信号与系统 冲激响应和阶跃响应【精选】

合集下载

信号与系统 2.2 冲激响应和阶跃响应

信号与系统 2.2  冲激响应和阶跃响应

系统冲激响应的求解方法(两种)
方法一: 按照求系统零状态响应的方法来求 例:描述某二阶LTI的微分方程为:
y (t ) 5 y (t ) 6 y(t ) f (t ) 2 f (t ) 3 f (t )
'' ' '' '
求其冲激响应h(t)
系统冲激响应的求解方法二
方法二: 设置中间变量来求解 一般而言,若描述LTI系统的微分方程为:
§2.2 冲激响应和阶跃响应
• 冲激响应 • 阶跃响应
一、冲激响应 h(t)
1.定义
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 激响应,简称冲激响应,记为h(t)。 h(t)=T[{0},δ(t)]
t
ht
T {0}
2.系统冲激响应的求解
•冲激响应的数学模型
对于LTI系统,可以用一n阶微分方程表示
g(t)= T [ε(t) ,{0}]
(t )
1
0
g (t )
(t )
t
g (t )
LTI
0
t
零状态
阶跃响应
◆阶跃响应和冲激响应之间的关系 线性时不变系统满足微、积分特性
(t ) (t ) d t
t
g (t ) h( ) d

t
d g (t ) , h(t ) dt
yn (t ) an1 yn1 (t ) ..... a0 y(t ) bm f m (t ) bm1 f m1(t ) .... b0 f (t )
求解系统的冲激响应h(t)可分为两步进行: ①选新变量h1(t),使它满足方程式左端相同,而右端只含 f(t),即满足方程:

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系:
1.零状态响应:
零状态响应是系统在没有初始储能(即系统处于零状态)下,由外部激励引起的系统响应。

它可以通过系统的传递函数或冲激响应来描述。

在零状态响应中,系统的储能不随时间变化,只与外部激励有关。

2.冲激响应:
冲激响应是系统在单位冲激函数激励下的响应,它是系统的传递函数的冲激函数形式。

冲激响应描述了系统对单位冲激函数的响应,可以看作是时间域上的积分运算的结果。

冲激响应是系统固有的特性,与外部激励无关。

3.阶跃响应:
阶跃响应是系统在单位阶跃函数激励下的响应。

阶跃响应描述了系统在阶跃信号作用下随时间变化的动态过程,包括上升、稳定和下降等阶段。

阶跃响应可以通过系统的传递函数或冲激响应来求解。

三者之间的联系:
零状态响应、冲激响应和阶跃响应之间存在密切的联系。

对于线性时不变系统,零状态响应可以通过冲激响应和阶跃响应来描述。

具体来说,系统的零状态响应等于冲激响应和阶跃响应的卷积,即y(t)=h(t)*u(t),其中y(t)表示零状态响应,h(t)表示冲激响应,u(t)表示阶跃响应。

这个公式表明,系统的零状态响应可以通过冲激响应和阶跃响应的卷积运算来获得。

阶跃响应、冲激响应

阶跃响应、冲激响应

计算方法
对于线性时不变系统,可以通过求解微分方程或传递函数来 计算阶跃响应。
对于离散系统,可以通过差分方程或Z变换来计算阶跃响应。
阶跃响应的特点
1
阶跃响应具有非周期性和非振荡性。
2
阶跃响应的初始值和终值取决于系统的初始状态 和稳态值。
3
阶跃响应的变化速度取决于系统的动态特性和输 入幅度。
02
CATALOGUE
冲激响应
定义
冲激响应是指在单位冲激函数激励下 系统的输出,它是系统对输入信号的 瞬态响应。
冲激响应描述了系统在单位冲激函数 作用下的动态特性,是分析系统稳定 性和性能的重要依据。
计算方法
01
对于线性时不变系统,冲激响应可以通过系统的传 递函数进行计算。
02
对于离散时间系统,冲激响应可以通过系统的差分 方程进行计算。
阶跃响应、冲激响 应
目 录
• 阶跃响应 • 冲激响应 • 阶跃响应与冲激响应的联系与区别 • 阶跃响应与冲激响应的应用 • 阶跃响应与冲激响应的实验分析
01
CATALOGUE
阶跃响应
定义
阶跃响应是指系统在阶跃信号输入下 ,其输出量随时间的变化情况。
阶跃响应是系统对突然变化输入的响 应,其输出量由初始状态逐渐变化到 稳态值。
CATALOGUE
阶跃响应与冲激响应的联系与区别
联系
01 阶跃响应和冲激响应都是系统对输入信号的响应 方式,用于描述系统的动态特性。
02 阶跃响应和冲激响应都是系统对单位阶跃函数和 单位冲激函数的响应,具有相似性。
03 阶跃响应和冲激响应在一定程度上可以相互转换 ,例如通过积分或微分运算。
区别
定义
信号检测

冲激响应和阶跃响应

冲激响应和阶跃响应
信号与系统
§2.6 冲激响应和阶跃响应
信号与系统
一.冲激响应
1.定义
系统在单位冲激信号 (t) 作用下产生的零状态响应,称为单位
冲激响应,简称冲激响应,一般用h(t)表示。
(t)
h(t)
H
说明: 在时域,对于不同系统,零状态情况下加同样的激励 (t)
如果冲激响应 h(t) 不同,说明其系统特性不同,
(k1 k2 ) (t ) (k1e t 3k2e 3t )u(t )
d2h(t) dt 2
(k1
k2 )
(t)
(k1et
3k2e3t )
(t)
(k1et
9k2e3t )u(t)
(k1 k2 ) (t) (k1 3k2 ) (t) (k1et 9k2e3t )u(t)
信号与系统
4.求法
g(t
)
n
Ciei
t
u(t)
mn1
Dk
k
(t)
B0u(t)
i1
k 0
i) 先求h(t),再积分求g(t)
ii) 直接代入求待定系数
信号与系统
二.阶跃响应
例:求下列g(t):
d2
d
d
r(t) 3 r(t) 2r(t) e(t) 3e(t)
dt 2
dt
dt
解: i)直接代入求待定系数法
信号与系统
一.冲激响应
3. h(t) 解的形式 由于δ(t) 及其导数在 t > 0+ 时都为零,因而方程式右端的自由
项恒等于零,这样原系统的冲激响应形式与齐次解的形式相同。
①与特征根有关 设特征根为简单根(无重根的单根)
②与n, m相对大小有关

第二章第2讲_冲激响应与阶跃响应

第二章第2讲_冲激响应与阶跃响应
信号与系统 同济大学汽车学院 魏学哲 weixzh@
2
将r(t)=h(t)及e(t)=(t)代入给定微分方程
(k1 k2 ) (t ) (3k1 k2 ) (t ) (t ) 2 (t )
k1 k2 1 3k1 k 2 2
将h(t)、h’(t)和(t)代入微分方程两端
ke (t ) ke u(t ) ke u(t ) (t )
k e (t ) (t )
t
t
duc (t ) uc (t ) e(t ) dt
t
t
h (t ) e u (t ) rzs (t ) uczs (t ) e(t ) h(t )
d h (t ) t 3t t 3t ( k1e k2e ) (t ) (k1e 9k2e )u(t ) 2 dt t 3t ( k1e 3k2e ) (t )
(k1 k2 ) (t ) ( k1 3k2 ) (t ) (k1et 9k2e3t )u(t )
当n=m时, h ( t )
ki e
i 1
i t
u (t ) kn 1 (t )
当n<m时,h(t)中还应包含(t)的导数
信号与系统 同济大学汽车学院 魏学哲 weixzh@
三、确定h(t)中的系数ki 将h(t)及其各阶导数代入系统方程左端,(t)及其各 级导数代入 方程右端,令对应项系数相等。
k 0
n
2、系统的零状态响应
( t ) h ( t )
对于线性时不变系 统 n
k (t t0 ) kh(t t0 )
rzs (t )
k 0
e ( k t ) t h ( t k t )

信号与系统阶跃信号和冲激信号

信号与系统阶跃信号和冲激信号
1 sgn( t) 1 t 0 t 0

O
2

2
sgn t
1
O
t
-1
1 sgn( t ) u ( t ) u ( t ) 2 u ( t ) 1 u ( t) [sgn( t) 1 ] 2
三.单位冲激δ(t)(难点)
概念引出 定义1 定义2 冲激函数的性质
冲激导数的抽样情况:利用分部积分运算

(t)f(t) d t


f ( t ) ( t ) ( t ) ( t ) d t f
f(0 )
3.冲激偶(冲激的导数)
s( t )
1
(t )

1
成为
(1)
O
o
求导
s( t )
集美大学信息工程学院201041414阶跃信号和冲激信号阶跃信号和冲激信号信号函数本身有不连续点跳变点或其导数与积分有不连续点的一类信号函数统称为奇异信号或奇异函数
§1.4 阶跃信号和冲激信号
集美大学信息工程学院 2010.4
本节介绍
信号(函数)本身有不连续点(跳变点)或其导 数与积分有不连续点的一类信号(函数)统称为 奇异信号或奇异函数。 主要内容: •单位斜变信号 •单位阶跃信号 •单位冲激信号 •冲激偶信号
0 u ( t t ) 0 1
t
u( t t 0 )
1
O
1
t t 0 , t 0 0 t t 0
0
t0 u(t t0 )
t
由宗量 t O t t 0 可 t 知 t , 即 时 0 0 ,函数有断点,跳变点 间为 t0 时 宗量>0 函数值为1 宗量<0 函数值为0

信号与系统复习题之冲击响应

信号与系统复习题之冲击响应
h(t)= δ(t) + (3e–2t – 6e–3t)ε(t)
二、阶跃响应 由于δ(t) 与ε(t) 为微积分关系,故
g(t)= T [ε(t) ,{0}]
g(t) th()d
,h(t)dg(t) dt
5
例3 如图所示的LTI系统,求其阶跃响应及冲激响应。
1
f (t) + x(t)
∑ -
-
x(t)
求其冲激响应h(t)。 解 根据h(t)的定义 有
h”(t) + 5h’(t) + 6h(t) = δ”(t)+ 2δ’(t)+3δ(t) (1) h’(0-) = h(0-) = 0 先求h’(0+)和h(0+)。 由方程可知, h(t) 中含δ(t) 故令 h(t) = aδ(t) + p1(t) [pi(t) 为不含δ(t) 的某函数] h’(t) = aδ’(t) + bδ(t) + p2(t) h”(t) = aδ”(t) + bδ’(t) + cδ(t)+ p3(t) 代入式(1),有
10
即 h1(0) h1(0) 0 h1(0) h1(0)+11
代入(5)式,有 h1(0)C3C4 0 h1(0)C32C4=1
可 解 得 : C 3 1 , C 4 1 于是
h1(t)=(et e2t ) (t)
11
其一阶导数
h1 (t)=(et e2t ) (t) (et 2e2t ) (t)=(et 2e2t ) (t)
6
右 端 加 法 器 的 输 出 y(t)= -x(t)2x(t)
所 以 , 系 统 的 微 分 方 程 为 y(t)3y(t)2y(t)= -f(t)2f(t)

信号与系统 冲激响应和阶跃响应

信号与系统 冲激响应和阶跃响应

信号与系统
一.冲激响应
将r(t)=h(t)及e(t)=(t)代入给定微分方程
( k1 k 2 ) ( t ) ( 3k1 k 2 ) ( t ) ( t ) 2 ( t )
k1 k 2 1 3k 1 k 2 2
1 1 k1 , k 2 2 2
可计算得 A 0 ,即 则冲激响应为 h(t ) 由 可得
g (t ) et u(t )
d g (t ) (t ) e t u (t ) dt
y1 (t ) 2et u(t ) yzi (t ) yzs (t ) yzi (t ) g (t ) yzi (t ) y1 (t ) g (t ) 2et u(t ) et u(t ) et u(t )
t 0 时, h(t ) 0
冲激响应的求解至关重要。
用变换域(拉氏变换)方法求冲激响应和阶跃响应简捷方便,但时域求 解方法直观、物理概念明确。
信号与系统
作业 13-04-09
P46 2-2(1), 2-3(2) , 2-5 , 2-6
A1 2, A2
1 3 , A3 2 2
故:
1 3 g(t ) (2e t e 2t )u(t ) u(t ) 2 2
信号与系统
二.阶跃响应
h(t ) (2e t e 2t )u(t )
ii)先求h(t)再积分法
g (t ) h( )d (2e e2 )d
冲激响应为:
h(t ) (k1e t k2e 3t )u(tt ) (k1e t k2e 3t )u(t )
对h(t)求各阶导数:
dh( t ) ( k1e t k 2 e 3 t ) ( t ) ( k1e t 3k 2 e 3 t )u( t ) dt (k1 k2 ) (t ) (k1e t 3k2e 3t )u(t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dh(t ) dt

(k1e t

k2e 3t
) (t )
(k1e t

3k2e 3t
)u(t )
(k1 k2 ) (t ) (k1e t 3k2e 3t )u(t )
d2h(t) dt 2

(k1

k2 )
(t)

(k1et

3k2e3t
)
(t)

B0u(t)
i1

k 0
i) 先求h(t),再积分求g(t)
ii) 直接代入求待定系数
信号与系统
二.阶跃响应
例:求下列g(t):
d2
d
d
r(t) 3 r(t) 2r(t) e(t) 3e(t)
dt 2
dt
dt
解: i)直接代入求待定系数法
设 g(t ) ( A1e t A2e 2t )u(t ) A3u(t ) g , (t ) 3( A1 A2 ) (t ) A3 (t ) ( A1e t 2 A2e 2t )u(t ) g ,, (t ) ( A1 A2 A3 ) , (t ) ( A1 2 A2 ) (t ) ( A1e t 4 A2e 2t )u(t )
冲激响应可以衡量系统的特性。
信号与系统
一.冲激响应
2.冲激响应的数学模型
对于线性时不变系统,可以用一高阶微分方程表示
C0
dn r(t) dtn
C1
dn1 r(t) d t n1


Cn1
d
r(t dt
)

Cn
r
(t
)

E0
dm e(t) dtm

E1
dm1 e(t) d t m1


信号与系统
二.阶跃响应
3.解的形式
i) 满足 c0
dn dt n
g(t) ..... cn g(t)

E0u(m) (t)
E1u(m1) (t).....
Emu (t )
n
ii) 有齐次解与特解,即 g(t) ( Aieit )u(t) f (t) B(t),特解 B(t) B0u(t)
代入左端,u(t)代入右端
( A1 A2 A3 ) , (t) (2A1 A2 A3 ) (t) 2A3u(t) (t) 3u(t)

k1 k2 1

3k1

k2

2
k1

1, 2
k2

1 2
h(t ) 1 (e t e 3t )u(t ) 2
信号与系统
二.阶跃响应
1.定义 系统在单位阶跃信号作用下的零状态响应,称为单位阶跃响应, 简称阶跃响应。
u (t )
g (t )
H
系统方程的右端包含阶跃函数 ,所以除了齐次解外,还有特解项。 我们也可以根据线性时不变系统特性,利用冲激响应与阶跃响应关 系求阶跃响应。

(k1et

9k2e3t
)u(t)
(k1 k2 ) (t) (k1 3k2 ) (t) (k1et 9k2e3t )u(t)
信号与系统
一.冲激响应
将r(t)=h(t)及e(t)=(t)代入给定微分方程 (k1 k2 ) (t) (3k1 k2 ) (t) (t) 2 (t)
i1

nm nm
h(t
)不包含

(t
)及其各阶导数。h(t
)


n
Ai ei t

u(t)
h(t)
包含
(t)
。h(t)
n
i1

Ciei t u(t) D0 (t)
i1

n m h(t) 包含 (t) 及其各阶导数,最阶次为m - n
信号与系统
§2.3 冲激响应和阶跃响应
信号与系统
一.冲激响应
1.定义
系统在单位冲激信号 (t)作用下产生的零状态响应,称为单位
冲激响应,简称冲激响应,一般用h(t)表示。
(t)
h(t)
H
说明: 在时域,对于不同系统,零状态情况下加同样的激励 (t)
如果冲激响应 h(t)不同,说明其系统特性不同,
解: n=2,m=1 所以h(t)中不包含 (t)。
特征方程为: 2 4 3 0
1 1, 2 3
冲激响应为:
h(t ) (k1et k2e3t )u(t )
信号与系统
一.冲激响应
对h(t)求各阶导数: h(t ) (k1et k2e3t )u(t )
信号与系统
一.冲激响应
3. h(t) 解的形式 由于δ(t) 及其导数在 t > 0+ 时都为零,因而方程式右端的自由
项恒等于零,这样原系统的冲激响应形式与齐次解的形式相同之处。
①与特征根有关
设特征根为简单根(无重根的单根)
h(t
)


n
Aieit

u(t)

f
(t)
②与n, m相对大小有关
h(t) n Ciei t u(t) mn Dk k (t)Biblioteka 4.求法:直接代入确定待定系数
i1

k 0
信号与系统
一.冲激响应
例:
系统微分方程为
d2r(t ) dr(t )
de(t )
dt 2 4 dt 3r(t ) dt 2e(t )
试求其冲激响应。
i 1
iii)当n≥m时,g(t)无 (t) 项。
n
g(t) ( Aieit )u(t) B(t) i 1
iv)当n<m时,g(t)含有 (t )及其导数项,导数的最高阶次为m-n-1。
4.求法
g(t)


n
Ciei
t

u(t)

mn1
Dk
k

(t)
Em1
d
e(t dt
)

Eme(t
)
响应及其各 阶导数(最 高阶为n次)
令 e(t)=(t)
则 r(t)=h(t)
激励及其各 阶导数(最高 阶为m次)
C0h(n) (t) C1h(n1) (t) Cn1h(1) (t) Cnh(t)
E0 (m) (t) E1 (m1) (t) Em1 (1) (t) Em (t)
信号与系统
二.阶跃响应
2.阶跃响应与冲激响应的关系 线性时不变系统满足微、积分特性
t
u(t) ( ) d
(t) d u(t)
dt
t
g(t) h( ) d
h(t) = dg(t) dt
t
t
阶跃响应是冲激响应的积分,注意积分限 对因果系统:

0
相关文档
最新文档