分式 —初中数学课件PPT
合集下载
分式PPT课件

⑵ 当x =2
时,分式 x 2 的值为零。 2x 1
4、已知,当x=5时,分式 2x k 的值等于零,
则k =-10 。
3x 2
它和分数有什么区别? 它是一个代数式吗? 它是一个整式吗? 它与整式有什么区别?
分式
A
定义:整式A除以整式B,表示成 的
形式。如果
B
除式B中含有字母,则称 A 为分式。 B
其中A称为分式的 分子,B称为分式的 分母。
巩固概念
判断下列代数式是否为分式
2x
(1)
y
是
x 1 (( x2) 1) 2
是
x2 2 否
当x=1、2、3时,求分式 x 1 的值
解:
x2 2 12 2 1 1
当x=1时, x 1
11
2
2
当x=2时,
x2 2 x 1
22 2 2 1
2 3
x2 2 32 2 7 当x=3时, x 1 3 1 4
例2
1
当x取何值时,分式
x2
有意义。
1
解:当 x2 1 0时
即 x 1
追史溯源
分数:把整体“1”平均分成若干份 ,表示这样一份或者几份的数叫做 分数。
分子 分母
分数线
同学们看看如何用分数形式回答问题:
一个长方形,面积为21平方厘米,宽为4
厘米。则它的长为( 21 )厘米 4
如果改为
一个长方形,面积为21平方厘米,宽为x
厘米。则它的长为( 21 )厘米 x
21 是一个分数吗? x
2x 4
x2 1 (3) (x 1)(x 2)
小测试
1、在下面四个有理式中,分式为( B )
《分式》PPT课件(上课用)

同学们再见
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。 2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。 3、无论正在经历什么,都请不要轻言放弃,因为从来没有一种坚持会被辜负。谁的人生不是荆棘前行,生活从来不会一蹴而就,也不会永远安稳,只要努力,就能做独一无二平凡可贵的自己。 4、努力本就是年轻人应有的状态,是件充实且美好的事,可一旦有了表演的成分,就会显得廉价,努力,不该是为了朋友圈多获得几个赞,不该是每次长篇赘述后的自我感动,它是一件平凡而自然而然的事,最佳的努力不过是:但行好事,莫问前程。愿努力,成就更好 的你! 5、付出努力却没能实现的梦想,爱了很久却没能在一起的人,活得用力却平淡寂寞的青春,遗憾是每一次小的挫折,它磨去最初柔软的心智、让我们懂得累积时间的力量;那些孤独沉寂的时光,让我们学会守候内心的平和与坚定。那些脆弱的不完美,都会在努力和坚持 下,改变模样。 6、人生中总会有一段艰难的路,需要自己独自走完,没人帮助,没人陪伴,不必畏惧,昂头走过去就是了,经历所有的挫折与磨难,你会发现,自己远比想象中要强大得多。多走弯路,才会找到捷径,经历也是人生,修炼一颗强大的内心,做更好的自己! 7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己! 8、人生的旅途中,最清晰的脚印,往往印在最泥泞的路上,所以,别畏惧暂时的困顿,即使无人鼓掌,也要全情投入,优雅坚持。真正改变命运的,并不是等来的机遇,而是我们的态度。 9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。 10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。 11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。 12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。 13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。 14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。 15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋! 16、人生在世:可以缺钱,但不能缺德;可以失言,但不能失信;可以倒下,但不能跪下;可以求名,但不能盗名;可以低落,但不能堕落;可以放松,但不能放纵;可以虚荣,但不能虚伪;可以平凡,但不能平庸;可以浪漫,但不能浪荡;可以生气,但不能生事。 17、人生没有笔直路,当你感到迷茫、失落时,找几部这种充满正能量的电影,坐下来静静欣赏,去发现生命中真正重要的东西。 18、在人生的舞台上,当有人愿意在台下陪你度过无数个没有未来的夜时,你就更想展现精彩绝伦的自己。但愿每个被努力支撑的灵魂能吸引更多的人同行。 19、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会中看到了某种忧患。莫找借口失败,只找理由成功。 20、每一个成就和长进,都蕴含着曾经受过的寂寞、洒过的汗水、流过的眼泪。许多时候不是看到希望才去坚持,而是坚持了才能看到希望。 1、有时候,我们活得累,并非生活过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。 2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。 3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。 4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。 5、世上最美好的事是:我已经长大,父母还未老;我有能力报答,父母仍然健康。 6、没什么可怕的,大家都一样,在试探中不断前行。 7、时间就像一张网,你撒在哪里,你的收获就在哪里。纽扣第一颗就扣错了,可你扣到最后一颗才发现。有些事一开始就是错的,可只有到最后才不得不承认。 8、世上的事,只要肯用心去学,没有一件是太晚的。要始终保持敬畏之心,对阳光,对美,对痛楚。 9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。 10、山有封顶,还有彼岸,慢慢长途,终有回转,余味苦涩,终有回甘。 11、人生就像是一个马尔可夫链,你的未来取决于你当下正在做的事,而无关于过去做完的事。 12、女人,要么有美貌,要么有智慧,如果两者你都不占绝对优势,那你就选择善良。 13、时间,抓住了就是黄金,虚度了就是流水。理想,努力了才叫梦想,放弃了那只是妄想。努力,虽然未必会收获,但放弃,就一定一无所获。 14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。
分式的概念课件

详细描述
将分数转换为小数是通过除法实现的,例如,$frac{2}{3} = 0.overline{6}$;将小数转换为分数是通 过乘以其倒数或将小数表示为两个整数的比值实现的,例如,$0.333... = frac{1}{3}$。
04
分式的应用
物理中的分式
总结词
物理中的分式主要用于描述和解决与速度、 加速度、功率等相关的物理问题。
分式的概念ppt课件
• 分式的定义 • 分式的基本性质 • 分式的简化 • 分式的应用 • 分式的注意事项
01
分式的定义
什么是分式
总结词
分式是数学中一种基本的代数式,表 示两个整式的商。
详细描述
分式由分子和分母两部分组成,分子 是整式,分母也是整式,并且分母不 为零。例如,$frac{x^2}{y}$是一个分 式,其中$x^2$是分子,$y$是分母。
通分
总结词
通分是将两个或多个分式化为同 分母的过程,以便进行加减运算 。
详细描述
通分是将分母不同的分式化为具 有相同分母的分式的过程。例如 ,将分式$frac{2}{3}$和 $frac{3}{5}$通分为 $frac{10}{15}$和$frac{9}{15}$。
分数和小数的转换
总结词
将分数转换为小数或将小数转换为分数是常见的数学操作,有助于理解和应用分式的概念。
详细描述
在物理学中,分式经常被用来表示和解决与 速度、加速度、功率等相关的物理问题。例 如,在计算物体的运动速度和加速度时,我 们通常使用分式来表示物体的位移与时间的 关系。此外,在电路分析中,分式也常被用
来表示电流与电压的关系。
数学中的分式
总结词
数学中的分式主要用于解决代数和几何问题,以及进 行函数分析。
将分数转换为小数是通过除法实现的,例如,$frac{2}{3} = 0.overline{6}$;将小数转换为分数是通 过乘以其倒数或将小数表示为两个整数的比值实现的,例如,$0.333... = frac{1}{3}$。
04
分式的应用
物理中的分式
总结词
物理中的分式主要用于描述和解决与速度、 加速度、功率等相关的物理问题。
分式的概念ppt课件
• 分式的定义 • 分式的基本性质 • 分式的简化 • 分式的应用 • 分式的注意事项
01
分式的定义
什么是分式
总结词
分式是数学中一种基本的代数式,表 示两个整式的商。
详细描述
分式由分子和分母两部分组成,分子 是整式,分母也是整式,并且分母不 为零。例如,$frac{x^2}{y}$是一个分 式,其中$x^2$是分子,$y$是分母。
通分
总结词
通分是将两个或多个分式化为同 分母的过程,以便进行加减运算 。
详细描述
通分是将分母不同的分式化为具 有相同分母的分式的过程。例如 ,将分式$frac{2}{3}$和 $frac{3}{5}$通分为 $frac{10}{15}$和$frac{9}{15}$。
分数和小数的转换
总结词
将分数转换为小数或将小数转换为分数是常见的数学操作,有助于理解和应用分式的概念。
详细描述
在物理学中,分式经常被用来表示和解决与 速度、加速度、功率等相关的物理问题。例 如,在计算物体的运动速度和加速度时,我 们通常使用分式来表示物体的位移与时间的 关系。此外,在电路分析中,分式也常被用
来表示电流与电压的关系。
数学中的分式
总结词
数学中的分式主要用于解决代数和几何问题,以及进 行函数分析。
《分式》精品ppt课件

9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。
7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。 8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。 9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
元,乙种糖果价格b元,
取甲种糖果m㎏,乙种
糖果n㎏,混合后,平均
每千克价格
am bn mn
元。
轮船在静水中每小时走a千米, 水流速度为每小时b千米,轮船 在逆流中航行s千米,然后又返 回出发地,那么轮船需要的时间
s S
是 ab ab 小时。
一件商品售价x元,利 润率为a%(a>0),则 这种商品每件的成
3x2-1,
b3 2a 1
x2 xy y2
-5,
2 x 1
m 7
试着自己举出分式的例子
练一练 课本:1,2
m(n p) 7
4 5bc
(1)当a=1,2时,分别求分式
a 1 2a
的值
(2)当a取何值时,分式
a 1 2a
无意义?
(3)当a取何值时,分式
a 1 2a
有意义?
(4)当a取何值时,分式
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。 8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。 9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
元,乙种糖果价格b元,
取甲种糖果m㎏,乙种
糖果n㎏,混合后,平均
每千克价格
am bn mn
元。
轮船在静水中每小时走a千米, 水流速度为每小时b千米,轮船 在逆流中航行s千米,然后又返 回出发地,那么轮船需要的时间
s S
是 ab ab 小时。
一件商品售价x元,利 润率为a%(a>0),则 这种商品每件的成
3x2-1,
b3 2a 1
x2 xy y2
-5,
2 x 1
m 7
试着自己举出分式的例子
练一练 课本:1,2
m(n p) 7
4 5bc
(1)当a=1,2时,分别求分式
a 1 2a
的值
(2)当a取何值时,分式
a 1 2a
无意义?
(3)当a取何值时,分式
a 1 2a
有意义?
(4)当a取何值时,分式
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
初二数学 分式的概念PPT课件

除,如2÷3,可表示为 2 的形式,并把 2 叫做
3
3
分数。
类似地,如果用A、B表示两个整式,
A÷B可表示成 A 的形式,若B中含有字母,
B
且B≠0,式子 A 叫做分式。
B
分式的概念:即形如
A
B
(A、B是整式,且B中含有字母,B≠0)的
式子叫分式。
4
代数式分类: 有理式
单项式 整式
多项式
分式
到本节课,我们一共学习了哪些代数式 呢?请同学们讨论一下!
整式和分式统称为有理式。
5
例1:下列代数式,哪些是整式?哪些是分式?
①1
x2
,②1(x
5
y),③ 3 ,④0,⑤ab1,
x
2c
⑥x y,⑦x y,⑧5x1,⑨2x y,⑩1 2,
2
2
3
a
⑾a,⑿1(xy),⒀4
33
x
②④ ⑥⑦ ⑧ ⑨⑾ ⑿
①③⑤
⑩⒀
6
1、判断一个有理式是不是分式, 关键看是否符合下式:
4x 1
20
a+1
4、当a=1,2时,分别求分式 2a 的值。
5、a取何值时,分式
a+1 2a
有意义?
变式训练:
(1)当a取什么值时,分式
a 1 2a2 1
有意义。
(2)当y是什么值时,分式 y 3 的值是0?
y3
(3)当y是什么值时,分式 | y | 3 的值是0?
y3
21
思考题:
若分式
第16章 分式
§16.1.1 分式的概念
第1课时
1
两个整数相除,不能
请你来填一填:
《分 式》初中数学课件

=
—5 8
02
分式的乘除法
■ 运算法则 ■ 分式的乘方 ■ 经典例题
分
式
分式乘除法运算法则
的
两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
乘
两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。
除
法
fg·
u v
=
fu gv
f g
÷
u v
=
f g
v ·u
=
fv gu
答:甲广告公司每天能制作20个宣传栏,乙广告公司每天能制作24个宣传栏。
谢谢观赏
幂
am am
=1
am am
=am-m =a0
a0=1
负整数指数幂
( ) a-n =
1 a
n1 = an
(a≠0,n为正整数)
a-n=a0-n=
a0 an
=
1 an
整
数
科学计数法的定义
指
科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式
数
(1≤a<10,n为整数),这种记数法叫做科学记数法。
单
的
分 式
例题11、解方程
x
x
3
3 x2
9
1
例题12、解方程 x 2 1
x 1 x
方
解:去分母得: x(x 3) 3 x2 9
解:去分母得: x2 2(x 1) x(x 1)
程
解得: x 2
解得:x 2
把解代入方程检验:
把解代入方程检验,
x2 9 5 0
方程左右两边相等,
初中数学课件 之
《分式》PPT课件5 (共14张PPT)

2、把甲、乙两种饮料按质量比 x∶y 混在一起 , 可以 调制成一种混合饮料. 调制 1kg这种混合饮料需要 多少甲种饮料 ? x kg . xy
11
小测试
1、在下面四个有理式中,分式为( B ) 2x 5 1 x8 A、 B、 C、 7 3x 8
1 x D、 - + 4 5
2、当x=-1时,下列分式没有意义的是( C ) A、x 1 B、 x C、 2 x D、x 1 x x 1 x 1 x x2 3、⑴ 当x ≠ 1 时,分式 有意义。 2x 1 2
2400 那么原计划完成一期工程需要 个月, x 2400 实际完成一期工程用了 x 30 个月. 2400 2400 4. 依据题意,可列出方程 x x 30
如果设原计划每月固沙造林x公顷,
4
做一做
P65
n 2 180
n
(1)正n边形的每个内角为
度。
(2)文林书店库存一批图书, 其中一种图书的原价是 每册 a元,现降价 x 元销售,当这种图书的库存 全部售出时,其销售额为b元。降价销售开始时, b 文林书店这种图书的库存量是 a x 册 ?
90 x 60 x6
来表示。 来表示。
(2) n公顷麦田共收小麦m吨,
m 平均每公顷产量可以用式子 n 吨来表示.
3
从 环境保护 说起
面对日益严重的土地 实际每月造林的面积 沙化问题, 某县决定分期分 =原计划每月造林的面积+30公顷; 批固沙造林. 一期工程计划 在一定的期限内固沙造林 原计划完成工程的时间 2400公顷, 实际每月固沙造 —实际完成的时间=4个月. 林的面积比原计划多30公顷, 结果提前4个月完成原计划 任务. 原计划每月固沙造林多少公顷? 这一问题中有哪些等量关系?
11
小测试
1、在下面四个有理式中,分式为( B ) 2x 5 1 x8 A、 B、 C、 7 3x 8
1 x D、 - + 4 5
2、当x=-1时,下列分式没有意义的是( C ) A、x 1 B、 x C、 2 x D、x 1 x x 1 x 1 x x2 3、⑴ 当x ≠ 1 时,分式 有意义。 2x 1 2
2400 那么原计划完成一期工程需要 个月, x 2400 实际完成一期工程用了 x 30 个月. 2400 2400 4. 依据题意,可列出方程 x x 30
如果设原计划每月固沙造林x公顷,
4
做一做
P65
n 2 180
n
(1)正n边形的每个内角为
度。
(2)文林书店库存一批图书, 其中一种图书的原价是 每册 a元,现降价 x 元销售,当这种图书的库存 全部售出时,其销售额为b元。降价销售开始时, b 文林书店这种图书的库存量是 a x 册 ?
90 x 60 x6
来表示。 来表示。
(2) n公顷麦田共收小麦m吨,
m 平均每公顷产量可以用式子 n 吨来表示.
3
从 环境保护 说起
面对日益严重的土地 实际每月造林的面积 沙化问题, 某县决定分期分 =原计划每月造林的面积+30公顷; 批固沙造林. 一期工程计划 在一定的期限内固沙造林 原计划完成工程的时间 2400公顷, 实际每月固沙造 —实际完成的时间=4个月. 林的面积比原计划多30公顷, 结果提前4个月完成原计划 任务. 原计划每月固沙造林多少公顷? 这一问题中有哪些等量关系?
《分式》PPT教学课件(第1课时)

a b2 a b2
1
b a4 a b4 a b2 .
注意 判断一个分式是不是最简分式,要严格按照定义来 判断,就是看分子、分母有没有公因式.分子或分母 是多项式时,要先把分子、分母因式分解.
三 分式的求值
分式的求值 对一些较复杂的分式求值,应先约分化简,再代入具体数据 求值.常用方法有整体代入法,倒数法,换元法和配方法等.
课堂小结
❖分式的概念 ①分子分母都是整式; ②分母中必含有字母. ❖分母中字母的取值不能使分母值为零,否则分式无意义. ❖当分子为零且分母不为零时,分式值为零. ❖分式的基本性质
课后作业
见《学练优》本课时练习
第十二章 分式和分式方程
分式
第2课时
学习目标
1.理解约分和最简分式的意义.(难点) 2.根据定义找出分式中分子与分母的公因式,并会约分. 3.理解分式求值的意义,学会根据已知条件求分式值.(重点)
1
;
2
a b
b a
2 4
;
3
x2
y 8x 8
.
解析: 最简分式: x2 y2 ; x2 2x 1 .
y2 2x2 8x 8
不是最简分式:
m2 2m 1 m2
1
;
a b
b a
2 4
.
m2 2m 1 m 12 m 1;
1 m2
m 1m 1 m 1
分式的特点 分式的特征是: ①分子、分母 都是 整式 ;
②分母中含有 字母 .
二 分式有(无)意义及分式值为0
观察与思考
探究 求下列分式的值:
x … -2 -1
0
1
2…
x x-2 …
1 2
1 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)分式 中,①若分式 有意义 B≠0
②若分式 无意义
B=0
③若分式
A=0且B≠0
2.分式的基本性质 (1)分式的基本性质: (2)分式的变号法则:
M
M
-a
-a
-b
数学
首页
末页
3.分式的运算 (1)加减运算:
考点梳理
①同分母分式相加减法则: ② 异 分 母 分 式 相 加 减 法 则 ( 先 通 分 ):
A.x≠1
B.x≥0
C.x>0
D.x≥0且x≠1
解析:根据题意得: 解得:x≥0且x≠1.
数学
首页
末页
广东中考
8. (2011•珠海)若分式
10倍,则分式的值( D )
A.是原来的20倍 C.是原来的
中的a、b的值同时扩大到原来的
B.是原来的10倍 D.不变
解析:分别用10a和10b去代换原分式中的a和b,得 可见新分式与原分式相等.
∴x+2≠0, ∴x≠﹣2, 即x的取值应满足:x≠﹣2. 故选:D. 点评:
此题主要考查了分式有意义的条件,要熟练掌握,解答此题的关键是要明确:(1)分式 有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值 为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.
÷ ﹣ ,其中x= ﹣1
考点:分式的化简求值.
分析:先根据分式混合运算的法则把原式进行化简,再把x的值代
入进行计算即可.
解答:解:原式=
•﹣
=﹣
=, 当x= ﹣1时,原式= = ﹣1.
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是 解答此题的关键.
数学
首页
末页
广东中考
7. (2013广州)若代数式 有意义,则实数x的取值范围是(D)
分母同时扩大2倍,根据分式的基本性质即可判断.
解答:解:分子、分母的x、y同时扩大2倍,即
,根据分式
的基本性质,则分式的值不变.
故选D.
点评:此题考查了分式的基本性质.
数学
首页
末页
课前预习
4.(2015•酒泉)先化简,再求值: x=0.
÷(1﹣
),其中
考点:分式的化简求值.
分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入
号,分母的符号,变换其中的两个,分式的值不变.
数学
首页
末页
课堂精讲
4.(2015•广东模拟)下列等式中正确的是( A )
A.
B.
C.
D.
考点:分式的基本性质.
分析:根据分式的基本性质进行分析、判断.
解答:解:A、分式的分子、分母同时乘以2,分式的值不变,故本
选项正确;B、分式的分子、分母同时减去1,分式的值不一定不变
到更多课件
数学
首页
末页
课前预习
3.(2015•青岛模拟)把分式 同时扩大2倍,那么分式的值( D )
中的分子、分母的x、y
A.扩大2倍
B.缩小2倍 C.改变原来的
D.不改变
考点:分式的基本性质.
分析:根据题目中分子、分母的x、y同时扩大2倍,得到了分子和
2.(2015•镇江)当x= ﹣1 时,分式
的值为0.
考点:分式的值为零的条件.
分析:根据分式值为零的条件得x+1=0且x﹣2≠0,再解方程即可. 解答:解:由分式的值为零的条件得x+1=0,且x﹣2≠0,解得: x=﹣1,故答案为:﹣1. 点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零 的条件是分子等于零且分母不等于零.
时,原式=
数学
首页
末页
广东中考
11.(2015•广东)先化简,再求值 :
,其中
.
考点:分式的化简求值.
分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分 解的先因式分解;除法要统一为乘法运算,注意化简后,将 ,代入 化简后的式子求出即可. 解答:
数学
首页
末页
数学
首页
末页
数学
首页
末页
广东中考
9. (2013广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③ a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当 a=6,b=3时该分式的值.
解析:选②与③构造出分式,再根据分式混合运算的法则把原 式进行化简,把a、b的值代入进行计算即可.
答案:解:选②与③构造出分式,
﹣ )÷
,其
考点:分式的化简求值.
分析:先根据分式混合运算的法则把原式进行化简,再把x的值代 入进行计算即可.
解答:解:原式=
÷
=
•(x+1)(x﹣1)
=x2+1,
当x= 时,原式=( )2+1=3.
点评:
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此 题的关键.
数学
首页
末页
考点突破
6.(2015•上海)先化简,再求值: .
进行计算即可.
解答:解:原式=
÷( ﹣ )
=
•
=, 当x=0时,原式= .
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是 解答此题的关键.
数学
首页
末页
1.分式的基本概念
考点梳理
(1)整式 A 除以整式 B,可以表示成 的形式,如果除式 B 中含
有 字母 ,那么称 为分式,对于任意一个分式,分母都 不能为零.
第4节 分式
课前预习 考点梳理 课堂精讲 广东中考
数学
首页
末页
课前预习
1.(2015•金华)要使分式
有意义,则x的取值应满足( D )
A.x=﹣2
B.x≠2
C.x>﹣2 D.x≠﹣2
考点:分式有意义的条件.
分析:根据分式有意义的条件是分母不等于零,可得x+2≠0,据此求出x的取值范围即可解 答:解:∵分式 有意义,
(2)乘除运算: ①乘法法则: ②除法法则:
③乘方运算: (3)分式的混合运算顺序:先算乘方,再算乘除.最后算加 减,若有括号,先算括号里面的.
数学
首页
末页
课堂精讲
考点1 分式的意义及分式值为零的条件
1.(2015•黔西南州)分式 有意义,则x的取值范围是( B )
A.x>1
B.x≠1
C.x<1
D.一切实数
数学
首页
末页
课前预习
2.(2015•衡阳)若分式 的值为0,则x的值为( C )
A.2或﹣1
B.0
C.2
D.﹣1
考点:分式的值为零的条件. 分析:分式的值为0的条件是:(1)分子为0;(2)分母不为0. 两个条件需同时具备,缺一不可.据此可以解答本题. 解答:解:由题意可得:x﹣2=0且x+1≠0,解得x=2.故选:C. 点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零 的条件是分子等于零且分母不等于零.注意:“分母不为零”这个 条件不能少.
,故本选项错误;C、分式的分子、分母同时加上1,分式的值不一
定不变,故本选项错误;D、当 <0时,该等式不成立,故本
选项错误.
故选:A.
点评:
本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一
个不等于0的整式,分式的值不变.
数学
首页
末页
课堂精讲
考点3 分式的化简及基本运算
5.(2015•珠海)先化简,再求值: ( 中x= .
数学
首页
末页
课堂精讲
考点2 分式的基本性质
3.(2015•丽水)分式﹣ 可变形为( D )
A.﹣
B.
C.﹣
D.
考点:分式的基本性.
分析:先提取﹣1,再根据分式的符号变化规律得出即可.
解答:解:﹣ =﹣
=
,
故选D.
点评:本题考查了分式的基本性质的应用,能正确根据分式的基本
性质进行变形是解此题的关键,注意:分式本身的符号,分子的符
考点:分式有意义的条件.
分析:分母为零,分式无意义;分母不为零,分式有意义.
解答:解:由分式
有意义,得
x﹣1≠0.
解得x≠1,
故选:B.
点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分
式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分
式值为零⇔分子为零且分母不为零.
数学
首页
末页
课堂精讲
,
原式=
=.
当a=6,b=3时,原式= = .(答案不唯一)
数学
首页
末页
广东中考
10. (2014广东)先化简,再求值:( ,其中x= .
+ )•(x2﹣1)
解析:先根据分式混合运算的法则把原式进行化简,再把x的 值代入进行计算即可.
答案:解:原式= =2x+2+x﹣1
•(x2﹣1)
=3x+1,
当x=