§2.2++冲激响应和阶跃响应及卷积(1)

合集下载

二阶电路阶跃响应和冲激响应讲解

二阶电路阶跃响应和冲激响应讲解

50 W
50 V
R iR
0.5H L C
100 μF
iL
iC
(5)求iR
iR iL iC
iL
LC
d2iL dt 2
或设解答形式为: iR 1 Ae100t sin(100t )
50W
定常数
R iR
50 V
2A
iC
i
R
(0
)
diR dt
(0
)
1
iC ?
(0
)
1
iR
50 R
uc
5Ω 解 (1) uc(0-)=25V iL(0-)=5A
(2)开关打开为RLC串 联电路,方程为:
LC
d 2uc dt
RC
duc dt
uc
0
特征方程为: 50P2+2500P+106=0
P 25 j139
uc Ae25t sin(139t )
uc Ae25t sin(139t )
0
A U0 , arctg
sin
ω,ω0,δ间的关系:
ω0
ω
sin
0
A
0
U
0
δ
uc
0
U0e
t
sin(t
)
uc
0
U0e
t
sin(t
)
uc是其振幅以
0
U0为包线依指数衰减的正弦函数。
t=0时 uc=U0
uc U0
0
U0
e
t
uc零点:t = -,2- ... n- uc极值点:t =0, ,2 ... n
L
di dt

冲激响应和阶跃响应的关系

冲激响应和阶跃响应的关系

冲激响应和阶跃响应的关系
冲激响应和阶跃响应是信号处理中常用的两种响应方式。

它们之间存在着密切的关系,本文将从以下几个方面进行阐述。

一、定义
冲激响应是指系统对于一个冲击信号的响应,通常用h(t)表示。

而阶跃响应则是指系统对于一个单位阶跃信号的响应,通常用g(t)表示。

二、关系
冲激响应和阶跃响应之间的关系可以通过积分的方式来表示。

具体来说,如果我们知道了系统的冲激响应h(t),那么系统的阶跃响应g(t)可以通过对h(t)进行积分得到,即:
g(t) = ∫[0,t]h(τ)dτ
这个公式的意义是,系统对于一个单位阶跃信号的响应可以看作是对于一系列冲击信号的响应之和。

这也是为什么我们可以通过积分的方式来求解阶跃响应的原因。

三、应用
冲激响应和阶跃响应在信号处理中有着广泛的应用。

例如,在数字滤波器设计中,我们通常会先求出系统的冲激响应,然后再通过积分的方式来得到系统的阶跃响应。

这样做的好处是,我们可以通过观察系统的阶跃响应来了解系统的频率特性和幅频响应等信息,从而更好地设计数字滤波器。

此外,在控制系统中,我们也常常需要求解系统的阶跃响应。

例如,我们可以通过观察系统的阶跃响应来了解系统的稳态误差和响应速度等信息,从而更好地设计控制器。

四、总结
综上所述,冲激响应和阶跃响应是信号处理中常用的两种响应方式。

它们之间存在着密切的关系,可以通过积分的方式相互转换。

在实际应用中,我们可以通过观察系统的阶跃响应来了解系统的频率特性和稳态误差等信息,从而更好地设计数字滤波器和控制系统。

第二章(2)冲激响应和阶跃响应

第二章(2)冲激响应和阶跃响应

f (k )
f t
f t
f k
f (t )
- 0 2
k
t
k
f (k ) p (t k )
n
pn (t )作用于系统的零状态响 hn (t ) 应为
y f (t )
k
f (k )h (t k )

y f ( t ) lim f ( k )hn ( t k )

f ht d
这是求解零状态响 应的另一种方法.
y f (t ) f t * ht
f t * ht
二、卷积的图示
第一步,画出 f1 ( t ) 与 f 2 ( t ) 波形,将波形图中的t轴 改换成τ轴,分别得到 f1 () f 2 () 和 的波形。
h(t ) b h (t ) b h
( m) m 1
( m1) m1 1
(t ) b0h1 (t )
例2.2-2:描述系统的微分方程为:
y'' ( t ) y' ( t ) y( t ) f '' ( t ) f ' ( t ) f ( t )
单位阶跃响应时,系统的零状态响应。
1.若n阶微分方程等号右端只含激励f(t),当
f (t ) (t )时,系统的零状态响应g(t)满足方程:
g ( n ) ( t ) a n 1 g ( n 1 ) ( t ) a0 g ( t ) ( t ) ( j) g (0 ) 0 j 0,1,2, , n 1
g1 t C1e C 2 e
t

信号与系统2-2冲激响应与阶跃响应课件

信号与系统2-2冲激响应与阶跃响应课件

8
举例
已知线性非时变系统的冲激响应 h(t) et (t),激励信号为
f (t) (t) 。试求系统的零状态响应。
解:系统零状态响应为:yzs (t) h(t) f (t) et (t) (t)
h( )
f ( )
1
0
t
0
将f(t)反折,再扫描可
yzs (t)
t e d
0
e
t 0
1
3t f1( ) f2 (t )d
1 1 1d 1 (4 t)
3t 2
2
即为重叠部分的面积。
当 3 t 1 即 t 4时:
f2 (t ) 和 f1( )没有公共的重叠部分, 故卷积 f (t) f1(t) f2 (t) 0
7
例 2.7
f1( )
A
2t 0 t1 f1( )
A
2 t0 1 t f1( )
(1 et ) (t)
确定积分上下限。
9
课堂练习题
自测题2.3 自测题2.4 自测题2.5
10
几条结论
f (t) f1(t) f2 (t)
f(t)的开始时间等于f1(t)和f2(t)的开始时间之和; f(t)的结束 时间等于f1(t)和f2(t)的结束时间之和。 f(t)的持续时间等于 f1(t)和f2(t)的持续时间之和。
h(t) 2e2t (t) (t)
计算机例题C2.3
已知系统的冲激响应为h(t) 3 (t) e2t (t),求阶跃响应。
h=sym('3*Dirac(t)-exp(-2*t)*Heaviside(t)'); g=int(h); g=simple(g)
g=1/2*Heaviside(t)*(5+exp(-2*t)) 阶跃响应为

阶跃响应冲击响应与卷积积分法

阶跃响应冲击响应与卷积积分法

补充第一章 阶跃响应冲击响应与卷积积分法电路中除电阻元件外,还包括有电容和电感等动态元件,如此的电路称为动态电路。

在动态电路分析中,鼓励和响应都表示为时刻t 的函数,采纳微分方程求解电路和分析电路的方式,称为时域分析法。

本章要紧讨论一阶电路的阶跃响应、冲激响应、任意输入的零状态响应,和二阶电路在恒定输入下的零状态响应。

§1-1 阶跃响应和冲激响应电路的输入除恒定不变的常量(即恒定输入或直流输入)和按正弦规律变更的交流量(即正弦输入)之外,常见的还有另外两种奇异函数,即阶跃函数和冲激函数。

本节就来讨论这两种函数的概念、性质及作用于线性动态电路时所引发的响应。

单位阶跃函数(unit step function )用()t ε来表示,它概念为 0(0)()1(0)t t t ε<⎧=⎨>⎩ 波形如图1-1(a )所示,在0t =处,()t ε由0跃变至1。

若是单位阶跃函数的跃变点不是在0t =处,而是在0t t =处,波形如图1-1(b )所示,那么称它为延迟的单位阶跃函数,用0()t t ε-表示,即0000()()1()t t t t t t ε<⎧-=⎨>⎩图1-1单位阶跃函数与任一常量K 的乘积()K t ε仍是一个阶跃函数,现在阶跃的幅度为K 。

单位阶跃函数与任一函数()f t 的乘积将只保留该函数在阶跃点以后的值,而使阶跃点以前的值变成零,即有0000(0)()()()(0)0()()()()()t f t t f t t t t f t t t f t t t εε<⎧=⎨>⎩<⎧-=⎨>⎩因此,单位阶跃函数能够用来“起始”一个任意函数()f t ,这给函数的表示带来了方便。

例如关于线性函数()(f t Kt K =为常数),由图1-2(a)、(b)、(c)能够清楚地看出()f t 、()()f t t ε及0()()f t t t ε-的不同。

阶跃响应和冲激响应之间的关系

阶跃响应和冲激响应之间的关系

阶跃响应和冲激响应之间的关系阶跃响应和冲激响应是信号处理中常用的概念,它们之间存在着密切的关系。

阶跃响应描述了系统对于单位阶跃信号的输出响应,而冲激响应则描述了系统对于单位冲激信号的输出响应。

本文将从阶跃响应和冲激响应的定义、性质以及它们之间的关系进行详细介绍。

我们来看一下阶跃响应的定义。

阶跃响应是指系统对于单位阶跃信号的输出响应。

单位阶跃信号是一种在时间t=0时从0跳变到1的信号,它在t>0时始终保持为1。

阶跃响应描述了系统对于这种信号的输出情况。

接下来,我们来看一下冲激响应的定义。

冲激响应是指系统对于单位冲激信号的输出响应。

单位冲激信号是一种在时间t=0时瞬时出现,幅度为无穷大的信号,持续时间极短,但面积为1。

冲激响应描述了系统对于这种信号的输出情况。

阶跃响应和冲激响应之间存在着紧密的联系。

事实上,在很多情况下,我们可以通过冲激响应来求得阶跃响应。

这是因为单位阶跃信号可以看作是单位冲激信号的积分。

具体来说,我们可以将单位阶跃信号表示为单位冲激信号的积分形式。

假设单位阶跃信号为u(t),单位冲激信号为δ(t),那么单位阶跃信号可以表示为u(t)=∫δ(τ)dτ。

根据线性系统的性质,系统对于单位阶跃信号的输出可以表示为系统对于单位冲激信号的输出的积分形式。

换句话说,我们可以通过对系统的冲激响应进行积分,得到系统的阶跃响应。

这是因为阶跃信号是冲激信号的积分,而系统对于冲激信号的输出又可以通过冲激响应来描述。

阶跃响应和冲激响应之间的关系还可以通过频域的方法来理解。

在频域中,系统的阶跃响应和冲激响应之间存在着简单的关系。

阶跃响应可以通过冲激响应进行傅里叶变换得到,而冲激响应可以通过阶跃响应进行傅里叶变换得到。

总结起来,阶跃响应和冲激响应之间存在着密切的关系。

阶跃响应描述了系统对于单位阶跃信号的输出响应,而冲激响应描述了系统对于单位冲激信号的输出响应。

通过对冲激响应进行积分可以得到阶跃响应,而通过对阶跃响应进行傅里叶变换可以得到冲激响应。

§2.2++冲激响应和阶跃响应及卷积(1)

§2.2++冲激响应和阶跃响应及卷积(1)
第 4页
冲激响应求解举例1 冲激响应求解举例
d2 y(t)
求系统 dt 2 解:将f(t)→δ(t), → ,
+4
d y(t) d f (t) + 3y(t) = + 2 f (t) dt dt
的冲激响应。 的冲激响应。
y(t)→h(t) →
d2 h(t ) d h(t ) dδ (t ) +4 + 3h(t ) = + 2δ (t ) 2 dt dt dt
∫0

第 13 页
§2.6 卷积积分
• 信号的时域分解与卷积积分 信号的时域分解与 • 卷积的图解法
第 14 页
一、信号的时域分解与卷积积分
1.信号的时域分解 信号的时域分解
• 预备知识
f1(t)
问 f1(t) = ? p(t) 直观看出
p(t)
1 ∆
A
t

f1 (t) = A ∆ p(t)

∆ 2
δ (tห้องสมุดไป่ตู้)
h(t )
T {0}
第 2页
2.系统冲激响应的求解
•冲激响应的数学模型
对于LTI系统,可以用一n阶微分方程 阶微分方程表示 对于LTI系统,可以用一 阶微分方程表示 LTI系统
dn y(t) dt n bm + an−1 dn−1 y(t) d t n−1 +L+ a1 d y(t) + a0 y(t) = dt d f (t) + b0 f (t) dt
h′ (t) = C1e−t + C2e−3t δ (t) + − C1e−t − 3C2e−3t ε (t)
−t −3t 1 2 1 2

阶跃响应与冲激响应

阶跃响应与冲激响应
冲激响应和系统函数与系统的稳定性有直接关系。 工程上常用二阶系统的阶跃响应的性能指标来评价一个
系统的性能。
冲激响应的定义
系统在零状态下,由单位冲激信号 作用产生的响应,称 为单位冲激响应,简称冲激响应,用h(t)表示。
(t)
(t)
0
t
连 续 LTI系 统 起始状态为零
h (t)
h (t)
0
t
阶跃响应的定义
将上式中的 f (t)分别换成 (t) 和 (t)

h(t) fT (t) f (t) f (t ) (t )
s(t) fT (t) f (t) f (t )(t)
冲激响应与阶跃响应的求解方法
例1:二阶系统的微分方程为 y''(t) 5y'(t) 6y(t) f '(t) 求其冲激响应和阶跃响应。
(4)R 0 L 1H C 1F
i t
R
t
L
C Uc t
系统的微分方程为
uC'' (t)
R L
uC' (t)
1u LC
(Ct)
1
(t)
LC
二阶系统的冲激响应与阶跃响应
(1)过阻尼下,代入元件数值
R 4 L 1H C 1 F 3
得到 uC(''t) 4u C('t) 3u (Ct) 3 (t)
则阶跃响应为
s(t) fT (t) f(3t )(t)
二阶系统的冲激响应与阶跃响应
例2 系统如图所示,讨论以下4种 情况下的冲激响应与阶跃响应
(1)R 4 L 1H C 1 F 3
(2)R 2 L 1H C 1F
(3)R 1 L 1H C 1F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冲激响应求解举例2 冲激响应求解举例
例2 描述某系统的微分方程为 y”(t)+5y’(t)+6y(t)= f”(t) + 2f’(t) + 3f(t) 求其冲激响应h(t)。 求其冲激响应 。 根据h(t)的定义 有 解 根据 的定义 h”(t) + 5h’(t) + 6h(t) = δ”(t)+ 2δ’(t)+3δ(t) (1) h’(0-) = h(0-) = 0 先求h’(0+)和h(0+)。 先求 和 。 由方程可知, h(t) 中含δ(t) 由方程可知, 中含 故令 h”(t) = aδ”(t) + bδ’(t) + cδ(t)+ r1(t) h’(t) = aδ’(t) + bδ(t) + r2(t) h(t) = aδ(t) + r3(t) [ri(t) 为不含 为不含δ(t) 的某函数 的某函数] 代入式(1), 代入式 ,有
dm f (t) dt m
+ bm−1
dm−1 f (t) d t m−1
+L+ b1
响应及其各 阶导数(最 阶导数 最 高阶为n次 高阶为 次)
令 f(t)=δ(t) 则 y(t)=h(t)
= bmδ (m) (t) + bm−1δ (m−1) (t) +L+ b1δ (1) (t) + b0δ (t)
第 4页
冲激响应求解举例1 冲激响应求解举例
d2 y(t)
求系统 dt 2 解:将f(t)→δ(t), → ,
+4
d y(t) d f (t) + 3y(t) = + 2 f (t) dt dt
的冲激响应。 的冲激响应。
y(t)→h(t) →
d2 h(t ) d h(t ) dδ (t ) +4 + 3h(t ) = + 2δ (t ) 2 dt dt dt
第 11 页
3. 基本单元的冲激响应
f (t) a (a) 数乘器h(t) = aδ(t) f (t) af (t) f (t) f (t -T)
T
(b) 延时器h(t) =δ(t-T) f (t)
d dt
d f (t) dt


t −∞
f (x) d x
(c) 微分器h(t) =δ'(t)
(d) 微分器h(t) =ε(t)
d2 h1(t)
+4
d y(t) d f (t) + 3y(t) = + 2 f (t) dt dt
的冲激响应。 的冲激响应。
h1(t) = C1e−t + C2e−3t ε (t)
(
dt 2
d h1(t) +4 + 3h1(t) = δ (t) dt
)
h1' (0+ ) = 1
h1(0+ ) = 0
根据系数平衡, 根据系数平衡,得
1 C1 + C2 = 1 C1 = 2 ⇒ 3C1 + C2 = 2 C2 = 1 2
1 −t h(t) = e + e−3t ε (t) 2
(
)
第 7页
解法三:线性时不变性质法
d2 y(t)
求系统 dt 2 解: 设h (t)满足简单方程 1 满足简单方程
δ (t )
h(t )
T {0}
第 2页
2.系统冲激响应的求解
•冲激响应的数学模型
对于LTI系统,可以用一n阶微分方程 阶微分方程表示 对于LTI系统,可以用一 阶微分方程表示 LTI系统
dn y(t) dt n bm + an−1 dn−1 y(t) d t n−1 +L+ a1 d y(t) + a0 y(t) = dt d f (t) + b0 f (t) dt
∫0

第 13 页
§2.6 卷积积分
• 信号的时域分解与卷积积分 信号的时域分解与 • 卷积的图解法
第 14 页
一、信号的时域分解与卷积积分
1.信号的时域分解 信号的时域分解
• 预备知识
f1(t)
问 f1(t) = ? p(t) 直观看出
p(t)
1 ∆
A
t

f1 (t) = A ∆ p(t)

∆ 2
0 (a)
∆ 2
∆ 2
0 (b)
∆ 2
t
第 15 页
任意信号分解
“0”号脉冲高度 号脉冲高度f(0) ,宽度为△, 宽度为△ 号脉冲高度 宽度为 表示为: 用p(t)表示为:f(0) △ p(t) 表示为 “1”号脉冲高度 △) ,宽度为 号脉冲高度f(△ 宽度为 号脉冲高度 表示为: △,用p(t - △)表示为: 表示为 f(△) △ p(t - △) △
yzs (t) = ∫
∞ −∞
f (τ )h(t −τ ) dτ = f (t) * h(t)
第 18 页
用定义计算卷积举例
例:f (t) = e t,(-∞<t<∞),h(t) = (6e-2t – 1)ε(t),求yzs(t)。 ( , , 。 解: yzs(t) = f (t) * h(t)
lim
∆→0

ˆ f (t) = f (t ) = ∫
∞ −∞
f (τ )δ (t −τ ) d τ
第 16 页
2 .任意信号作用下的零状态响应 任意信号作用下的零状态响应
f (t) 根据h(t)的定义: 的定义: 根据 的定义 由时不变性: 由时不变性:

LTI系统 LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
f (−∆)
f(t)
f (∆)
ˆ f (t)

f(0)

-1
− ∆ 2
0 1
0
∆ 2
2
3∆ 2
t
“-1”号脉冲高度 -△) 、宽度为△,用p(t +△)表示为: - 号脉冲高度 号脉冲高度f(宽度为△ 表示为: 表示为 f ( - △) △ p(t + △)
ˆ f (t) =
n=−∞
∑ f (n∆)∆p(t − n∆)
3 .卷积积分的定义 卷积积分的定义
已知定义在区间( 已知定义在区间( – ∞,∞)上的两个函数 1(t) , )上的两个函数f 和f2(t),则定义积分 ,

f (t) = ∫ f1 (τ ) f 2 (t −τ )dτ
−∞
为f1(t)与f2(t)的卷积积分,简称卷积;记为 卷积; 与 的卷积积分,简称卷积 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的 为积分变量 下进行的, 为积分变量, 注意:积分是在虚设的变量 下进行的,τ为积分变量, t为参变量。结果仍为 的函数。 为参变量。 为参变量 结果仍为t 的函数。
求特征根
λ2 + 4λ + 3 = 0 ⇒ λ1 = −1, λ2 = −3
n = 2, m = 1, n > m h(t )中不包含冲激项
带ε(t)
冲激响应
h(t) = (C1e + C2e
−t
−3t
)ε (t)
两种求待定系数方法: 两种求待定系数方法: 求0+法 •求
• 奇异函数项相平衡法
法一:求0+值确定系数
第 10 页
对t>0时,有 时
h”(t) + 6h’(t) + 5h(t) = 0
微分方程的特征根为– , 微分方程的特征根为 2, – 3。故系统的冲激响应为 。 h(t)= C1e–2t + C2e–3t , t>0 代入初始条件 h(0+) = – 3, h’(0+) =12 , 求得C , 求得 1=3,C2= – 6, 所以 h(t)= 3e–2t – 6e–3t , t > 0 结合式(2)得 结合式 得 h(t)= δ(t) + (3e–2t – 6e–3t)ε(t)
aδ”(t) + bδ’(t)+ cδ(t) + r1(t) + 5[aδ’(t) + bδ(t) + r2(t) ] + 6[aδ(t) + r3(t) ] = δ”(t)+ 2δ’(t)+3δ(t) 整理得 aδ”(t)+ (b+5a)δ’(t)+(c +5b+6a)δ(t) + r1(t)+5 r2(t)+6 r3(t) = δ”(t) + 2δ’(t) + 3δ(t) 利用δ(t) 系数匹配,得 a =1 ,b = - 3,c = 12 系数匹配, 利用 , (2) ) 所以 h(t) = δ(t) + r3(t) h’(t) = δ’(t) - 3δ(t) + p2(t) (3) ) h”(t) = δ”(t) - 3 δ’(t) + 12δ(t)+ r1(t) (4) ) 对式(3)从 到 积分得 对式 从0-到0+积分得 h(0+) – h(0-) = – 3 对式(4)从 到 积分得 对式 从0-到0+积分得 h’(0+) – h’(0-) =12 h(0+) = – 3, h’(0+) =12 故 ,
§2.5 冲激响应和阶跃响应
• 冲激响应 • 阶跃响应Biblioteka 一、冲激响应1.定义
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 所引起的零状态响应称为单位冲 由单位冲激函数 所引起的零状态响应称为 激响应,简称冲激响应 记为h(t)。 冲激响应, 激响应,简称冲激响应,记为 。 h(t)=T[{0},δ(t)]
相关文档
最新文档