圆的基本图形及综合训练

合集下载

专题12 圆的综合题(解析版)

专题12 圆的综合题(解析版)

专题12 圆的综合题一、圆的概念及与圆的相关概念1.圆的概念(1)定义1:把线段OP绕着端点O在平面内旋转1周,端点P运动所形成的图形叫做圆.其中,点O 叫做圆心,线段OP叫做半径.(2)定义2:平面内到定点的距离等于定长的点组成的集合叫做圆.其中定点叫做圆心,定长叫做半径.(3)圆的有关概念与基本性质是解决圆的有关问题的基础.如圆与三角形结合的题目,经常利用半径相等,构造等腰三角形,再利用等腰三角形性质证明线段或角相等.2.与圆有关的概念(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,简称弧.用符号“⌒”表示.圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(4)等圆、同心圆:能够互相重合的两个圆叫做等圆;圆心相同,半径不相等的两个圆叫做同心圆.(5)圆心角:顶点在圆心的角叫做圆心角.(6)等弧:能够互相重合的弧叫做等弧.二、点与圆的位置关系点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外.设⊙O的半径为r,点P到圆心O的距离为d,用图形表示点与圆的位置关系如图所示.三、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等.四、圆心角的度数与它所对的弧的度数的关系1.1°的弧:将顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,我们把1°的圆心角所对的弧叫做1°的弧.2.圆心角的度数与它所对的弧的度数的关系:圆心角的度数与它所对的弧的度数相等.【注意】(1)圆心角的度数与它所对的弧的度数相等,不是指角与弧相等(角与弧是两个不同的图形)(2)度数相等的角为等角,但度数相等的弧不一定是等弧.五、垂径定理及垂径定理的推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.定理的条件:(1)直径,弦(2)直径垂直弦定理的结论:(1)弦被直径平分(2)弦所对的两条弧被平分2.垂径定理的推论如果一条直线具有:(1)经过圆心;(2)垂直于弦;(3)平分弦(非直径的弦);(4)平分弦所对的劣弧;(5)平分弦所对的优弧这五个性质中的任意两个,那么这条直线就具有余下的三个性质,简称“知二推三”.【注意】在垂径定理推论中,一定不能忽视“弦不是直径”这一条件.因为一个圆的任意两条直径都能互相平分,但未必垂直.六、确定圆的条件不在同一条直线上的三个点确定一个圆.【注意】(1)这里的“三个点”不是任意的三点,而是指不在同一条直线上的三个点,在同一直线上的三个点不能画圆.(2)“确定”一词应理解为“有且只有”,即过不在同一条直线上的三点有且只有一个圆.(3)过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.七、三角形的外接圆1.三角形外接圆的概念三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆.外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形.【注意】(1)三角形的外心是三角形任意两边的垂直平分线的交点,因此三角形的外心到三角形各顶点的距离相等.(2)三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.(3)锐角三角形的外心在三角形内,钝角三角形的外心在三角形外,直角三角形的外心在斜边(斜边中点).2.三角形外接圆的作法要作三角形的外接圆只要找到外接圆的圆心即可,而外接圆的圆心是三角形三条边的垂直平分线的交点.所以只需作出两条边的垂直平分线的交点,就可以确定外接圆的圆心.八、圆周角定理1.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【注意】(1)这一定理应用的前提条件是在“同圆或等圆中”,且不能丢掉“同弧或等弧所对的”这一条件.(2)定理的逆命题也成立,即在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧长也相等.(3)由于圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.2.直径(或半圆)所对的圆周角是直角.90︒的圆周角所对的弦是直径.90的圆周角联系在一起,构造直径所对的圆周角是解决与圆有关问题的常用【注意】把圆中的直径与︒方法.九、圆内接四边形1.定义:一个四边形的四个顶点都在一个圆上,这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.2.性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的相邻内角的对角.3.判定定理:如果一个四边形的对角互补,那么它的四个顶点在同一个圆上(简称四点共圆).4.推论:如果四边形的一个外角等于它的内角的对角,那么它的四个顶点共圆.【注意】(1)任何圆都有圆内接四边形,但并不是所有四边形都有外接圆.(2)圆的内接四边形可以有无数个,如果四边形有外接圆,那么它只有一个外接圆.(3)圆内接四边形对角互补的性质是计算圆周角的重要依据之一.十、直线与圆的位置关系1.直线与圆有三种位置关系:相交、相切和相离.①直线与圆有两个公共点时,叫做直线与圆相交,这时直线叫做圆的割线.②直线与圆有唯一公共点时,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点.③直线与圆没有公共点时,叫做直线与圆相离.2.直线与圆的位置关系的性质和判定:【注意】判断直线与圆的位置关系有两种方法:一是看直线与圆的公共点的个数;二是看圆心到直线的距离与半径之间的数量关系.3.切线的判定定理:过半径的外端并且垂直于半径的直线是圆的切线.符号语言∵OA⊥l于A,OA为半径,∴l为⊙O的切线.(请务必记住证明切线方法:有交点就连半径证垂直;无交点就做垂直证半径)【注意】(1)判定定理中的已知条件“经过半径的外端”和“垂直于这条半径”缺一不可.(2)这个定理是切线最常用的判定方法,常见的辅助线是“连半径”.4.切线的性质定理圆的切线垂直于经过切点的半径论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.(请务必记住切线重要用法:见切线就要连圆心和切点得到垂直)【注意】(1)切线的性质中:①半径;②垂直;③经过切点,这三个条件只要满足任何两个,则必具备另外一个.其中“半径”也可看做“过圆心的直线”.(2)切线的判定与切线的性质的区别:切线的判定是在未知相切而要说明相切的情况下运用,切线的性质是在已知相切而要推出一些其他结论时运用,两者在运用时不要混淆.5.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连接两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角.(1)定理:过圆外一点所画的圆的两条切线长相等.【注意】(1)切线长不是指切线的长度,而是指圆的切线上一点与切点之间的线段长.(2)切线长定理的基本图形要熟记,还可推出结论:这点和圆心的连线垂直平分切点弦(切点连成的弦),同时也平分这两条切线的夹角.6.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.【注意】(1)三角形的内切圆只有一个,圆的外切三角形有无数个.(2)三角形的内心是三角形角平分线的交点.(3)三角形的内心到三角形三边的距离相等.十一、正多边形的有关计算正n边形的半径和边心距把正n边形分成2n个全等的直角三角形,因此正n边形的计算问题可转化为直角三角形的计算问题来解决,在计算时应注意:r,另一条直角边(1)这些直角三角形的斜边都是正n边形的半径r,一条直角边是正n边形的边心距n是正n 边形边长n a 的一半,一个锐角是正n 边形中心角n α的一半,即180n︒. (2)正n 边形的每个中心角都等于360n︒,说明正n 边形的中心角等于它的外角. 十二、弧长公式在半径为R 的圆中,360°的圆心角所对的弧长就是圆周长2πC R =,所以1°的圆心角所对的弧长是2360180πR πR=,于是在半径为R 的圆中,n °的圆心角所对的弧长180R n l π=. 十三、扇形面积公式一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.因为圆的面积为2R π,所以1°的扇形的面积是2π360R ,那么圆心角为n 的扇形的面积为2π360扇形n R S =因为扇形的弧长π180n Rl =,所以扇形面积还可以表示为lR S 21=扇形.十四、圆锥 1.圆锥的基本概念圆锥可以看做是由一个直角三角形绕一条直角边所在的直线旋转一周而形成的图形,这条直线叫做圆锥的轴.垂直于轴的边旋转一周而形成的面叫做圆锥的底面.圆锥的底面是一个圆面,斜边旋转而成的面叫做圆锥的侧面.从圆锥的顶点到底面的距离叫做圆锥的高.连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线. 2.圆锥的侧面积圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥的母线,弧长是圆锥底面圆的周长.圆锥侧面展开图的面积就是它的侧面积.如果用l 表示圆锥的母线长,用r 表示它的底面半径,由上面的分析可知:12ππ2侧S r l rl == 圆锥侧面展开图(扇形)的圆心角为︒θ,由于扇形的弧长等于圆锥底面的周长,即有2180l r θπ=π,所以360rθl=.核心考点 圆的切线及相关计算圆的综合题是广东省中考的热点,以解答题形式出现,主要考查圆的切线判定和性质,以及圆的相关计算.【经典示例】如图,在△ABC 中,以BC 为直径的O 交AC 于点E ,过点E 做EF AB ⊥于点F ,延长EF 交CB 的延长线于点G ,且2ABG C ∠=∠.(1)求证:EF 是O 的切线; (2)若3sin 5EGC ∠=,O 的半径是3,求AF 的长. 答题模板第一步,添加辅助线:连接圆的圆心和切点. 第二步,证垂直:根据题目条件证明垂直.第三步,计算:利用直角三角形性质和相似三角形性质进行计算. 【满分答案】(1)连接OE ,则2EOG C ∠=∠,∵2ABG C ∠=∠,∴ABG EOG ∠=∠, ∴∥AB OE ,∵EF AB ⊥,∴090AFE ∠=, ∴090GEO AFE ∠=∠=, ∴OE EG ⊥,又∵OE 是O 的半径, ∴EF 是O 的切线.(2)∵2ABG C ∠=∠,∵ABG C A ∠=∠+∠, ∴C A ∠=∠,∴BA =BC , 又O 的半径为3, ∴OE =OB =OC , ∴BA =BC =2×3=6, 在Rt △OEG 中,sin ∠EGC =OEOG ,即335OG =, ∴OG =5,在Rt △FGB 中,sin ∠EGC =BFGB ,即352FB =, ∴BF =65, ∴AF =AB -BF =6-65=245. 【解题技巧】证明切线,首先看是否有切点,有切点的连接圆心和切点,证垂直;没有切点的,过圆心作垂线,证明垂线段等于半径;其次,利用直角三角形和相似三角形的性质求边长.模拟训练如图,在Rt ABC △中,∠ACB =90°,BE 平分∠ABC ,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若BF=6,⊙O的半径为5,求CE的长.【答案】(1)证明见解析;(2)CE=4.【解析】(1)连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°,∴AC是⊙O的切线.(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,△中,OB=5,在Rt BHO∴OH=4,∴CE=4.1.(2018·广东)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3. 【解析】(1)如图,连接OC , 在△OAD 和△OCD 中,OA OC AD CD OD OD =⎧⎪=⎨⎪=⎩, ∴△OAD ≌△OCD (SSS ), ∴∠ADO =∠CDO , 又AD =CD , ∴DE ⊥AC , ∵AB 为⊙O 的直径, ∴∠ACB =90°,∴∠ACB =90°,即BC ⊥AC , ∴OD ∥BC . (2)∵tan ∠ABC =ACBC=2, ∴设BC =a ,则AC =2a , ∴AD =AB=,∵OE ∥BC ,且AO =BO , ∴OE =12BC =12a ,AE =CE =12AC =a , 在Rt △AED 中,DEa ,在△AOD 中,AO 2+AD 2=)2+)2=254a 2, OD 2=(OE +DE )2=(12a +2a )2=254a 2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切. (3)如图,连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴DF ADAD BD=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴AD DEOD AD=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即DF DE OD BD=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∴EF DE OB BD=,∵BC=1,∴AB=ADOD=52,ED=2,BD,OB=∴EF=2.【名师点睛】本题考查了切线的判定、等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及勾股定理的逆定理等,综合性较强,有一定的难度,准确添加辅助线构造图形是解题的关键.2.(2017·广东)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ; (3)当34CF CP =时,求劣弧BC 的长度(结果保留π).【答案】(1)(2)证明见解析;(3)BC 6023π=. 【解析】(1)∵OC =OB ,∴∠OCB =∠OBC , ∵PF 是⊙O 的切线,CE ⊥AB , ∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°, ∴∠BCE =∠BCP ,∴BC 平分∠PCE . (2)连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°, ∵∠BCP =∠BCE , ∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC , ∴△ACF ≌△ACE , ∴CF =CE .(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =3a ,则PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM=, ∴BM 2=CM •PM =3a 2,∴BM ,∴tan ∠BCM =BM CM ∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长6023π=. 3.(2018·山东东营)如图,CD 是⊙O 的切线,点C 在直径AB 的延长线上. (1)求证:∠CAD =∠BDC ; (2)若BD =23AD ,AC =3,求CD 的长.【答案】(1)证明见解析;(2)CD =2. 【解析】(1)连接OD ,如图所示.∵OB =OD , ∴∠OBD =∠ODB .∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BD C.(2)∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴BD CD AD AC=.∵BD=23 AD,∴23 BDAD=,∴2=3 CDAC,又∵AC=3,∴CD=2.【名师点睛】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出2=3 CDAC.4.(2018·江苏淮安)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.【答案】(1)直线DE与⊙O相切.理由见解析;(2)图中阴影部分的面积为4.8﹣109π.【解析】(1)直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC 是⊙O 的切线, ∴AB ⊥AC , ∴∠OAC =90°,∵点E 是AC 的中点,O 点为AB 的中点, ∴OE ∥BC ,∴∠1=∠B ,∠2=∠3, ∵OB =OD , ∴∠B =∠3, ∴∠1=∠2,在△AOE 和△DOE 中12OA OD OE OE =⎧⎪∠=∠⎨⎪=⎩, ∴△AOE ≌△DOE , ∴∠ODE =∠OAE =90°, ∴OA ⊥AE , ∴DE 为⊙O 的切线; (2)∵点E 是AC 的中点, ∴AE =12AC =2.4, ∵∠AOD =2∠B =2×50°=100°,∴图中阴影部分的面积=2×12×2×2.4﹣21002104.83609π⨯=-π. 【名师点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,得出垂直关系.也考查了圆周角定理和扇形的面积公式.5.(2018·湖北宜昌)如图,在△ABC 中,AB =AC ,以AB 为直径的圆交AC 于点D ,交BC 于点E ,延长AE 至点F ,使EF =AE ,连接FB ,FC .(1)求证:四边形ABFC 是菱形;(2)若AD =7,BE =2,求半圆和菱形ABFC 的面积.【答案】(1)证明见解析;(2) 【解析】(1)∵AB 是直径, ∴∠AEB =90°, ∴AE ⊥BC , ∵AB =AC , ∴BE =CE , ∵AE =EF ,∴四边形ABFC 是平行四边形, ∵AC =AB ,∴四边形ABFC 是菱形. (2)设CD =x .连接BD . ∵AB 是直径, ∴∠ADB =∠BDC =90°,∴AB 2﹣AD 2=CB 2﹣CD 2, ∴(7+x )2﹣72=42﹣x 2,解得x =1或﹣8(舍弃)∴AC =8,BD∴S 菱形ABFC 218=()822S ⨯π⨯=π半圆.【名师点睛】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.(2018·广西钦州)如图,△ABC 内接于⊙O ,∠CBG =∠A ,CD 为直径,OC 与AB 相交于点E ,过点E 作EF ⊥BC ,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD . (1)求证:PG 与⊙O 相切; (2)若EF AC =58,求BEOC的值; (3)在(2)的条件下,若⊙O 的半径为8,PD =OD ,求OE 的长.【答案】(1)证明见解析;(2)54;(3)OE 4. 【解析】(1)如图,连接OB ,则OB =OD ,∴∠BDC =∠DBO ,∵∠BAC =∠BDC ,∠BDC =∠GBC , ∴∠GBC =∠BDC , ∵CD 是⊙O 的直径, ∴∠DBO +∠OBC =90°, ∴∠GBC +∠OBC =90°, ∴∠GBO =90°, ∴PG 与⊙O 相切;(2)过点O 作OM ⊥AC 于点M ,连接OA , 则∠AOM =∠COM =12∠AOC ,易知∠ABC =12∠AOC , 又∵∠EFB =∠OMA =90°, ∴△BEF ∽△OAM ,∴EF BEAM OA=, ∵AM =12AC ,OA =OC ,∴12EF BE OC AC =, 又∵58EF AC =,∴552284BE EF OC AC =⨯=⨯=. (3)∵PD =OD ,∠PBO =90°, ∴BD =OD =8,在Rt △DBC 中,BC, 又∵OD =OB ,∴△DOB 是等边三角形, ∴∠DOB =60°,∵∠DOB =∠OBC +∠OCB ,OB =OC , ∴∠OCB =30°, ∴12EF CE =,FCEF∴可设EF =x ,则EC =2x ,FC, ∴BF, 由(2)知5,4BE OC =又OC =8,∴BE =10. 在Rt △BEF 中,BE 2=EF 2+BF 2,∴100=x 2+()2, 解得:x∵8,舍去,∴x=6∴EC=12﹣∴OE=8﹣(12﹣4.【名师点睛】本题主要考查圆的综合问题,涉及圆周角定理、圆心角定理、相似三角形的判定与性质、直角三角形的性质等知识,熟练掌握和运用相关的性质与定理进行解题是关键.7.(2018·山东省潍坊)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC,AC,求AD的长.【答案】(1)证明见解析;(2)AD.【解析】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD =90°, 即∠DAO +∠BAO =90°,∴∠BAE +∠BAO =90°,即∠OAE =90°, ∴AE ⊥OA ,∴AE 与⊙O 相切于点A . (2)∵AE ∥BC ,AE ⊥OA , ∴OA ⊥BC , ∴AB AC =,FB =12BC , ∴AB =AC ,∵BC ,AC ,∴BF ,AB ,在Rt △ABF 中,AF ,在Rt △OFB 中,OB 2=BF 2+(OB ﹣AF )2,∴OB =4, ∴BD =8,∴在Rt △ABD 中,AD ==【名师点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.。

幼儿认识圆形练习题

幼儿认识圆形练习题

幼儿认识圆形练习题
在幼儿园的学习过程中,认识和学习各种形状是一个重要的环节。

其中,认识圆形是其中的一部分内容。

为了帮助幼儿更好地认识和学习圆形,下面将给出一些针对幼儿的圆形练习题。

1.请你找出下面图片中的圆形。

(插入图片1)
2.请你用手指指出下面图片中的圆形。

(插入图片2)
3.请你在下面图片中圈出圆形。

(插入图片3)
4.请你找出下面图片中的不是圆形的形状。

(插入图片4)
5.请你帮助小猫找到圆形的宝宝。

(插入图片5)
6.小明的妈妈给他做了一个蛋糕,蛋糕是圆形的,请你画出这个蛋糕的轮廓。

7.小明有一个篮球,它是一个圆形的,请你画出这个篮球的样子。

8.小红想要画一个太阳,她知道太阳是圆形的,请你画出太阳的轮廓。

9.请你找出下面图片中的圆形。

(插入图片6)
10.请你找出下面图片中的不是圆形的形状。

(插入图片7)
通过这些练习题,幼儿可以通过观察和操作,进一步认识和理解圆形这一形状。

在练习的过程中,还可以辅以相关的教具和故事,以帮助幼儿更好地理解和记忆圆形。

六年级数学圆的教案6篇

六年级数学圆的教案6篇

六年级数学圆的教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!六年级数学圆的教案6篇教案的适切性还需要考虑到课程标准和教育政策的要求,教师可以借助教育技术来增强教案的适切性,提供更多的教学资源和互动方式,本店铺今天就为您带来了六年级数学圆的教案6篇,相信一定会对你有所帮助。

第24章 圆的复习-九年级数学上册教学课件(人教版)

第24章 圆的复习-九年级数学上册教学课件(人教版)

原 所示,则这个小圆孔的宽口AB的长度为 8 mm.

C


O
8mm
A
B

D

与圆有关的概念
典 1.圆:平面内到定点的距离等于定长的所有点组成的图形.
例 2.弦:连结圆上任意两点的线段.
3.直径:经过圆心的弦是圆的直径,直径是最长的弦.
原 4.劣弧:小于半圆周的圆弧.
理 5.优弧:大于半圆周的圆弧.
炼 【注意】(1)三角形的外心是三角形三边的垂直平分线的交点.
(2)一个三角形的外接圆是唯一的.

(3)三角形的内心是三角形三条角平分线的交点.

(4)一个三角形的内切圆是唯一的.
点与圆的位置关系
典 1.在△ABC中,∠C=90º,AC=1,BC=2,M是AB的中点,以点C为圆 例 心,1为半径作⊙C,则( C )
原 2.垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦, 理 并且平分这条弦所对的两条弧;
精 3.垂径定理的推论:平分弧的直径垂直平分这条弧所对的弦. 炼
提 升
圆的基本性质
典 1.圆的对称性: 例 圆是轴对称图形,任意一条直径所在的直线都是它的对称轴.
原 2.有关圆心角、弧、弦的性质:

在同圆或等圆中,如果两个圆心角、
° 精 炼
提 升
典 6.如图,已知A、B、C、D是⊙O上的四点,延长DC,AB相交于点 例 E.若BC=BE.求证:△ADE是等腰三角形.
原 理
精 炼
提 升
典 7.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. 例 (1)若∠CBD=39º,求∠BAD的度数; 原 (2)求证:∠1=∠2. 理

第一单元《圆》综合达标训练提优测评卷 2022—2023北师大版六年级上册(含答案)

第一单元《圆》综合达标训练提优测评卷   2022—2023北师大版六年级上册(含答案)

第一单元《圆》综合训练习题2022—2023北师大版六年级上册(含答案)一、选择题1. 下面三幅图的阴影部分的周长相比较,()。

A.图(1)大B.图(2)大C.图(3)大2. 画一个周长是56.52厘米的圆,圆规两脚之间的距离是()厘米。

A.3 B.6 C.9 D.123. 外圆半径为R,内圆半径为r的一个圆环的面积等于()。

A.π(R²-r²)B.π(R-r)²C.2πR-2πr D.π(R+r)²4. 车轮滚动一周,求所行的路程,就是求车轮的()。

A.半径 B.直径 C.周长 D.面积5. 小明在三张边长为8厘米的正方形彩色卡纸上分别画出不同规格的圆形(如图所示),将图中的圆形剪下后,正方形彩色卡纸一定会有剩下的废料,下面说法正确的是()。

A.甲种彩色卡纸剩下的废料多B.乙种彩色卡纸剩下的废料多C.丙种彩色卡纸剩下的废料多D.剩下的废料同样多二、填空题6. 一个周长是12.56厘米的圆,若它的直径扩大到原来的4倍,则周长扩大到原来的_________倍,面积扩大到原来的___________倍。

7. 用一根6.28dm长的铁丝弯成一个圆形铁环,这个铁环的直径是( )dm,面积是( )2dm。

8. 杂技演员表演独轮车走钢丝,车轮直径为30cm,要骑过18.84m长的钢丝,车轮要转____________周。

( 取3.14)9. 如图,长方形和圆的面积相等,圆的周长是6.28厘米,长方形的长是( )厘米。

请你任选一种(画示意图、写文字、列算式等)方式表达:( )10. 一个车轮滚动100圈前进了188.4米,这个车轮的半径是( )米。

11. 一个钟表分针长10厘米,时针长8厘米,从2时走到3时,分针所扫过的面积是__________平方厘米,分针尖端走过的周长是__________厘米;从3时到6时,时针扫过的面积是__________平方厘米。

( 取3.14)12. 圆周率是圆的和的比值,它是一个小数.13. 在一个直径是6米的圆形水池周围,修一条2米宽的石子路。

2020年中考数学压轴题训练-圆的综合(学案)

2020年中考数学压轴题训练-圆的综合(学案)

第03讲中考压轴题-圆的综合考点梳理一.近5年中考双压轴之圆的综合考点归纳二.题型概述几何综合题是中考必考固定题型,考察知识点多,条件隐秘,要求学生有较强的理解能力,分析问题和解决问题的能力,对数学知识,数学方法有较强的驾驭能力,并有较强的创新意识与创新能力。

它常用相似图形与圆的知识为考察重点,并贯彻其他几何,代数,三角函数等知识,多以证明,计算等题型出现。

三.解题策略1.要点:解几何综合题应注意观察,分析图形,把复杂的图形分解为几个基本图形,通过添加辅助线补全或构造基本图形,掌握常规的证题方法和思路,运用转化的思想解决几何证明问题,运用方程思想解决几何计算问题(还要灵活运用数学思想方法,数行结合,分类讨论)2.一般策略:①认真分析题意,从已知条件出发逐步推理分析到结论的演绎推理法;②也可由结论逆向分析获得问题突破的逆向分析法;③还可以是双向的综合分析策略。

年份知识点2015考察圆切线的性质求边长,相似三角形的判定与性质、等腰直角三角形的性质等知识2016考察圆的切线证明,翻折变换的性质,垂径定理,勾股定理及逆定理,,相似三角形的判定与性质.2017考察圆垂径定理求半径、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识2018考察圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质2019考察圆的切线证明,三角函数,相似三角形,二次函数最值问题3.中考试题中与圆有关的证明及计算,都与圆的切线有关,属于中档题,只要熟悉切线的性质与判定,特别是掌握如何判定切线很重要,需要指出的是,与圆有关的证明题,往往是以圆为载体,考查时往往还涉及特殊三角形的识别或构造,这些识别策略,构造策略靠的是对圆中常用的辅助线的熟悉,比如连半径,作垂直于弦的垂线段等,根据具体情况来决定。

感悟实践1、(2015年深圳中考第22题)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.2、(2016年深圳中考第22题)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.3、(2017年深圳中考第22题)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.上的动点,且cos∠4、(2018年深圳中考第22题)如图,△ABC内接于⊙O,BC=2,AB=AC,点D为 晦ABC(1)求AB的长度;(2)在点D的运动过程中,弦AD的延长线交BC延长线于点E,问AD•AE的值是否变化?若不变,请求出AD•AE的值;若变化,请说明理由;(3)在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.5、(2019年深圳中考第22题)闯关练习1.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.2.如图,A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P 从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.3.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.4.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.5.己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=,求tan∠ABF的值.考场直播1.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.2.如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.能力平台1.如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.2.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;(3)若tan∠CED=,⊙O的半径为3,求OA的长.3.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?4.如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D 两点,且C为的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.5.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连接CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.6.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.7.如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(,),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.8.如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=时,直线l:y=﹣2x+b(b≥0)经过圆心M;当b=时,直线l:y=﹣2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.21。

第一单元 圆(讲义) 小学专项训练

第一单元 圆(讲义) 小学专项训练

第一单元圆(讲义)小学数学六年级上册专项训练(知识梳理+典例精讲+专项训练)1.圆的各部分名称。

(1)圆心。

画圆时,圆规带有针尖的脚所在的点叫圆心。

圆心一般用字母O表示。

(2)半径。

用圆规画圆时,圆规两脚之间的距离就是所画圆的半径,即圆心到圆上任意一点的距离叫半径。

半径一般用字母r表示。

(3)直径。

通过圆心并且两端都在圆上的线段叫作直径。

直径一般用字母d表示。

2.圆的特征。

(1)圆是由一条曲线围成的封闭图形,无顶点。

(2)在同一圆内,有无数条半径且长度都相等;有无数条直径且长度都相等。

(3)在同圆或等圆中,直径是半径的2倍,半径是直径的一半,用字母表示为d=2r或r=d÷2。

3.用圆规画圆的方法。

第一步:确定半径。

把圆规的两脚分开,定好两脚间的距离。

第二步:确定圆心。

把圆规有针尖的一脚固定在一点。

第三步:旋转一周。

把圆规装有铅笔的那只脚旋转一周就画出一个圆。

4.圆的轴对称性。

圆是轴对称图形,它有无数条对称轴。

圆的每条直径所在的直线都是它的对称轴。

5.常见的轴对称图形。

等腰三角形、等腰梯形和半圆都有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条称轴。

6.欣赏与设计图案。

欣赏图案就是运用观察、分析的方法理解图案的设计过程。

设计图案就是根据基本图形的特点,运用平移、旋转和轴对称的知识设计图案。

7.圆的周长。

围成圆的曲线的长是圆的周长,一般用字母C表示。

圆的周长的大小与半径的长短有关。

8.圆周率。

任意一个圆的周长除以它的直径的商是一个固定的数,我们把它叫作圆周率,用字母π表示。

它是一个无限不循环小数,π的值在3.1415926和3.1415927之间。

计算时,π通常取它的近似值3.14。

用公式表示圆周率:圆周率=圆的周长÷半径=π。

9.圆的周长计算公式。

圆的周长=直径×圆周率或圆的周长=半径×2×圆周率。

如果用C表示圆的周长,那么C=πd或C=2πr。

《圆的认识》练习课

《圆的认识》练习课

《圆的认识》练习课《《圆的认识》练习课》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标:熟练掌握圆的周长公式和面积公式,进一步应用圆的周长公式和面积公式解决简单的实际问题,体验图形和生活的联系,感受平面图形的学习价值,激发数学学习的兴趣,增强学好数学的自信心。

教学重点:运用圆的周长公式或面积公式解决实际问题。

教学难点:正确计算简单组合图形的面积。

教学准备:课件教学过程:短时学习:32=42=0.62=0.72=82=92=102=502=一、知识再现1.谈话:我们已经学习了圆的周长和面积,谁来说说是怎样计算的?教师根据学生的回答板书:C=πd或C=2πr;S=πr。

2.揭题:今天这节课,我们一起来比较它们的计算方法。

(板书课题)二、基本练习1.完成教材第101页“练习十五”第10题。

让学生独立完成,集体订正时说说是怎样计算的。

2.完成教材第101页“练习十五”第11题。

引导学生比较:面积是围成的平面部分的大小,周长是圆一周的长度;圆的面积用面积单位,圆的周长用长度单位。

3.完成教材第101页“练习十五”第12题。

学生读题,理解题意。

说说第一个问题要我们求什么?第二个问题呢?指名板演,评价交流。

三、综合练习1.完成教材第101页“练习十五”第13题。

指导学生运用画辅助线的方法,估算每种鲜花占花圃面积的几分之几,再计算每种花卉的种植面积。

2.完成教材第101页“练习十五”第14题。

引导学生根据图形作直观的判断,并说说判断的依据。

3.完成教材第101页“练习十五”第15题。

四、反思总结通过本课的学习,你有什么收获?《圆的认识》整理与练习教学目标:1.加深对圆的认识,进一步理解圆周率的含义,掌握圆的周长和面积公式,并应用公式解决相关的实际问题。

2.进一步积累认识图形的学习经验,体会等积变形、转化等数学思想方法,增强空间观念。

教学重点:进一步掌握圆的周长和面积公式,并能应用公式解决相关的实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
C
A
B
圆的基本图形及综合训练
一、基础过关题
1、已知:四边形ABCD 内接与⊙O ,AC ⊥BD ,OE ⊥AB 。

求证:OE = 1
2
CD
(圆内接四边形一边的弦心距等于对边的一半)
2、已知:△ABC 内接与⊙O ,高AD 、BE 交与点G , AD 的延长线交⊙O 与点F , 求证:DG = DF.
3、已知:AB 是⊙O 的直径,CD ⊥AB , BC = CE .
求证:(1) PC = PF = PB
(2) CD = 1
2
BE.
A
B
D
4、已知:等边△ABC 内接与⊙O ,点P 是AB 上任意一点。

求证:PA + PB = PC.
5、已知:等腰直角△ABC 内接与⊙O ,AB 是直径,点P 是BC 上任意一点。

求 PA PB
PC -的值
6、已知:△ABC 内接与⊙O ,AD 、BI 是角平分线,AD 交BC 于点E 。

求证:DB = DI
B
C
7、在△ABC 中,ÐA =60,以BC 为直径的⊙O 交AB 、AC (或延长线)于点D 、E ,连接OD 、OE .
求证:△ODE 为等边三角形
8、AB 是⊙O 的直径,直线CD 交⊙O 于E 、F ,AC ⊥CD,BD ⊥CD .
(1) 求证:CE = DF .
(2) 设AC=1h ,BD=2h ,点O 到CD 的距离为 h ,分别求图(1)、图(2)中的1h 、2h ,、和h 的数量关系。

图(1) 图(2)
二、中档重点题
1、如图所示,AB.CD为圆0的弦,且AB⊥CD,AB与CD相交于M,
(1)若EM⊥AC,E 为垂足,交BD于F,求证:DF=BF;
(2)若ON⊥AC于N,求证:ON=1/2BD.
2、如图,AB为⊙0的一条直径,D为弧AB中点,点C在直径AB的另一半圆弧上,弦CD交∠BAC的角平分线于O1,(1)求证:DA=DO1;O1D=√2OA
(2)过O1做O1M⊥AB于M,试探究O1M,OA与CD之间的关系,并证明。

3、如图,AB为⊙O的直径,C为⊙O上一点,连接AC.BC,E为⊙O上一点,且BE=CE,点F在BE上,CF ⊥AB于D,(1)求证:CB=CF;(2)若CF=2,BF=1,求BD的长。

4、如图,⊙O为⊿ABC的外接圆,AB为直径,F是⊙O上一点,弧FC=弧AC,CD⊥AB于D,连AF交CD于E,(1)求证:AF=2CD;
(2)若CD=4,⊙O的半径为5,求AE的长。

5、如图,已知⊿ABC内接于⊙O,AD平分∠ABC交BC于E,交⊙O于D,I是⊿ABC的内心,连IB,(1)求证:ID=CD; (2)若∠BAC=60°,AB=11,AC=7,求AD的长。

6.如图,⊿ABC内接于⊙O,两条高AD、BE交于H点,Q点为弧BC上的一个动点,Q在弧BC上运动,(1)求证∠BHC=∠BQC;
(2)若AB=5,AD=3,AC=√10,求⊙O的半径
7.如图,AB为⊙O 的直径,D为弧AC的中点,DE⊥AB于E,DE交AC于点F, (1)求证:AF=DF;
(2)若弧AC占整个圆的三分之一,⊙O的半径为6,求AF的长。

8、如图,⊙O 的弦AD∥BC,过D点得切线交BC延长线于E,AC∥DE交BD于点H,DO的延长线交AC,BC于点G,F. (1)求证:FC=CE;
(2)若弦AD=5,AC=8,求⊙O的半径
三、拔高压轴题
9、如图,⊙M 与x 轴交于A 、D 两点, 与y 轴正半轴交于B 点,C 是⊙M 上一点,且A(-2,0),B(0,4),AB=BC. (1) 求圆心M 的坐标(3分);
(2) 求四边形ABCD 的面积(4分);
(3) 过C 点作弦CF 交BD 于E 点,当BC=BE 时,求
CF 的长(5分). x。

相关文档
最新文档