物理吸附中吸附质的选择
物理吸附原理

物理吸附原理
物理吸附是指气体或液体分子在固体表面上的吸附现象。
在物理吸附中,吸附
剂和被吸附物之间的相互作用主要是范德华力。
范德华力是一种瞬时诱导作用力,它是由于分子内部电子的瞬时极化而产生的。
物理吸附主要发生在低温和高压下,吸附物分子与吸附剂表面的相互作用较弱,因此吸附物分子之间的相互作用较小,可以形成多层吸附。
物理吸附的特点是吸附速度快,吸附量大,吸附后的吸附物易于脱附。
吸附量
与吸附剂的孔径大小和吸附物分子的大小有关,通常情况下,吸附剂的孔径越大,吸附量越大。
此外,温度和压力也会影响吸附量,一般来说,温度越低,压力越高,吸附量越大。
物理吸附是一种可逆的过程,吸附后的吸附物可以通过升温或减压的方法脱附。
这种特点使得物理吸附在工业上有着广泛的应用,比如用于气体的分离和净化、催化剂的载体、吸附式制冷和吸附式热泵等领域。
物理吸附的研究对于理解表面现象和开发新材料具有重要意义。
通过研究吸附
等温线和吸附动力学曲线,可以了解吸附过程中分子之间的相互作用和表面结构的特点。
此外,通过改变吸附剂的性质和结构,可以调控吸附过程,提高吸附性能,为工业应用提供更好的材料选择。
总之,物理吸附是一种重要的表面现象,它在工业生产和科学研究中都有着广
泛的应用和重要意义。
通过深入研究物理吸附的原理和特性,可以更好地理解和利用这一现象,为材料科学和工程技术的发展做出贡献。
吸附法的分类

吸附法的分类
吸附法主要可以分为物理吸附、化学吸附和离子交换吸附三类。
1. 物理吸附:基于吸附剂与溶质之间的分子间作用力即范德华力。
溶质在吸附剂上吸附与否或吸附量的多少主要取决于溶质与吸附剂极性的相似性和溶剂的极性。
一般物理吸附发生在吸附剂的整个自由表面,被吸附的溶质可通过改变温度、PH和盐浓度等物理条件脱附。
2. 化学吸附:会释放大量的热,吸附热高于物理吸附。
化学吸附一般为单分子层吸附,吸附稳定,不易脱附,故洗脱化学吸附质一般需采用破坏化学结合的化学试剂为洗脱剂。
化学吸附具有高选择性。
3. 离子交换吸附:所用吸附剂为离子交换剂。
离子交换剂表面含有离子基团或可离子化基团,通过静电引力吸附带有相反电荷的离子,吸附过程发生电荷转移。
离子交换的吸附质可以通过调节PH或提高离子强度的方法洗脱。
以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业人士。
吸附材料原理及应用

吸附材料原理及应用吸附材料是一种具有吸附功能的材料,能够吸附各种物质分子或离子。
吸附材料的原理是通过表面吸附、空隙吸附或电化学吸附等方式吸附目标物质,从而实现物质分离、富集、储存和传递等功能。
吸附材料的基本原理可分为物理吸附和化学吸附。
物理吸附也称为范德华吸附,是通过分子间的范德华力或静电作用力使目标物质附着在吸附材料表面。
而化学吸附则是通过化学键形成将目标物质牢固地固定在吸附材料上。
不同的物质吸附材料根据其表面结构、化学性质和吸附特性的不同,具有不同的吸附机理和应用。
吸附材料广泛应用于环境保护、能源开发、工业生产等领域。
在环境保护方面,吸附材料可用于水处理、废气处理和固体废物处理等。
通过选择具有特定吸附性能的吸附材料,可以去除水中的悬浮物、溶解性有机物、重金属离子等污染物,从而净化水资源。
在废气处理中,吸附材料可用于吸附和去除有害气体,如二氧化硫、氯气和氨气等。
此外,吸附材料还可以用于固体废物的吸附分离和资源回收。
在能源开发方面,吸附材料是储气、储热和催化反应的关键材料。
例如,吸附剂可以用于天然气的储存和分离,通过控制吸附剂的吸附容量和选择性,实现天然气的储存和气体混合物的分离。
吸附材料还可用于储热材料的制备,通过吸附材料在温度升高时吸附热量,然后在温度降低时释放热量,实现热能的储存和利用。
此外,吸附材料还可以作为催化剂或载体,在化学反应中起到催化作用,提高反应速率和选择性。
除了在环境保护和能源开发中的应用,吸附材料还广泛应用于生物医药、食品加工、化学分析等领域。
在生物医药领域,吸附材料可用于体外血液净化和药物分离纯化等。
在食品加工中,吸附材料可用于去除食品中的杂质和异味,提高食品的质量。
在化学分析中,吸附材料可用于分离和富集目标物质,提高分析灵敏度。
此外,吸附材料还可以用于储存和保护文化遗产等。
综上所述,吸附材料是一种具有吸附功能的材料,通过物理吸附或化学吸附作用吸附目标物质。
吸附材料在环境保护、能源开发、生物医药和化学分析等领域具有广泛的应用前景。
环境工程原理第九章吸附

环境工程原理第九章吸附1.引言吸附是环境工程中一种常见的处理技术,它利用固体表面与溶质之间的相互作用力,将溶质从溶液中去除。
吸附过程是一个动力学过程,它包括吸附平衡和吸附速率两个方面。
本章将重点介绍吸附原理及其在环境工程中的应用。
2.吸附原理吸附是一种表面现象,它是在固体表面上形成一个液体或气体分子层的过程。
吸附分为物理吸附和化学吸附两种类型。
物理吸附是指分子在吸附剂表面上凝聚形成薄层的过程。
物理吸附的主要作用力是范德华力,范德华力是由于电子云的不规则运动而引起的,它的作用范围很短,只有几个分子层的距离。
物理吸附的吸附热一般在20-60 kJ/mol之间。
化学吸附是指溶质分子在吸附剂表面上与吸附剂形成化学键的过程。
化学吸附的主要作用力是化学键,它的作用范围比范德华力要长,可以达到几个分子层的距离。
化学吸附的吸附热一般在80-400 kJ/mol之间。
吸附过程是一个动态平衡过程,它可以用等温吸附线来描述。
等温吸附线是指在一定温度下,吸附系统中吸附剂表面上吸附物浓度与溶液中吸附物浓度之间的关系。
等温吸附线分为等温吸附线和等温吸附线两种类型。
等温吸附线是指在固定温度下,将吸附剂暴露在饱和蒸气中,记录吸附剂表面上吸附物的浓度和蒸气中吸附物的浓度之间的关系。
等温吸附线一般呈现为S型曲线,这是由于吸附过程的初始阶段存在物理吸附和化学吸附两个阶段的共存,随着吸附物浓度的增加,物理吸附的贡献逐渐减小而化学吸附的贡献逐渐增加。
等量吸附线是指在固定温度下,将吸附剂暴露在不同浓度的溶液中,记录吸附剂表面上吸附物的浓度和溶液中吸附物的浓度之间的关系。
等量吸附线和等温吸附线相似,都呈现为S型曲线。
3.吸附过程的影响因素吸附过程受多种因素的影响,主要包括吸附剂的性质、溶质的性质、溶液的性质和操作条件等。
吸附剂的性质是影响吸附过程的主要因素之一、吸附剂的孔径大小、比表面积和表面官能团等特征决定了它的吸附性能。
孔径大小对吸附剂的吸附能力有很大影响,较小的孔径能提高吸附剂的选择性,较大的孔径则有助于更大分子的扩散。
物理吸附中吸附质的选择

物理吸附中吸附质的选择摘要多孔材料的表征通常都是使用气体在其亚临界温度,如77K的氮气(T/Tc = 0.61), 87K的氩气(T/Tc = 0.58),273K的二氧化碳(T/Tc = 0.90)等。
低于气体的临界温度时,在孔道内壁吸附质呈液膜状,从而可以由等温线计算表面积、孔径和孔隙度。
当温度高于气体的临界温度时,吸附在储气性能、气体分离等方面的应用则是关注的重点。
—————————————————————————————————吸附层(类似液膜)厚度、孔填充压力以及孔中的毛细管凝聚都与在试验温度下孔中的吸附质及吸附质本体的化学势(μa及μo)有关。
当吸附层(液膜)蒸汽压与本体饱和蒸汽压的平衡时,这二者的差值则与试验压力P和饱和蒸汽压p0相关,并可用Δμo =(μa - μo) = RT lnP/Po表示。
其中R是气体常数,T为温度。
因此与温度相关的气体饱和蒸汽压是物理吸附试验中非常重要的参数。
只有得到准确的气体饱和蒸汽压,通过表征吸附量与精确地相对压力p/p0的关系才能进行准确的孔径及比表面积的分析。
饱和蒸汽压的大小与温度相关。
表示气液共存的气液平衡线对应的压力与温度终止于临界点(图1)。
有多种试验方法可以用于计算物理吸附过程中的饱和蒸汽压。
其中,当物理吸附的试验温度接近吸附质的沸点时可以在物理吸附实验过程中连续测量饱和蒸汽压。
该方法因为可以直接测量在独立的P0管中吸附质在实验温度时的凝聚,准确度最高,最为推荐。
通常吸附等温线都是在液氮(77.35K @ 760torr)或液氩(87.27K @ 760torr)温度下测量,液氮、液氩放置于杜瓦瓶中,保持常压。
此时液体温度不仅与压力,更与液体纯度相关。
水蒸气、氧以及空气中的其它气体组分均可影响液体纯度,当液体纯度降低则液体温度也会随之升高,温度升高幅度0.1~0.2K可导致饱和蒸汽压升幅10~20 torr。
在物理吸附过程中,当相对压力0.95时饱和蒸汽压5 torr 的误差会导致孔径计算近10%的误差。
物理吸附与化学吸附

吸附热
因 ∆ adsV = Va − Vg ≈ −Vg ≈ −nRT / p ∆ ads H ∆ ads H ⎛ ∂p ⎞ =− ⎜ ⎟ = nRT 2 / p ⎝ ∂T ⎠ na T∆ adsV
∆ ads H m ⎛ ∂lnp ⎞ ⎜ ⎟ =− RT 2 ⎝ ∂T ⎠ na p2 ∆ ads H m ⎛ 1 1⎞ ⎜ − ⎟ ln = ⎜T T ⎟ p1 R 1⎠ ⎝ 2 RT2T1 p2 ln ∆ ads H m = T1 − T2 p1 由恒吸附量下的两组平衡温度压力数据, 可求摩尔吸附焓. 吸附热一般会随吸附量的增加而下降, 表明固体表面的 能量是不均匀的. 吸附总是首先发生在能量较高、 活性较大 的位轩, 然后依次发生在能量较低、活性较小的位置上. 14
θ =
bp 1+ bp
2AM
10
多分子层吸附理论——BET公式
布鲁瑙尔(Brunauer), 埃米特(Emmett)和特勒(Teller)3人 在朗缪尔单分子层吸附理论基础上提出多分子层吸附理论, 简称 BET理论. 该理论假设如下: • 固体表面是均匀的; • 吸附靠分子间力, 吸附可以是多分子层的; • 被吸附的气体分子横向之间无相互作用力; • 吸附与脱附建立起动态平衡.
吸附原理及应用

头孢菌素 两性物质,应在什么条件下吸附? pK1=2.6(羧基);pK2=3.3 (羧基) ;pK3=9.8
(氨基)
大孔吸附剂解吸条件
1. 选择洗脱剂原那么
a. 洗脱剂应容易溶胀大网格吸附剂。
–溶质对聚合物的溶胀才能可用溶解度参数δ来表征。
溶剂 2-丁酮 2-丙酮 丁醇 丙醇 乙醇 甲醇 水 δ 19.0 20.4 23.3 24.3 25.9 29.6 47.3
吸附剂通常应具备以下特征: 外表积大、颗粒均匀、 对被别离的物质具有较强的
吸附才能 有较高的吸附选择性 机械强度高 常再用的生吸容附剂易有、极性性的能和稳非极定性的两种。 价格低廉。
几种常用的吸附剂
按其化学构造可分为有 有机吸附剂 无机吸附剂
有机吸附剂有活性炭、球性炭化树脂、聚酰 胺、纤维素、大孔树脂等;
大孔吸附树脂
分 类
1. 非极性大孔吸附树脂 2. 中等极性大孔吸附树脂 3. 极性大孔吸附树脂
大孔吸附树脂
非极性大孔吸附树脂
苯乙烯--------二乙烯苯
交联、聚合
大孔吸附树脂
中极性大孔吸附树脂
单体 甲基丙烯酸酯
大孔吸附树脂
极性大孔吸附树脂 (硫氧基、酰胺、N-O基、磺酸基)
酰胺基团 硫氧基团 N-O基团
图21-1界面上分子和内部分子所受的力
吸附过程理论根底
吸附的类型
〔1〕 物理吸附: 放热小,可逆,单分子层或多 分子层,选择性差
〔2〕 化学吸附: 放热量大,单分子层,选择性 强
〔3〕 交换吸附: 吸附剂吸附后同时放出等量的 离子到溶液中
吸附过程理论根底
吸附过程理论根底
吸附(物理吸附与化学吸附)在催化中的应用

物理吸附与化学吸附在催化中的应用摘要:吸附过程与催化作用在国民经济和环境保护方面具有重要意义。
他们是化学工业,石油炼制以及国民经济其他领域最活跃的研究课题之一。
这两个领域涉及到的都是表面现象,使用的都是多孔固体。
吸附是催化反应得以发展的最关键步骤之一,通过它揭示催化本质和研究催化性质越来越受到人们的重视,因此许多在线原位动态测量技术得以快速发展。
关键词:物理化学吸附表征测定孔结构气体探针1. 吸附现象吸附:当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表面处产生积蓄, 此现象称为吸附。
吸附也指物质(主要是固体物质)表面吸住周围介质(液体或气体)中的分子或离子现象[1,2]。
实际上,人们很早就发现并利用了吸附现象,如生活中用木炭脱湿和除臭等。
随着新型吸附剂的开发及吸附分离工艺条件等方面的研究,吸附分离过程显示出节能、产品纯度高、可除去痕量物质、操作温度低等突出特点,使这一过程在化工、医药、食品、轻工、环保等行业得到了广泛的应用,例如:(1)气体或液体的脱水及深度干燥,如将乙烯气体中的水分脱到痕量,再聚合。
(2)气体或溶液的脱臭、脱色及溶剂蒸气的回收,如在喷漆工业中,常有大量的有机溶剂逸出,采用活性炭处理排放的气体,既减少环境的污染,又可回收有价值的溶剂。
(3)气体中痕量物质的吸附分离,如纯氮、纯氧的制取。
(4)分离某些精馏难以分离的物系,如烷烃、烯烃、芳香烃馏分的分离。
(5)废气和废水的处理,如从高炉废气中回收一氧化碳和二氧化碳,从炼厂废水中脱除酚等有害物质。
1.1吸附吸附属于一种传质过程,物质内部的分子和周围分子有互相吸引的引力,但物质表面的分子,其中相对物质外部的作用力没有充分发挥,所以液体或固体物质的表面可以吸附其他的液体或气体,尤其是表面面积很大的情况下,这种吸附力能产生很大的作用,所以工业上经常利用大面积的物质进行吸附,如活性炭、水膜等。
当液体或气体混合物与吸附剂长时间充分接触后,系统达到平衡,吸附质的平衡吸附量(单位质量吸附剂在达到吸附平衡时所吸附的吸附质量),首先取决于吸附剂的化学组成和物理结构,同时与系统的温度和压力以及该组分和其他组分的浓度或分压有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理吸附中吸附质的选择
摘要
多孔材料的表征通常都是使用气体在其亚临界温度,如77K 的氮气(T/Tc = 0.61), 87K 的氩气(T/Tc = 0.58),273K 的二氧化碳(T/Tc = 0.90)等。
低于气体的临界温度时,在孔道内壁吸附质呈液膜状,从而可以由等温线计算表面积、孔径和孔隙度。
当温度高于气体的临界温度时,吸附在储气性能、气体分离等方面的应用则是关注的重点。
—————————————————————————————————
吸附层(类似液膜)厚度、孔填充压力以及孔中的毛细管凝聚都与在试验温度下孔中的吸附质及吸附质本体的化学势(μa 及μo )有关。
当吸附层(液膜)蒸汽压与本体饱和蒸汽压的平衡时,这二者的差值则与试验压力P 和饱和蒸汽压p0相关,并可用 μo =(μa - μo ) = RT lnP/Po 表示。
其中R 是气体常数,T 为温度。
因此与温度相关的气体饱和蒸汽压是物理吸附试验中非常重要的参数。
只有得到准确的气体饱和蒸汽压,通过表征吸附量与精确地相对压力p/p0的关系才能进行准确的孔径及比表面积的分析。
饱和蒸汽压的大小与温度相关。
表示气液共存的气液平衡线对应的压力与温度终止于临界点(图
1)。
有多种试验方法可以用于计算物理吸附过程中的饱和蒸汽压。
其中,当物理吸附的试验温度接近吸附质的沸点时可以在物理吸附实验过程中连续测量饱和蒸汽压。
该方法因为可以直接测量在独立的P0管中吸附质在实验温度时的凝聚,准确度最高,最为推荐。
通常吸附等温线都是在液氮(77.35K @ 760torr )或液氩(87.27K @ 760torr
)
温度下测量,液氮、液氩放置于杜瓦瓶中,保持常压。
此时液体温度不仅与压力,更与液体纯度相关。
水蒸气、氧以及空气中的其它气体组分均可影响液体纯度,当液体纯度降低则液体温度也会随之升高,温度升高幅度0.1~0.2K可导致饱和蒸汽压升幅10~20 torr。
在物理吸附过程中,当相对压力0.95时饱和蒸汽压5 torr 的误差会导致孔径计算近10%的误差。
因此在物理吸附过程中尽可能准确地测量饱和蒸汽压就变得非常重要。
下面,我们将重点讨论用于吸附剂表征和储气性能表征的各种气体的重要参数。
实验前需要考虑的因素
1,选择吸附质
选择吸附质首要的依据是实验目的,例如用于比表面孔隙度计算或储气性能研究等。
同时,吸附质的选择也受仪器性能的限制,即所选择的吸附剂的作用压力区间与仪器的传感器要匹配。
例如,采用N2@~77K或Ar@~87K 为分析条件进行微孔分析,或Kr@~77K条件时测量极低比表面积时,仪器必须配备有分子泵和相应的压力传感器(如高精度的1 torr传感器)以便准确测量低压段的数据。
而对于CO2@~273K条件下的实验则无须配备分子泵(具体细节请见technote 35)。
2,硬件匹配性
在使用特定吸附质之前,吸附质与仪器硬件的匹配性也是必须考虑的因素。
通常物理吸附仪器均使用O圈进行密封,不同材质的o圈与不同气体、蒸汽的匹配性不同。
康塔仪器公司提供多个规格的o圈,它们与不同气体、蒸汽的适应性可通过网页/technical/o_rings.html查询。
3,温度
若试验温度低于吸附质的临界温度,则实验数据可用于比表面积和孔径分布的计算。
此时,吸附质的饱和蒸汽压很容易由独立的P0管在实验过程中连续测量。
但是当试验温度高于吸附质的临界温度时得到的实验数据不能用于比表面积和孔径分布的计算。
由于此时饱和蒸汽压则不再能直接测量,因此用户必须在软件中手动输入“准”饱和蒸汽压值(通常推荐760 torr)。
根据这个输入值,软件就可将得到的吸附量数据表示为与压力相关的等温线。
另一方面,如果在试验温度下,吸附质的饱和蒸汽压高于大气压,P0同样不能直接测量得到。
因此必须在实验之前输入一个“准”饱和蒸汽压值(通常推荐760 torr)并在实验结束后使用正确的饱和蒸汽压值对等温线的横坐标重新计算才能得到正确的吸脱附等温曲线。
这种情况中最常见的是
CO2@273K的实验,详见康塔仪器公司technote 35。
康塔仪器公司不同款物理吸附仪器得到饱和蒸汽压的方式略有不同,请见表1。
4,实验参数设置
在开始物理吸附实验之前,必须已知三个吸附质的物理参数,包括温度、饱和蒸汽压测量方式(如测量、输入等)和气体非理想系数(见表1)。
其他相关的气体物理参数,如cross sectional area等则也可在实验结束后再行定义。
表一
数据来源:a. /chemistry/fluid/, b. CRC Handbook of Chemistry and Physics, 83rd edition.。