(完整版)幂函数及其性质知识点总结经典讲义及配套练习

合集下载

高中幂函数知识点总结

高中幂函数知识点总结

引言:高中幂函数是高中数学中的重要部分,它在数学研究和实际问题中有着广泛的应用。

本文将对高中幂函数的知识点进行总结和整理,帮助学生完善对幂函数的理解和掌握。

概述:幂函数是指形如y=x^n的函数,其中n是常数。

幂函数的特点是具有单调性和奇偶性,其图象通常为一条曲线。

在研究幂函数时,需要掌握其定义、性质和应用。

正文:一、幂函数的定义1.1 幂函数的基本形式幂函数的基本形式是y=x^n,其中n是常数。

幂函数的定义域为所有实数,且n可以是正整数、负整数、零和有理数。

1.2 幂函数的图象当n为正奇数时,幂函数的图象在第一象限和第三象限上单调递增;当n为正偶数时,幂函数的图象在第一象限上单调递增,且具有对称轴y=0;当n为负数时,幂函数的图象在第一、三象限上单调递减。

1.3 幂函数的特殊情况当n=1时,幂函数变为一次函数;当n=0时,幂函数变为常数函数;当n为正无穷大时,幂函数趋向于正无穷大;当n为负无穷大时,幂函数趋向于零。

二、幂函数的性质2.1 幂函数的单调性幂函数在定义域上的单调性与n的值有关。

当n为正奇数时,幂函数是增函数;当n为正偶数时,在非负区间上是增函数,在负区间上是减函数;当n为负数时,在非负区间上是减函数,在负区间上是增函数。

2.2 幂函数的奇偶性幂函数的奇偶性与n的奇偶性有关。

当n为奇数时,幂函数是奇函数;当n为偶数时,幂函数是偶函数。

2.3 幂函数的零点当n为正奇数时,幂函数的零点为x=0;当n为正偶数时,幂函数的零点为x=0;当n为负奇数时,幂函数没有零点;当n为负偶数时,幂函数的零点为x=0。

三、幂函数的图象变换3.1 幂函数的平移幂函数的平移是指将幂函数的图象沿横轴或纵轴方向移动。

平移的方向和距离与平移的规律有关,具体可利用平移的公式进行计算。

3.2 幂函数的伸缩幂函数的伸缩是指将幂函数的图象进行纵向或横向的拉伸或压缩。

伸缩的方式和伸缩的规律有关,可利用伸缩的公式进行计算。

3.3 幂函数的翻折幂函数的翻折是指将幂函数的图象进行关于横轴或纵轴的翻折。

幂函数 知识点总结及典例

幂函数 知识点总结及典例

幂 函 数一、知识清单1.幂函数的概念:形如y x α=注意:幂函数与指数函数的区别. 2.幂函数的性质:(1)幂函数的图象都过点 (1,1) ; 任何幂函数都不过 四 象限;(2)当0α>时,幂函数在[0,)+∞上 递增 ; 当0α<时,幂函数在(0,)+∞上 递减 ;(3)画出α=1,2,3,-1,1/2时,幂函数的图像 二、典例回顾例1.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x 是幂函数,且是()0,+∞上的增函数;【变式训练】.幂函数223mm y x --=(m Z ∈)的图象与x 、y 轴都无交点,且关于原点对称,求m 值.例2.下列函数在(),0-∞上为减函数的是( ) A.13y x = B.2y x = C.3y x = D.2y x -=例3、(1)当01x <<时,()()()1222,,f x x g x x h x x -===的大小关系是( )A. ()()()h x g x f x <<B. ()()()h x f x g x <<C. ()()()g x h x f x <<D. ()()()f x g x h x << (2)当32x x >成立时,x 的取值范围是 ( )A x<1且x ≠0B 0<x<1C x>1D x<1 例4、当()+∞∈,1x 时,下列函数恒在x y =下方的偶函数是( ) A. 21x y = B. 2-=x y C. 2x y = D.1-=xy三、练习 A 组1、下列命题①幂函数的图象都经过点()()0,01,1和 ②幂函数的图象不可能在第四象限;③当0=n 时n x y =的图象是一条直线 ④幂函数n x y =,当0>n 时,是增函数;⑤幂函数n x y =当0<n 时在第一象限内函数值随x 的增大而减小。

高一数学幂函数知识点归纳大全

高一数学幂函数知识点归纳大全

高一数学幂函数知识点归纳大全在高一数学学科中,幂函数是重要的一个知识点。

幂函数是指形如y = ax^n的函数,其中a和n是实数,且a≠0,n≠0。

一、幂函数的定义及性质幂函数的定义就是函数的定义,即y = ax^n,其中a称为幂函数的底数,n称为指数。

幂函数的性质有以下几点:1. 当n为正整数时,幂函数表示乘方运算,例如y = 2x^3表示x的3次方。

2. 当n为负整数时,幂函数表示倒数,例如y = 2x^-2表示x的倒数的平方。

3. 当n为分数时,幂函数表示根式,例如y = 2x^(1/2)表示x的平方根。

4. 当n为零时,幂函数表示常数函数,即y = a,其中a为常数。

二、幂函数图像特征1. 当a>0且n为正偶数时,幂函数的图像开口向上,且对称于y轴。

2. 当a>0且n为正奇数时,幂函数的图像开口向上,且不对称于y 轴。

3. 当a<0且n为正偶数时,幂函数的图像开口向下,且对称于y轴。

4. 当a<0且n为正奇数时,幂函数的图像开口向下,且不对称于y 轴。

三、幂函数的变换幂函数可以通过平移、伸缩、翻转等变换得到其他函数形式。

1. 平移:平移是指将函数的图像沿x轴或y轴方向上下左右移动。

例如,对于函数y = 2x^3,将x坐标减2,可以得到y = 2(x-2)^3,实现了向右平移2个单位。

2. 伸缩:伸缩是指将函数的图像沿x轴或y轴方向上下左右拉长或缩短。

例如,对于函数y = 2x^3,将x坐标扩大为原来的2倍,可以得到y = 2(2x)^3,实现了横向的伸缩。

3. 翻转:翻转是指将函数的图像沿x轴或y轴方向上下左右翻转。

例如,对于函数y = 2x^3,将函数的图像上下翻转,可以得到y = -2x^3,实现了关于x轴的翻转。

四、幂函数的应用1. 金融领域:在复利计算中,幂函数常被用于计算投资收益和贷款利息。

2. 自然科学领域:幂函数经常出现在自然界的现象中,如物体的自由落体运动中,下落距离与时间的关系可以用幂函数表示。

高考数学知识点幂函数知识点知识点总结

高考数学知识点幂函数知识点知识点总结

高考数学知识点幂函数知识点知识点总结高考数学知识点:幂函数知识点总结在高中数学课程中,幂函数是一个重要的知识点。

幂函数的数学表达式为f(x) = ax^n,其中a和n分别代表常数,x代表自变量。

幂函数具有许多特殊性质和应用,下面将对幂函数的相关知识点进行总结。

一、定义和性质1. 幂函数的定义:幂函数是指具有形如f(x) = ax^n的函数,其中a和n为实数常数,且a≠0。

2. 幂函数的图像:根据a和n的取值不同,幂函数的图像可以表现为增函数、减函数或恒函数。

3. 幂函数的对称性:当幂函数的幂指数n为正偶数时,函数图像关于y轴对称;当n为正奇数时,函数图像关于原点对称;当n为负数时,函数图像关于x轴对称。

二、基本性质和运算法则1. 幂函数的基本性质:a) 当n>0时,幂函数是增函数;当n<0时,幂函数是减函数。

b) 当a>1时,幂函数递增速度大于直线函数y=x;当0<a<1时,幂函数递增速度小于直线函数y=x。

c) 当n=1时,幂函数是一次函数;当n=0时,幂函数是常值函数。

2. 幂函数的运算法则:a) 幂函数相乘:f(x) = ax^m * bx^n = abx^(m+n)。

b) 幂函数相除:f(x) = (ax^m) / (bx^n) = (a/b)x^(m-n),其中b≠0。

c) 幂函数相乘的分配律:(a * b)x^n = a * bx^n,其中a和b为常数,n为指数。

d) 幂函数的复合:f(g(x)) = (ax^m)^n = a^n*x^(m*n),其中a、g(x)和n为常数。

三、幂函数的应用1. 函数图像:通过掌握幂函数图像的特点,我们可以辨认各类函数的图像特征,帮助解题。

2. 变化率计算:由于幂函数在不同区间具有不同的递增、递减性质,可以用来计算变化率,例如速度、增长率等。

3. 经济学应用:幂函数可以描述经济学中的一些指数关系,如价格与需求量的关系等。

根据幂指函数知识点及题型归纳总结

根据幂指函数知识点及题型归纳总结

根据幂指函数知识点及题型归纳总结
一、幂函数的性质:
1. 幂函数的定义:幂函数是指以变量 x 为底数,以常数 a 为指
数的函数,一般形式为 f(x) = a^x。

2. 幂函数的图像:幂函数的图像随着底数 a 的取值不同而有所
变化,底数 a 大于 1 时,函数图像上升趋势较为陡峭;底数 a 在 0
和 1 之间,函数图像下降趋势较为陡峭。

3. 幂函数的性质:幂函数具有对称性,即 f(x) = f(-x);a^x 的
值随 x 的变化而变化,当 x 增大时,a^x 增大,当 x 减小时,a^x
减小。

二、指数函数的性质:
1. 指数函数的定义:指数函数是指以变量 x 为指数的函数,一
般形式为 f(x) = a^x(a > 0,且a ≠ 1)。

2. 指数函数的图像:指数函数的图像具有与幂函数相反的特点,当底数 a 大于 1 时,函数图像上升趋势较为平缓;底数 a 在 0 和 1
之间,函数图像下降趋势较为平缓。

3. 指数函数的性质:指数函数的图像经过点 (0, 1);指数函数
具有增长态势,即随着 x 的增大,函数值也增大。

三、幂指函数的题型:
1. 计算幂指函数的值:根据给定的幂指函数和 x 的值,求出函数的值。

2. 求幂指函数的定义域:根据幂指函数的特点,确定该函数的定义域范围。

3. 求幂指函数的变化趋势:根据底数的取值范围和指数的正负性,确定函数的增减性和图像的走势。

4. 解幂指函数的方程:根据幂指函数的性质和方程的条件,求出满足方程的变量值。

以上是根据幂指函数的知识点及题型进行的归纳总结,希望能对您的学习和应试有所帮助。

幂函数知识归纳及习题(含答案)

幂函数知识归纳及习题(含答案)

自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点y =x R R 奇 Z (1,1)y =x 2 R [0,+∞)偶 [0,+∞)Z (-∞,0][y =x 3R R 奇 ZY =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Z Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)[(0,+∞)[(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4C.22D. 2 2.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1 C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-baC .c D.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12, ∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0.故所求范围为:-4<m≤0.答案:(-4,0]10.解:∵f(x)在(0,+∞)上是增函数,∴-12+p+32>0,2p即p2-2p-3<0.∴-1<p<3.又∵f(x)是偶函数且p∈Z,∴p=1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x+1)(x-3),将C(1,-8)代入得-8=a(1+1)(1-3),得a=2.即f(x)=2(x+1)(x-3)=2x2-4x-6.(2)f(x)=2(x-1)2-8,当x∈[0,3]时,由二次函数图像知,f(x)min=f(1)=-8,f(x)max=f(3)=0.(3)f(x)≥0的解集为{x|x≤-1,或x≥3}.12.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。

根据幂函数的图像性质知识点及题型归纳总结

根据幂函数的图像性质知识点及题型归纳总结

根据幂函数的图像性质知识点及题型归纳
总结
一、幂函数的定义和性质
幂函数是指形如y = x^n的函数,其中n为实数且n≠0.
幂函数的图像性质包括:
- 当n为正数时,函数的图像呈现单调递增或单调递减的曲线,取决于n的奇偶性。

- 当n为负数时,函数的图像在第一象限和第三象限中单调递减,而在第二象限和第四象限中单调递增。

- 当n为正偶数时,函数的图像在第一象限中单调递增,而在
第二、三、四象限中单调递减。

- 当n为正奇数时,函数的图像在第一、二象限中单调递增,
而在第三、四象限中单调递减。

二、幂函数的题型归纳
1.求函数的定义域和值域。

2.求函数的单调性和极值点。

3.求函数的图像关于坐标轴的对称性。

4.求函数在某个区间上的最值。

5.根据函数的图像绘制函数的对称轴、渐近线等特征。

6.解方程和不等式中涉及到的幂函数。

以上是根据幂函数的图像性质所归纳总结的知识点和题型。

请在研究和解题过程中注意相关的特性和规律,并灵活运用于实际问题的解决中。

幂函数运算知识点总结

幂函数运算知识点总结

幂函数运算知识点总结一、幂函数的定义幂函数是指数函数的一种特殊形式,其定义为f(x) = ax^n,其中a和n分别为实数且n为正整数。

幂函数的定义域为实数集合,值域为非负实数集合。

当n为偶数时,幂函数的图像呈现“上凸”的形状;当n为奇数时,幂函数的图像呈现“上凹”的形状。

二、幂函数的图像特点1. 当n为奇数时,幂函数的图像在第一象限和第三象限上凹,在第二象限和第四象限上凸。

2. 当n为偶数时,幂函数的图像在第一象限和第三象限上凸,在第二象限和第四象限上凹。

3. 当n为1时,幂函数的图像为直线y=ax,且通过原点。

三、幂函数的性质1、对任意实数a,b,c(a≠0,1);n,m为正整数,有a^0=1,a^m*a^n=a^(m+n),(a^m)^n=a^(mn),(a*b)^m=a^m*b^m,(a/b)^m=a^m/b^ma^m/a^n=a^(m-n)2、a≠0,1时,当0<a<1时,a^m叫做小于1的幂,a^(−m)=1/a^m;大于1的幂。

a^m>1, 当m>1时 a^m>1, 当m<1时 a^m <1.0^0=1,0^m=0 (m>0).四、幂函数的运算规律1. 幂函数与常数的乘积:y=kx^n(k为常数),则y=kx^n是一条幂函数的图像,图像基本形状不变,只经过纵向压缩或纵向拉伸。

若k>1,则图像纵向压缩;若0<k<1,则图像纵向拉伸。

2. 幂函数的平移:若对f(x)=x^n加常数c,则其图像向上平移c个单位;若对f(x)=x^n减常数c,则其图像向下平移c个单位。

3. 幂函数的镜像:幂函数关于y轴对称时,原函数的图像将对称于y轴;幂函数关于x轴对称时,原函数图像将对称于x轴。

4. 幂函数的复合函数:将两个幂函数进行复合运算时,其结果仍为幂函数。

五、幂函数的求导幂函数的导数运算利用幂函数的性质和指数函数的导数运算法则,以及利用导数的乘法法则与链式法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数及其性质
相关知识点:
1.幂函数的定义
一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 2.幂函数的性质
(1). 恒过点(1,1),且不过第四象限.
(2). 当α>0时,幂函数在(0,+∞)上都是增函数;当α<0时,幂函数在(0,+∞)上都是减函数.
( 3). 在第一象限内,直线x =1的右侧,图象由上到下,相应的指数由大变小. (4).当α为偶数,y =x α是偶函数;当α为奇数,y =x α是奇函数。

基础训练:
1. 下列函数是幂函数的是( )
A .y =5x
B .y =x 5
C .y =5x
D .y =(x +1)3
2.已知函数y =(m 2+2m -2)x m +
2+2n -3是幂函数,则m=________,n=_________. 3.已知幂函数f (x )=x α
的图象经过点(9,3),则f (100)=________. 4. 下列幂函数在(-∞,0)上为减函数的是( )
A .y =x
B .y =x 2
C .y =x 3
D .y =x 12
5. 下列函数中,定义域为R 的是( )
A .y =x -2
B .y =x 12
C .y =x 2
D .y =x -
1 6. 函数y =x 53
的图象大致是( )
7. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )
A .y =x -2
B .y =x
-1
C .y =x 2
D .y =x 1
3
8. 函数y =x -
2在区间[12
,2]上的值域为________.
9. 设α∈{-1,1,12,3},则使y =x α
的定义域为R 且为奇函数的所有α的值组成的
集合为________.
例题精析:
例1.如图,图中曲线是幂函数y =x α
在第一象限的大致图象.已知α取-2,-12,12,
2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为______________
变式训练:
幂函数y =x
-1
及直线y =x ,y =1,x =1将平面直角坐标系的第一象限分成八个“卦
限”:①、②、③、④、⑤、⑥、⑦、⑧(如图所示),那么幂函数y =x 12
的图象经过的“卦限”是___________.
例2.比较下列各组数的大小:
(1)3-52和3.1-52; (2)-8-78和-(19
)7
8;
(3)(-23)-23和(-π6)-23; (4)4.125,3.8-23和(-1.9)-3
5
.
变式训练:
用“>”或“<”填空:
(1)(23)12________(34)12
;(2)(-23)-1________(-35)-1;(3)(-2.1)3
7________(-2.2)-37
.
例3已知幂函数f (x )=(t 3-t +1)x 1
2(1-4t -t 2)是偶函数,且在(0,+∞)上为增函数,求
函数解析式.
变式训练:
若函数f (x )=(m 2-m -1)x -m +1
是幂函数,且在x ∈(0,+∞)上是减函数,求实数m 的
取值范围.
课后作业:
1. 若幂函数f (x )的图象经过点(2,14),则f (1
2
)=________.
2.设α∈{-1,1,12,3},则使幂函数y =x α
的定义域为R 的所有α的值为_________.
3. 幂函数y =f (x )的图象经过点(2,1
8),则满足f (x )=-27的x 值等于________.
4. 函数y =a x -2(a >0且a ≠1,-1≤x ≤1)的值域是[-5
3,1],则实数a =__________
5. 比较下列各组中两个值的大小:
(1)1.53
5
与1.635
; (2)0.61.3与0.71.3; (3)3.5-23与5.3-23; (4)0.18-0.3与0.15-
0.3.
6. 设a =(25)35,b =(25)25
,c =(35)25,则a ,b ,c 的大小关系是_______________
7. 已知函数y =x 2
3
. (1)求定义域; (2)判断奇偶性;
(3)已知该函数在第一象限的图象如图所示,试补全图象,并由 图象确定单调区间.
8.已知幂函数y =x 3m -
9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m
3
的a 的取值范围.
9. 点(2,2)与点(-2,-1
2)分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有
(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x )?。

相关文档
最新文档