出点'B 的坐标;
(2) 若AB 边上一点P 经过上述平移后的对应点为'(,)P x y ,用含(,)x y 的式子表示点P 的坐标;(直
按写出结果即可)
(3) 求三角形ABC 的面积.
22.(本小题满分10分)
为了降低海鸥岛生态旅游区的空气污染,区公交公司决定将148路公交车部分更换节能环保的电动公交车.计划购买A 型和B 型两种公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元. (1)A 型和B 型两种公交车的单价分别是多少万元/辆?
(2)如果每辆A 型和B 型公交车的年载客量分别为60万人次/年,100万人次/年,该公司购买的总费用不超过1200万元,且确保这10辆公交车在该线路的年载客总和不少于680万人次.请你设计一个购车方案,使得购车总费用最少.
23.(本小题满分10分)
图6展示了光线反射定律:EF 是镜面AB 的垂线,一束光线m 射到平面镜AB 上,被AB 反射后的光线为n ,则入射光线m ,反射光线甩与垂线EF 所夹的锐角12θθ.
(1) 在图6中,证明:12. (2) 图7是潜望镜工作原理示意图,,AB CD 是平行放置的两面平面镜,请解释进入潜望镜的光线m 为什么和离开潜望镜的光线n 是平行的?
(3)图8中,,AB BC 是平面镜,入射光线m 经过两次反射后,反射光线n 与m 平行但方向相反,求ABC 的度数.
24.(本小题满分8分)
如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程. (1)在方程 ①320x ,②210x ,③(31)5x x 中,
写出是不等式组25312x x x x -+>-⎧⎨
-≥-+⎩的相伴方程的序号.
(2)写出不等式组213
133
x x x -<⎧⎨
+>-+⎩的一个相伴方程,使得它的根是整数.
(3)若方程1,2x x 都是关于x 的不等式组
22
x x m x
m
的相伴方程,直接写m 的取值范围。