§2.3.1 运用公式法(一)

合集下载

解一元二次方程公式(1)法学案

解一元二次方程公式(1)法学案

§2.3 公式法(1)【教学目标】1、理解用配方法推导一元二次方程求根公式的过程;2、熟记求根公式,会用公式法解一元二次方程;3、理解公式中的条件042≥-ac b .【重点】用公式法解一元二次方程.【难点】一元二次方程求根公式的推导过程.【相关链接】用配方法解方程:(1)02632=+-x x (2)y y y 441252+=+- 复习用配方法解数字系数的一元二次方程.【预习导航】一、阅读教材P 64~P 66.二、公式法解一元二次方程例1、用配方法解一元二次方程02=++c bx ax )0(≠a用配方法解字母系数的一元二次方程学生可能感到困难,教学中教师注意引导学生做到数与字母的统一.注意条件0a ≠与042≥-ac b 的不可缺乏.一般地,对于一元二次方程02=++c bx ax )0(≠a 当042≥-ac b 时,我们称式子: aac b b x 242-±-=为一元二次方程的求根公式.用求根公式解一元二次方程的方法称为公式法. 例2、用公式法解方程x x x 23322-=+ 尝试练习:1、解方程:(1)226)3(2x x -=+ 解:将原方程化为一般形式,得:03522=-+x x∵a =2,b =5,c =-3,∴()0493245422>=-⨯⨯-=-ac b ∴22495242⨯±-=-±-=a ac b b x ∴.3,2121-==x x(2)213108x x --= (324x -=(3)2(1)88m m -+=- (4)1122-=++y y y解题反思:(1)一元二次方程的求根公式:______________________________________________.(2)我们称ac b 42-为关于x 的一元二次方程)0(02≠=++a c bx ax 的根的判别式. 其中,①当042>-ac b 时,方程有___个______(相等、不相等)的实数根;②当042=-ac b 时,方程有___个______(相等、不相等)的实数根;③当042<-ac b 时,方程______(有、无)实数根。

3.1《用公式法求解一元二次方程》

3.1《用公式法求解一元二次方程》

§2.3用公式法求解一元二次方程(1)
【学习内容】用公式法求解一元二次方程(P41-P43页)
【学习目标】1、能够正确的导出一元二次方程的求根公式;2、能够根据方程的系数,判断出方程的根的情况正确;3、熟练的使用求根公式解一元二次方程。

对子间等级评定:
对子间提出的问题:
1、 不解方程,判断下列方程根的情况:
(1)7252=+x x ; (2)0202542=++x x ; (3)(3x+1)(x+2)=-4
2、用公式法解下列方程:
(1)2x 2-4x-1=0; (2)5x+2=3x 2; (3)(x-2)(3x-5)=1
(4)x x 2
352.02=+ (5)212308
x x -+=
3、知一元二次方程042=+-k x x 有两个不相等的实数根. (1)求k 的取值范围; (2)如果k 是符合条件的最大整数,
4、已知长方形城门的高比宽多6尺8寸,门的对角线长1丈,那么,门的高和宽各是多少?
5、一张桌子长4米,宽2米,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽
今天我知道了:
我发现了:
我学会了:
【教师寄语】《新课堂,我展示,我快乐,我成功》-------。

3.运用公式法(一)教学设计

3.运用公式法(一)教学设计

第二章分解因式3.运用公式法(一)学生知识状况分析学生的技能基础:学生在上几节课的基础上,已经基本了解整式乘法运算与因式分解之间的互逆关系,在七年级的整式的乘法运算的学习过程中,学生已经学习了平方差公式,这为今天的深入学习提供了必要的基础。

学生活动经验基础:通过前几节课的活动和探索,学生对类比思想、数学对象之间的对比、观察等活动形式有了一定的认识与基础,本节课采用的活动方法是学生较为熟悉的观察、对比、讨论等方法,学生有较好的活动经验。

教学任务分析学生在学习了用提取公因式法进行因式分解的基础上,本节课又安排了用公式法进行因式分解,旨在让学生能熟练地应对各种形式的多项式的因式分解,为下一章分式的运算以及今后的方程、函数等知识的学习奠定一个良好的基础。

教学目标:知识与技能:(1)使学生了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式。

过程与方法:(1)发展学生的观察能力和逆向思维能力;(2)培养学生对平方差公式的运用能力。

情感与态度:在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法。

教学过程分析第一环节练一练活动内容:填空:(1)(x+3)(x–3) = ;(2)(4x+y)(4x–y)= ;(3)(1+2x)(1–2x)= ;(4)(3m+2n)(3m–2n)= 。

根据上面式子填空:(1)9m2–4n2= ;(2)16x2–y2= ;(3)x2–9= ;(4)1–4x2= 。

活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力。

注意事项:由于学生对乘法公式中的平方差公式比较熟悉,学生通过观察与对比,能很快得出第一组式子与第二组式子之间的对应关系。

第二环节 想一想活动内容:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?结论:a 2–b 2=(a+b )(a –b )活动目的:引导学生从第一环节的感性认识上升到理性认识,通过自己的归纳能找到因式分解中平方差公式的特征。

八下 2.3.1运用公式法 教学设计(于海峰)

八下 2.3.1运用公式法 教学设计(于海峰)

第二章 分解因式2.3.1运用公式法(1)本节知识点:1. 会用平方差公式将多项式分解因式2.. 会用完全平方公式将多项式分解因式知识点1用平方差公式分解因式形如22b a -的多项式分解因式的方法,即))((22b a b a b a -+=-,我们把它叫做分解因式的平方差公式,可以叙述为:两个数的平方差,等于这两个数的和乘以这两个数的差。

笔记:(1)公式中的和既可以是单项式,也可以是多项式。

(2)常见的公式变式有:○1位置变化:))((22y x y x y x -+=-;○2符号变化:))((22y x y x y x ----=-○3系数变化:○4指数变化:○5增项变化: [例题1] 把下列各式分解因式(1)21625x - (2)22419b a -[针对性训练1] 把下列各式分解因式(1)222m b a - (2)448116y x +-[例题2] 把下列各式分解因式(1)22)()(9n m n m --+ (2)x x 823-[针对性训练2] 把下列各式分解因式(1)22)()(b n a m +-- (2)22)(c b a x ++-当多项式的各项含有公因式时,通常先提出这个公因式,然后再进一步分解因式。

知识点2 用完全平方公式分解因式乘法公式中形如222b ab a +±的多项式分解因式的方法,即222)(2b a b ab a +=+±,我们称它为分解因式的完全平方公式,即两数的平方和加上(或减去)它们积的2倍,等于这两个数和(或差)的平方。

[例题3] 将下列各式分解因式。

(1)49142++x x (2)9)(6)(2++-+n m n m[例题4] 将下列各式分解因式(1)22363ay axy ax ++(2)xy y x 4422+--[针对性训练3] 把下列各式分解因式(1)223612y xy x ++(2)422492416b b a a ++(3)229341n mn m ++(4)251036+-x x[针对性训练4](1)222y x xy ---(2)2)(9)(124y x y x -+--。

§2-3 公式法1 一元二次方程的解法

§2-3 公式法1 一元二次方程的解法

解:这里 a=1, b= -7, c= -18.
∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
7 121 7 11 x , 21 2
即:x1=9, x2= -2.
动脑筋
b b2 4αc x 2α
例 2 解方程:
x 3 2 3x
2
解:化简为一般式:x2
2. 用公式法解下列方程. 参考答案:
1). 2x2-4x-1=0; 2). 5+2=3x2 ; 3). (x-2)(3x-5) =1;
下课了!
结束寄语


配方法和公式法是解一元二次 方程重要方法,要作为一种基本 技能来掌握. 一元二次方程也是刻画现实世 界的有效数学模型.
回顾与复习 2
配方法
用配方法解一元二次方程的步骤: 1.化1:把二次项系数化为1(方程两边都除以二次项 系数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的 平方; 4.变形:方程左分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
4 4
参考答案: 1.x1 2; x2 4. 2.x1 2 6; x2 2 6.
我最棒
,会用公式法解应用题!
一个直角三角形三边的长为三个连续偶数,求这个三角 形的三边长. 解 : 设这三个连续偶数中间的一个为x, 根据题意得
x 2 x 2 x 2 .
∵b2 - 4ac=(-7)2 - 4×3×8=49 - 96= - 47< 0,
∴原方程没有实数根.
我最棒
,用公式法解下列方程

231公式法课件北师大版数学九年级上册

231公式法课件北师大版数学九年级上册

当堂训练:(15分钟)
1、一元二次方程y2+2y-4=0的根的情况是:
2、用公式法解方程 x2-3x-2=0
3、若一元二次方程x2-4x+m=0有两个相等 的实数根,求m的值。
变式1、关于x的一元二次方程 x2 2x m 0
有两个实根,则m的取值范围是—— .
解:b2 4ac (2)2 41 m 4 4m 0
2a
2a
b b2 4ac
x
2a
ax2+bx+c=0 (a≠0) 一元二次方程的求根公式:
条件:当b2 4ac 0时
b b2 4ac x
2a
a,b,c 是什么?
任何时候都能使用求根公式吗?
求根公式 :x b b2 4ac (a≠0, b2-4ac≥0)
2a
例一:用公式法解方程 x2 -7x-18=0
1.把方程化为一般形式
ax2 bx c 0 a 0
写出方程的各项系数与常数项a、b、c
2.求出 b2 4ac 的值,看 b2 4ac 是否大
于等于0.
注意:当 b2 4ac 0 时,方程无解。
3.代入求根公式 x b b2 4ac
2a
4.写出方程的解: x1、x2
温馨提示
用公式法解一元二次方程时应注意哪些问题呢?
(2).解方程: 4x2 1 4x
一般步骤
解:原方程化为:4x2 4x 1 0

∴ a 4, b 4, c 1,
b2 4ac (4)2 4 41 0 验
x b b2 4ac (4) 0 1

2a
24 2
x1
x2
1 2

求根公式 :x b b2 4ac (a≠0, b2-4ac≥0)

2.3 运用公式法


重点、难点
考点及考试要求
教学内容
学习 过程 预 习 导 (3) (1+2x) (1–2x)= 学 学 习 研 讨 1、分解因式:7x2-21x 2、填空: (1) (x+3) (x–3) =
学习内容
; (2) (4x+y) (4x–y)= ; (4) (3m+2n) (3m–2n)=
; .
活动一 阅读课本 54 页上面部分内容并回答问题: 1、 观察式子 a2-b2,x2-25,9x2-y2 (1) 他们有没有相同的因式?他们能不能分解因式? (2) 小组讨论,它们有什么共同特征? (3) 你能按照(2)的特征再举几个例子吗? 2、结合预习导学 2,完成下列填空 (1)9m2–4n2= (3)x2–9= ; (2)16x2–y2= ; (4)1–4x2= . ;
(4)(m-a)2-(n+b)2 (5)–16x4+81y4 (6)3x3y–12xy
2、 如图, 在一块边长为 a 的正方形纸片的四角, 各 形.用 a 与 b 表示剩余部分的面积,并求当
剪去一个边长为 b 的正方 a=3.6,b=0.8 时的面积.
a b
延 伸 拓 展 总结 反思 作业 1.解: (1)a2-81=(a+9) (a-9); 2 (2)36-x =(6+x) (6-x); 2 (3)1-16b =1-(4b)2=(1+4b) (1-4b); 2 2 (4)m -9n =(m +3n) (m-3n); 2 2 (5)0.25q -121p =(0.5q+11p) (0.5q-11p); 2 (6)169x -4y2=(13x+2y) (13x-2y); 2 2 2 2 (7)9a p -b q =(3ap+bq) (3ap-bq); (8) 已知 a、b 为正整数,且 a2-b2=45,求符合要求的 a、b 的值。

第二章第3节运用公式法课件(1)

=(3.6+2× 0.8)(3.6-2× 0.8) =5.2× 2=10.4(cm2) 即剩余部分面积为10.4cm2.
能力提高:
1.已知248-1能被60-70之间的两个 数整除,则这两个数是 .
2、求证:257-512能被120整除.
课堂小结:
1.本节课我们经历了从整式乘法的平方差公 式得出分解因式的平方差公式的过程,并运用 平方差公式分解因式; 2.平方差公式a2-b2=(a+b)(a-b)中的字母 a,b不仅可以表示数,而且可以表示其他代数 式;
2 2 4
36a ( 6a )
2
2
0.49b ( ) 0.7b
2 2
牛刀小试
81a 9a ( )
6 2
3
9 2 3 2 c c ( ) 4 16 2 2 2 64 x y 8 xy ( ) 100 p q 10 p q ) (
4 2 2
2
2
3(m n) (m n)3(m n) (m n) (4m 2n)(2m 4n) 4(2m n)(m 2n)
平方差公式里的a,b不仅可以是单项式, 还可以是多项式。
(2) 2x3-8x =2x(x2-4) =2x(x+2)(x-2)
当多项式的各项含有公因式时,通常先 提出这个公因式,然后在进一步分解因式。
3.当多项式的各项含有公因式时,通常先提 出这个公因式,然后在进一步分解因式。
练习2:把下列各式分解因式:
(1) a2-36
(2) 25m2-49n2
4 2 2 (3) x y 9
完成P56
1 2 b (4) 0.36a 25
2
知识技能

八年级数学下册 第二章 2.3运用公式法学案(1)(无答案) 北师大版

§2.3运用公式法 (1)【学习目标】能运用平方差公式进行分解因式,充分了解平方差公式的特征。

【学习重点】掌握运用平方差公式分解因式【学前准备】1.写出分解因式的定义:2.什么叫提取公因式法3.提公因式法与单项式乘多项式有什么关系?4.运用提公因式法分解因式:(1) ab a 842+ (2) 23212x x +-(3) ()()y x b y x a +++343 (4) ()()x y n y x m 222---(5) )(3)(22x y y x -+- (6) 32)(2)(5m n n m ---【师生探究合作交流】1.在多项式的乘法运算中()()__________=-+b a b a ,左边是整式乘法,右边是一个多项式,把这个等式反过就是: ____=()()b a b a -+,左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?_____________2.公式()()b a b a b a -+=-22的特点是: ①等号的左边是一个多项式,②这个多项式的每一项都能写成平方的形式,如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积.特别提醒:公式中的字母a 和b 既可以代表一个单项式,也可以表示一个多项式。

3.例题例1、分解因式:(1) 9-4x 2解:9-4x 2 =( 3 2)-( 2)=(3+ )(3- ) (2) 2291x a -解:2291x a -=( 2)-( x 312)=( +x 31)( -x 31)(3) 12+-x解:12+-x =1-2x =( 2)-( 2) =( )( )(4)b m b a 22-解:例2、分解因式:(1) ()()229b a b a --+ (2) a a 823-解: 解:(3) ()()22c b a b a +--+ (4) ()222y x x --解: 解:【议一议】判断下列分解因式是否正确,若错误请改正.(1)222222)(c b ab a c b a -++=-+(2))1)(1(1)(122224-+=-=-a a a a你用了______分钟(真棒!)【小试牛刀】1.课本第1题写在书上2.把下列各式分解因式:① 222m b a - ② 241x +-③ ()()221--+x y x ④ 14-a⑤ ()()22c b a c b +--+ ⑥ 4416a x +-★3.如图,在一块边长为acm 的正方形纸片的四角,各剪去一个边长为bcm 的正方形,求剩余部分的面积。

《用公式法解一元二次方程(1)》参考课件


上课认真,笔记认真, 就是成绩不咋地……
小A
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂,
但一考试就挺好…… 小B
目录
/contents
1. 什么是学习力
2. 高效学习模 型
3. 超级记忆法
4. 费曼学习法
什么是学 习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看 就懂 一做 就错
你能用配方法解方程ax2+bx+c=0(a≠0)吗?
解 : x2 b x c 0.
1.化1:把二次项系数化为1;
x
2
x2
b a
b
a x
a
x b
2a
ac
.
a2
b 2a
2
c a
2.移项:把常数项移到方程的右边;
.
3.配方:方程两边都加上一次项 系数绝对值一半的平方;
x
b 2a
2
b2 4ac 4a2
.
4.变形:方程左分解因式, 右边合并同类;
当b2 4ac 0时,
b
b2 4ac
x
.
5.开方:根据平方根意义, 方程两边开平方;
2a
2a
6.求解:解一元一次方程;
x b b2 4ac . b2 4ac 0 . 7.定解:写出原方程的解. 2a
新知识
一般地,对于一元二次方程 ax2+bx+c=0(a≠0)
如何利用规律实现更好记忆呢?
超级记忆法-记忆
规律
记忆后
选择巩固记忆的时间 艾宾浩斯遗忘曲线
超级记忆法-记忆 规律
TIP1:我们可以选择巩固记忆的时间! TIP2:人的记忆周期分为短期记忆和长期记忆两种。 第一个记忆周期是 5分钟 第二个记忆周期 是30分钟 第三 个记忆周期是 12小时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)情感与价值观要求
在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.
重点
难点
1、让学生掌握运用平方差公式分解因式.
2、将单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.
教学过程设计
教学补充
一、引入新课
本课我们就来学习另外的一种因式分解的方法——公式法.
2.把下列各式分解因式
(1)36(x+y)2-49(x-y)2;
(2)(x-1)+b2(1-x);
(3)(x2+x+1)2-1.
教学反思
许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神.
因此,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维习性,提高学习效果、学习兴趣,及思维能力和整体素质.
二、新课讲解
1.请看乘法公式
(a+b)(a-=a2-b2(1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b) (2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?
2.公式讲解
请大家观察式子a2-b2,找出它的特点.
3.例题讲解
[例1]把下列各式分解因式:(1)25-16x2; (2)9a2- b2.
[例2]把下列各式分解因式:
(1)9(m+n)2-(m-n)2;
(2)2x3-8x.
补充例题:判断下列分解因式是否正确.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)·(a2-1)
.作业:习题2.4
板书设计
运用公式法(一)
1平方差公式的引入与讲解
2. 例题讲解
3. 练习、小结、作业
课堂练习
(一)随堂练习
1.判断正误
(1)x2+y2=(x+y)(x-y);
(2)x2-y2=(x+y)(x-y);
(3)-x2+y2=(-x+y)(-x-y);
(4)-x2-y2=-(x+y)(x-y).
课题
§2.3.1运用公式法(一)
课型
新授



(一)知识认知要求
1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式.
3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式.
(二)能力训练要求
1.通过对平方差公式特点的辨析,培养学生的观察能力.
2.训练学生对平方差公式的运用能力.
相关文档
最新文档