江财122概率论与数理统计试卷A

合集下载

2020-2021大学《概率论与数理统计》期末课程考试试卷A4(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A4(含答案)

2020-2021《概率论与数理统计》期末课程考试试卷A4适应专业:软件 考试时间: 考试类型:闭卷考试所需时间:120分钟 考试成绩:一. 单项选择题(每小题2分,共12分)1. 设离散型随机变量X 的可能取值为3,2,1,相应的概率依次为a a a a +22,7,, 则a =( ) .(A) 1/4 (B) -1/2 (C) 1/2 (D) -1/42. 设随机变量X ~)1,2(N ,)1,1(~N Y ,令Y X Z +=2,则)(Z E =( ). (A) 4 (B) 2 (C) 1 (D) 53. 已知6/1)(,3/1)(,2/1)(===AB P B P A P ,则事件A 与B ( ).(A) 相互独立 (B) 互斥 (C) 相等 (D) 互为对立事件4. 设随机变量),(~2σμN X ,则概率}1{μ+≤X P ( ).(A) 随μ增加而变大 (B) 随μ增加而减小 (C) 随σ增加而不变 (D) 随σ增加而减小5. 设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)|(B A P ( ). (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.86. 设样本n X X X ,,21来自正态总体),(2σμN ,在进行假设检验时,当( )时,一般采用统计量nX Z /0σμ-=(其中σ为标准差)(A) μ未知,检验202σσ= (B) μ已知,检验202σσ= (C) 2σ已知,检验0μμ= (D) 2σ未知,检验0μμ=二. 填空题(每空2分,共18分)1. 设A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 三个事件中至 少有一个发生 .2. 已知3/1)(,2/1)(==B P A P ,如果事件A 与B 互斥,则=)(B A P ,如果事件A 与B 独立,则=)(B A P .3. 设由来自正态总体X~)9.0,(2μN 的容量为9的简单随机样本,得样本均值5=x , 则未知参数μ的置信水平为0.95的置信区间是 。

2020-2021大学《概率论与数理统计》期末课程考试试卷A2(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A2(含答案)

2020-2021《概率论与数理统计》期末课程考试试卷A2适用专业: 考试日期:试卷所需时间:2小时 闭卷 试卷总分 100分考试所需数据: 0.05(19)1,7291t = 0.05(20)1,7247t = 一、填空题: (4小题,每空2分,共10分)1、袋中有20个球,其中12只红球,8只黑球,今有2人依次随机地从袋中各取一球,取后不放回。

则第2人取得红球的概率为 。

2、若1,2,3,4,5号运动员随机的排成一排,则1号运动员站在中间的概率为 .3、 设随机变量X 与Y 互相独立,且()()2~,2/1~Exp Y Exp X 则随机变量Y 的概率密度函数为()f x = ;(232)E X Y --= .4、设随机变量()()22~,~m n Y X χχ,且X ,Y 相互独立,则随机变量mY nX F //=服从 分布.二、单项选择题:(5小题,每题2分,共10分)1、同时抛掷2枚匀称的硬币,则恰好有两枚正面向上的概率( ). A 0.5 B 0.25 C 0.125 D 0.3752、任何一个连续型的随机变量的概率密度()x ϕ一定满足 ( ). A 0()1x ϕ≤≤ B 在定义域内单调不减 C ()0x dx ϕ+∞-∞=⎰ D ()0x ϕ≥3、 已知~()X x ϕ,21x x ϕπ-()=[(1+)],则2Y X = 概率密度为( ). A 21(1)y π+ B 22(4)y π+ C 21(1/4)y π+ D 21(14)y π+ 4、随机变量X 与Y 满足()()()D X Y D X D Y +=-,则必有( ) .A X 与Y 独立B X 与Y 不相关C DX=0D DX DY 0⋅=5、在假设检验问题中,检验水平α的意义是 ( ). A 原假设0H 成立,经检验被拒绝的概率 B 原假设0H 成立,经检验不能被拒绝的概率C 原假设0H 不成立,经检验被拒绝的概率D 原假设0H 不成立,经检验不能拒绝的概率.三、(14分)20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为多少?四、(14分)设随机变量X 与Y 相互独立,且X 与Y 的分布律为试求:(1)二维随机变量(,)X Y 的分布律;(2)随机变量Y X Z +=的分布律.专业班级: 姓名: 学号:装 订 线五、(14分)设二维随机向量(,)X Y 的概率密度为21,01,0(,)20ye x yf x y -⎧≤≤>⎪=⎨⎪⎩,其它 (1)求(X,Y)关于X 和关于Y 的边缘概率密度;(2)问X 是Y 否相互独立,为什么?六、(14分)设随机变量X 的概率密度为,02()20,xx f x ⎧≤≤⎪=⎨⎪⎩其它试求:(1)E(X),D(2X-3) ;(3)P{0<X<1.5}七、(14分)设总体X 具有分布律其中(01)θθ<<为未知参数,已知取得样本值1231,2,1x x x ===,试求θ的矩估计值和最大似然估计值.八、(10分)下面列出的是某工厂随便选取的20只部件的装配时间(min ):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2 10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7设装配时间的总体服从正态分布2(,)N μσ,2,μσ均未知,是否可以认为装配时间的均值显著大于10(取0.05α=)?0.5099s =2020-2021《概率论与数理统计》期末课程考试试卷A2答案一、填空题1)3/5; 2)1/5; 3)()()21,020,xe xf xelse-⎧≥⎪=⎨⎪⎩;-7; 4)自由度为m,n的F分布.二、选择题1)B; 2)C; 3)D; 4)B; 5)A.三解、18171829142019201910p=⨯+⨯=分五、解()()1211,01,0;720,0,xX Yxe xf x f yelseelse-⎧<<⎧≤⎪==⎨⎨⎩⎪⎩分独立,因为()()(),14X Yf x f y f x y=分六、解()()()4294;2310;0 1.5143916E X D X P x=-=<<=分分分七解、22122131322E X分;所以()332分,E Xθ-=又()^453分;E X X==所以的矩估计为566=分θ.由521L,则ln5ln ln2ln17L分;令lnd Ld,得596分θ=,所以的最大似然估计为5106=分θ八解、由题可得0010:10;:102H H分;0.05,20,119,10.24n n x分;;原假设的拒绝域为016/xt nn分;0 1.7541/0.5099/20n0.05(19)1,7291t=,所以在显著性水平为0.05的情况下拒绝原假设10分.。

2021-2021年江西财经大学概率论与数理统计试卷A及参考答案

2021-2021年江西财经大学概率论与数理统计试卷A及参考答案

2021-2021年江西财经大学概率论与数理统计试卷A及参考答案2021年江西财经大学概率论数学模拟试卷一092致091 一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每小题3分,共15分)1.已知P(A)=0.4,P(B)=0.5,P(A?B)?0.28,则P(AUB)=______________;2.设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2)=______________;3.设随机变量X的数学期望EX??,方差DX??2,则由切比雪夫不等式可以得到P{|X??|?3?}?_______________;4. 设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则D(3X?Y)?___________;5.设(X1,X2,n,Xn)是从正态总体N(?,?2)中抽取的一个样本, X是其样本均值,则有D[?(Xi?X)2]?____________________。

i?1二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。

答案错选或未选者,该题不得分。

每小题3分,共15分。

)1.设A,B为两个随机事件,且P(B)?0,P(AB)?1,则必有()(A)P{A?B}?P(A)(C)P{A?B}?P(A)(B)P{A?B}?P(B)(D)P{A?B}?P(B)2. 下列函数中,可作为某一随机变量的分布函数是 111 A.F(x)?1?2 B. F(x)??arctanxx2??1?xx???(1?e),x?0 C. F(x)??2 D. F(x)??f(t)dt,其中?f(t)dt?1?????0,x?0?3. 设离散型随机变量(X,Y)的联合分布律如下,若X,Y相互独立,则(X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)P1/61/91/181?/3?A. ??2/9,??1/9B. ??1/9,??2/9C. ??1/6,??1/6D. ??8/15,??1/184. 对于任意两个随机变量X和Y,若E(XY)?E(X)?E(Y),则A.D(XY)?D(X)?D(Y) B. D(X?Y)?D(X)?D(Y) C.X和Y独立 D. X 和Y不独立5. 在对单个正态总体均值的假设检验中,当总体方差已知时,选用 A. t检验法 B. u检验法 C. F检验法 D. ?2检验法三、计算题(要求在答题纸上写出主要计算步骤及结果。

2014-2015第2学期概率论与数理统计期末试题(含答案)

2014-2015第2学期概率论与数理统计期末试题(含答案)
2.设随机变量 X 的分布律为
X -1 0
1
2
P 0.1 0.2 0.3 0.4
则 P{x<1)=______.
3.设随机变量 X 服从区间[1,5]上的均匀分布,则 P{0 X 3}
.
4.设随机变量X服从参数为5的指数分布,则P{X=5}=_________.
5. 设随机变量 X~B(n, p),已知 E(X)=0.8,D(X)=0.48,则 n,p 的值分别是 , .
P( AB) P( A)P(B)3分
所以 A 与 B 相互独立。
6
必要性:
P( AB) P( A)P(B)
P( AB) P( AB)P( A) P( A)P(B) P( A)P( AB)
P( AB) P( AB) P(B) P( AB)
P( A) P( A)
i 1
i 1
d
ln L( p) dp

1 p
n i 1
xi
1 1 p
(n
n i 1
xi )

0 ……………………………………………8

只有一个驻点
p x p ,必为 L(p)的最大值点。P 的极大似然估计是 x …………………………10 分
4.解:选择 U

X
0
i1
Xi

150


200 P i1

X i 160 32

150 160
32



200 P i1
Xi
160

1.77
32



1 ( 5 2 ) 4

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、AB2、设A ,B ,C 表示三个事件,则ABC 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P AB =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0。

8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15B 、14 C 、4 D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX ==D 、1,93EX DX == 10、设X 服从二项分布B (n,p ),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、3615、当X 服从( )分布时,EX DX =。

概率论与数理统计(A卷)

概率论与数理统计(A卷)

(1))1,0(N (2))(2n χ (3)),(2σμN (4)),1(n F13、如果样本观测值为60,70,80,那么总体均值μ的无偏估计是【 】。

(1)70 (2)10 (3)60 (4)80 14、以下关于矩估计法的叙述中正确的是【 】。

(1)充分利用总体分布 (2)理论依据是k Pk A μ−→−(3)利用样本分布信息 (4)一定是有偏估计15、总体均值μ置信度为99%的置信区间为(1ˆμ,2ˆμ),置信度的意义为【 】 (1)μ落入(1ˆμ,2ˆμ)的概率为0.99 (2) (1ˆμ,2ˆμ)不包含μ的概率为0.99 (3)(1ˆμ,2ˆμ)包含μ的概率为0.99 (4)μ落出(1ˆμ,2ˆμ)的概率为0.99 二、多项选择题(从每题后所备的5个选项中,选择至少2个正确的并将代码填 题后的括号内,每题1分,本题共5分)。

16、如果随机事件、A B 互斥,且30.0)B (P ,40.0)A (P ==,那么【 】。

(1)0.40)B -A (P = (2)0.70)B A (P = (3)0B)/P(A = (4)0)AB (P = (5)1)B /A (P =17、设随机变量X~e (10),那么【 】。

(1)10.0)X (E = (2)10)X (E = (3)2e 1)0.2X (P --=≤ (4)0.01)X (D = (5))100X (P )100X |220X (P >=>>18、设总体是样本。

,,未知,已知,),,(n X X X N X ,~2122 μσσμ下列不是统计量的有【 】。

(1)n Xni i/1∑= (2)221/)(σX X ni i -∑= (3) σμ/)(-i X(4)n X ni i /)(21μ-∑= (5)∑=-ni i n X X 12/)(19、以下关于最大似然估计方法的说法中正确有【 】。

(1)理论依据是k Pk A μ−→−(2)充分利用总体分布信息 (3)无需总体分布 (4)使用样本分布信息 (5)保证样本值出现概率最大20、设n X X X ,,,21 是总体),(~2σμX 的样本,那么【 】。

浙江财经学院 概率论与数理统计10套题

浙江财经学院 概率论与数理统计10套题

数理统计练习题三(1)、已知5%的男性和0.25%的女性是色盲,假设男性女性各占一半。

现随机地挑选一人,求此人恰好是色盲者的概率。

设A :表示此人是男性; B :表示此人是色盲。

则所求的概率为()()(|)()(|)P B P A P B A P A P B A =+0.50.050.50.00250.02625=⨯+⨯=答:此人恰好是色盲的概率为0.02625。

三(2)、已知5%的男性和0.25%的女性是色盲,假设男性女性各占一半。

若随机地挑选一人,发现此人不是色盲,问此人是男性的概率。

设A :表示此人是男性; B :表示此人是色盲。

则所求的概率为()(|)()(|)(|)()1()P A P B A P A P B A P A B P B P B ==-()(|)1[()(|)()(|)]P A P B A P A P B A P A P B A =-+ 0.50.950.487810.02625⨯=≈-答:此人是男人的概率为0.4878。

三(3)、一袋中装有10个球,其中3个白球,7个红球。

现从中采用不放回方式摸球两次,每次一个,求第二次取得白球的概率。

解 设i A 表示表示第i 次取得白球,i =1,2。

则所求事件的概率为2121121()()(|)()(|)P A P A P A A P A P A A =+3273931091093010=⨯+⨯== 答:第二次取得白球的概率为3/10。

三(4)、一袋中装有10个球,其中3个白球,7个红球。

现从中采用不放回方式摸球两次,每次一个,若第二次取得白球,则第一次也是白球的概率。

解 设i A 表示表示第i 次取得白球,i =1,2 。

则所求事件的概率为12121122121121()()(|)(|) = ()()(|)()(|)P A A P A P A A P A A P A P A P A A P A P A A =+3221093910⨯==答:第二次摸得白球,第一次取得也是白球的概率为2/9。

《概率统计》期中考试卷A答案_2010-2011学年第二学期

《概率统计》期中考试卷A答案_2010-2011学年第二学期

λ k e −λ ( k = 0,1,2 L) ,由 P{ X = 0} = e − λ = 0.01 , 得 λ = ln 100 = 2 ln 10, k!
(1) P {X ≥ 2} = 1 − P {X < 2} = 1 − P {X = 0} − P {X = 1}
= 1 − 0.01 −
2 ln 10 ⋅ e − ln 100 = 0.99 − 0.02 ln 10. 1!
三.(10 分) 玻璃杯成箱出售,每箱 20 只.设各箱含 0 只、1 只残次品的概率分别为 0.8 和 0.2. 一顾客欲购买一箱玻璃杯,由售货员任取一箱,而顾客开箱随机地察看 3 只:若无残次品,则买 下该箱玻璃杯,否则退回. 求:(1) 顾客买下此箱玻璃杯的概率; (2) 已知顾客买下此箱玻璃杯,求该箱中确实没有残次品的概率. 解: 设 A0=“箱中含有 0 件次品” , A1=“箱中含有 1 件次品” ,则 A0 ,A1 是一完备事件组, 设 B=“任取的 3 只都是合格品”=“顾客买下该箱玻璃杯” , (1) P ( B ) = P ( A0 ) P ( B | A0 ) + P ( A1 ) P ( B | A1 )
A卷 第 3 页(共 4 页)
(2) EX = λ = ln 100 = 2 ln 10.
P D F
c re a te d
w ith
p d f F a c to r y tr ia l v e r s io n
浙江财经学院课程期中考试试卷
七. (10 分) 设 X 服从参数 λ =
′ (tan y ) sec 2 y = f X (tan y ) ⋅ sec 2 y = fY ( y ) = [FY ( y )] ′ = FX
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西财经大学
12—13第二学期期末考试试卷
课程代码:03054(A ) 授课课时:64 考试用时:110分钟
课程名称:概率论与数理统计(主干课程) 适用对象:11级经管类本科生 试卷命题人: 王平平 试卷审核人: 徐慧植
一、填空题(将正确答案写在答题纸的相应位置,答错或未答,该题不得分。

每小题3分,共15分。

)
1. 10个朋友随机地围绕圆桌而坐,则甲、乙两人坐在一起,且乙坐在甲左边的概率是 ______.
2. 已知随机变量)21,(~n B X ,且32
1)5(==X P ,则=n ______. 3. 设X ~N (0,1),Y ~N (0,1),且X 与Y 相互独立,则P {X +Y ≤0}=______.
4. 若随机变量X 在区间[),1+∞-内取值的概率等于随机变量Y =X -3在区间[),+∞a 内取值的概率,则a = ______.
5. 某互联网站有10000个相互独立的用户,已知每个用户在平时任一时刻访问该网站的概率为0.2,在任一时刻有1900~2100个用户访问该网站的概率为______.(取Φ(2.5)=0.9938)
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。

答案选错或未选者,该题不得分。

每小题3分,共15分。

)
1.设随机事件A 与B 的概率为3
2)(2
1)(=
=B P A P ,,则)(AB P 可能为( ). A. 0 ; B. 1 ; C 53; D. 61 2.某种动物活到25岁以上的概率为0.8,活到30岁的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是( ).
A. 0.5;
B. 0.4;
C. 0.32;
D. 0.76
3. 对于任意概率不为零的事件A 和B ,下列命题肯定正确的是( ).
A .如果A 和
B 互不相容,则A 与B 也互不相容;
B .如果A 和B 相容,则A 与B 也相容;
C .如果A 和B 互不相容,则A 和B 相互独立;
D .如果A 和B 相互独立,则A 与B 也相互独立。

4. 设总体X 服从区间]4,[θθ上的均匀分布(0>θ),n X X X ,,,21 是来自总体X 的样本,X 是样本均值,则=)(X E ( ).
A. θ5;
B. θ3;
C. θ25;
D. θ2
3 5. 设随机变量X 1,X 2,…,X n ,…相互独立同分布,且X i 的分布律为:p X P p X P i i -====1)0(,)1(,i =1,2,…,)(Φx 为标准正态分布函数,则 =⎪⎭
⎪⎬⎫
⎪⎩⎪⎨⎧≥--∑=∞→2)1(lim 1p np np X P n i i n ( ). A .)2(Φ;
B .)2(Φ-1;
C .0;
D .1
三、计算题(要求在答题纸写出主要计算步骤及结果,12分。

)
按以往概率论与数理统计考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格。

据调查,学生中有80%的人是努力学习的,试问:
(1)考试及格的学生有多大可能是不努力学习的人?
(2)考试不及格的学生有多大可能是努力学习的人?
四、计算题(要求在答题纸写出主要计算步骤及结果,12分。

)
已知随机变量X 只能取-1,0,1,2四个值,取相应值的概率为
c c c c 167,85,43,21,试确定常数c 的值,并计算()01≠<X X P 。

五、计算题(要求在答题纸上写出主要计算步骤及结果,12分。

)
设二维随机变量(X ,Y )的分布律为
(1)求常数a ;
(2)求(X ,Y )的协方差;
(3)求X 和Y 的相关系数。

六、计算题(要求在答题纸上写出主要计算步骤及结果,12分。

)
设总体X 的分布密度函数为
)0(21);(>+∞<<∞-=-θθθθx •e x f x
试求其未知参数θ的最大似然估计量。

七、应用题(要求在答题纸上写出主要计算步骤及结果,12分。

)
某厂生产的电视机在正常状况下的使用寿命为X (单位:小时),且X ~N (μ,4)。

今调
查了10台电视机的使用寿命,并算得其使用寿命的样本方差为s 2=8.0。

试问能否认为这批电
视机的使用寿命的方差仍为4?(显著性水平α=0.05)(附:2025.0χ(9)=19.0,2975.0χ(9)=2.7)
八、证明题(要求在答题纸上写出主要推理步骤及结果,10分。

)
设X 为连续型随机变量,概率密度函数)(x f 满足:当],[b a x ∉时,0)(=x f 。

试证明: 。

2)2
(
,a b DX b EX a -≤≤≤。

相关文档
最新文档