高中数学 第三章 直线与方程 3.2 直线的方程 3.2.1 直线的点斜式方程课件 新人教A版必修2

合集下载

2024年《直线的点斜式方程》说课稿

2024年《直线的点斜式方程》说课稿

2024年《直线的点斜式方程》说课稿2024年《直线的点斜式方程》说课稿1尊敬的各位评委、各位老师:大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。

下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。

一、教学背景的分析1、教材分析直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。

直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是__的重点内容之一。

“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。

直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。

同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。

2、学情分析我校的生源较差,学生的基础和学习习惯都有待加强。

又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。

另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。

根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3、教学目标(1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;(2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程;(3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;(4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。

高中数学必修知识点总结:第三章直线与方程

高中数学必修知识点总结:第三章直线与方程

高中数学必修知识点总结:第三章直线与方程1. 直线的一般方程直线的一般方程可以表示为:Ax + By + C = 0。

其中A、B、C是常数,A和B 不同时为0。

这个方程可以通过直线上任意两点的坐标来确定。

2. 直线的斜截式方程直线的斜截式方程可以表示为:y = kx + b。

其中k是直线的斜率,b是y轴截距。

通过斜截式方程,我们可以方便地确定直线的斜率和截距。

3. 直线的点斜式方程直线的点斜式方程可以表示为:y - y1 = k(x - x1)。

其中(x1, y1)是直线上的一个已知点,k是直线的斜率。

根据点斜式方程,我们可以通过已知点和斜率来确定直线的方程。

4. 直线的两点式方程直线的两点式方程可以表示为:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)。

其中(x1, y1)和(x2, y2)是直线上的两个已知点。

通过两点式方程,我们可以直接利用已知点的坐标来确定直线的方程。

5. 直线的斜率公式和截距公式直线的斜率可以通过斜率公式来计算:k = (y2 - y1)/(x2 - x1)。

直线的截距可以通过截距公式来计算:b = y1 - kx1。

通过斜率公式和截距公式,我们可以方便地计算直线的斜率和截距。

6. 直线的平行和垂直关系如果直线1的斜率等于直线2的斜率,则直线1和直线2平行。

如果直线1的斜率与直线2的斜率的乘积为-1,则直线1和直线2垂直。

7. 直线与坐标轴的交点直线与x轴的交点可以通过将y设为0得到,直线与y轴的交点可以通过将x 设为0得到。

8. 直线的倾斜角直线的倾斜角可以通过斜率来计算:θ = arctan(k),其中k是直线的斜率。

9. 直线的距离公式直线Ax + By + C = 0到点(x0, y0)的距离可以通过公式计算:d = |Ax0 + By0 +C|/√(A²+B²)。

10. 直线与线段的位置关系直线与线段的位置关系可以分为以下三种情况:•直线与线段相交•直线与线段不相交•直线与线段重合通过计算直线与线段的交点,可以确定它们的位置关系。

2021_2022年高中数学第三章直线与方程2

2021_2022年高中数学第三章直线与方程2

8.已知直线l的斜率为6.且在两坐标轴上的截距之和为10,求 此直线l的方程.
解法1:设直线方程为y=6x+b,
令x=0,得y=b,令y=0得
xb, 6
由题意 b b =10.∴b=12.
6
所以所求直线方程为6x-y+12=0.
题型二:直线的斜截式方程
9.求斜率为 3 , 且与两坐标轴围成的三角形的周长为12的直 4
2
∴直线l的方程为y=- 1 x,即x+2y=0.
2
(2)当直线在y轴上的截距不为零时,由题意可设直线l的方程
为 x y 1,
3b b
又直线l过点P(-6,3),
∴ 6 3 1
,解得b=1.
3b b
∴直线l的方程为
x +y=1.源自3即x+3y-3=0.
综上所述,所求直线l的方程为x+2y=0或x+3y-3=0.
技 能 演 练(学生用书P71)
技能演练
基础强化
1.过两点(2,5),(2,-5)的直线方程是( ) A.x=5 B.y=2 C.x=2 D.x+y=2
答案:C
2.在x,y轴上截距分别为4,-3的直线方程是( )
A. x y 1 B. x y 1
4 3
3 4
C. x y 1 D. x y 1
名师讲解
1.直线的两点式方程
如果直线l经过两点P1(x1,y1),P2(x2,y2)(x1≠x2,且y1≠y2),则直线l的 斜率为 k y2 y1 , 由直线的点斜式方程得
x2 x1
y
y1
y2 x2
y1 x1
(
x
x1
),即

高中数学 第03章 直线与方程 专题3.2.1 直线的点斜式方程 3.2.2 直线的两点式方程试题

高中数学 第03章 直线与方程 专题3.2.1 直线的点斜式方程 3.2.2 直线的两点式方程试题

直线的点斜式方程3.2.2 直线的两点式方程一、直线的点斜式方程 1.直线的点斜式方程的定义已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为. 这个方程是由直线上一定点及其斜率确定的,因此称为直线的,简称.当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是00y y -=,或0y y =.当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =.深度剖析(1)当直线的斜率存在时,才能用直线的点斜式方程.(2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线.2.直线的点斜式方程的推导如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得y y k x x -=- (1),即00()y y k x x -=- (2).注意方程(1)与方程(2)的差异:点0P 的坐标不满足方程(1),但满足方程(2),因此,点0P 不在方程(1)表示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l 的方程.上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为坐标的点都在直线l 上,所以这个方程就是过点0P ,斜率为k 的直线l 的方程. 二、直线的斜截式方程 1.直线的斜截式方程的定义我们把直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的.如果直线l 的斜率为k ,且在y 轴上的截距为b ,则方程为(0)y b k x -=-,即叫做直线的,简称.当b =0时,y kx =表示过原点的直线;当k =0且b ≠0时,y b =表示与x 轴平行的直线;当k =0且b =0时,0y =表示与x 轴重合的直线.深度剖析(1)纵截距不是距离,它是直线与y 轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y 轴平行时.(2)由于有些直线没有斜率,即有些直线在y 轴上没有截距,所以并非所有直线都可以用斜截式表示.2.直线的斜截式方程的推导已知直线l 在y 轴上的截距为b ,斜率为k ,求直线l 的方程.这个问题相当于给出了直线上一点(0,)b及直线的斜率k ,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0)y b k x -=-,即y kx b =+. 三、直线的两点式方程 1.直线的两点式方程的定义已知直线l 过两点111222(,),(,)P x y P x y ,当1212,x x y y ≠≠时,直线l 的方程为.这个方程是由直线l 上的两点确定的,因此称为直线的两点式方程,简称两点式. 2.直线的两点式方程的推导已知直线l 过两点111222(,),(,)P x y P x y (其中1212,x x y y ≠≠),此时直线的位置是确定的,也就是直线的方程是可求的.当12x x ≠时,所求直线的斜率2121y y k x x -=-.任取12,P P 中的一点,例如取111(,)P x y ,由点斜式方程,得211121()y y y y x x x x --=--,当12y y ≠时,可写为112121y y x x y y x x --=--.四、直线的截距式方程1.直线的截距式方程的定义已知直线l 过点(,0)A a ,(0,)B b (0,0a b ≠≠),则由直线的两点式方程可以得到直线l 的方程为___________.我们把直线l 与x 轴的交点的横坐标a 叫做直线在x 轴上的_____________,此时直线在y 轴上的截距是___________.这个方程由直线l 在两个坐标轴上的截距a 和b 确定,因此叫做直线的截距式方程,简称截距式. 2.直线的截距式方程的推导已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,如图,其中0,0a b ≠≠.将两点(,0)A a ,(0,)B b 的坐标代入两点式,得000y x a b a --=--,即1x ya b+=. 五、中点坐标公式若点12,P P 的坐标分别为1122(,),(,)x y x y ,且线段12P P 的中点M 的坐标为(,)x y ,则____________________x y =⎧⎨=⎩.此公式为线段12P P 的中点坐标公式. 六、直线系方程 1.过定点的直线系方程当直线过定点000(,)P x y 时,我们可设直线方程为00()y y k x x -=-.由此方程可知,k 取不同的值时,它就表示不同的直线,且每一条直线都经过定点000(,)P x y ,当k 取遍所允许的每一个值后,这个方程就表示经过定点0P 的许多直线,所以把这个方程叫做过定点0P 的直线系方程.由于过点000(,)P x y 与x 轴垂直的直线不能被00()y y k x x -=-表示,因此直线系00()y y k x x -=- (k ∈R )中没有直线0x x =. 2.平行直线系方程在斜截式方程(0)y kx b k =+≠中,若k 一定,而b 可变动,方程表示斜率为k 的一束平行线,这些直线构成的集合我们称之为平行直线系.K 知识参考答案:一、00()y y k x x -=- 点斜式方程 点斜式 二、截距 y kx b =+斜截式方程 斜截式三、112121y y x x y y x x --=-- 四、1x ya b+=截距 b 五、122x x +122y y +K —重点直线的点斜式、斜截式、两点式、截距式方程,根据直线方程判定两直线的平行与垂直K —难点直线系问题、直线方程的综合应用K —易错忽略直线重合的情形或直线方程成立的条件致错、忽略直线方程的局限性致错1.直线的点斜式方程用点斜式求直线的方程,确定直线的斜率和其上一个点的坐标后即可求解. 【例1】已知点(3,3)A 和直线l :3542y x =-.求: (1)过点A 且与直线l 平行的直线方程; (2)过点A 且与直线l 垂直的直线方程.【例2】已知在第一象限的△ABC 中,A (1,1),B (5,1),且∠CAB =60°,∠CBA =45°,求边AB ,AC 和BC 所在直线的点斜式方程.【解析】由A (1,1),B (5,1)可知边AB 所在直线的斜率为0,故边AB 所在直线的方程为y -1=0. 由AB ∥x 轴,且△ABC 在第一象限,知边AC 所在直线的斜率k AC =tan 60°=,边BC 所在直线的斜率k BC =tan(180°-45°)=-1,所以,边AC 所在直线的方程为y -1=(x -1),边BC 所在直线的方程为y -1=-(x -5).2.直线的斜截式方程根据斜率和截距的几何意义判断k ,b 的正负时,(1)0k >直线呈上升趋势;0k <直线呈下降趋势;0k =直线呈水平状态.(2)0b >直线与y 轴的交点在x 轴上方;0b <直线与y 轴的交点在x 轴下方;0b =直线过原点. 【例3】已知直线l 与直线y =-2x+3的斜率相同,且在y 轴上的截距为5,求直线l 的斜截式方程,并画出图形.【解析】因为直线l 与直线y =-2x+3的斜率相同,所以直线l 的斜率为-2. 又直线l 在y 轴上的截距为5,所以直线l 的斜截式方程为y =-2x+5. 在直线l 上取一点(1,3),作出图形如图所示.【名师点评】直线的斜截式方程是点斜式方程的特殊情形. 【例4】已知直线l 的斜率为16,且和两坐标轴围成的三角形的面积为3,求直线l 的方程.3.直线的两点式方程已知直线上两点的坐标求解直线方程,可直接将两点的坐标代入直线的两点式方程,化简即得.代入点的坐标时注意横纵坐标的对应关系.若点的坐标中含有参数,需注意当直线平行于坐标轴或与坐标轴重合时,不能用两点式求解.【例5】已知三角形的三个顶点Α(-4,0),B (0,-3),C (-2,1),求: (1)BC 边所在的直线的方程; (2)BC 边上中线所在的直线的方程.4.直线的截距式方程(1)由已知条件确定横、纵截距.(2)若两截距为零,则直线过原点,直接写出方程即可;若两截距不为零,则代入公式1x ya b+=中,可得所求的直线方程.(3)如果题目中出现直线在两坐标轴上的截距相等、截距互为相反数或在一坐标轴上的截距是另一坐标轴上的截距的多少倍等条件时,采用截距式求直线方程时一定要注意考虑“零截距”的情况. 【例6】已知直线过点,且在两坐标轴上的截距之和为12,求直线的方程.【解析】设直线的方程为1x ya b+=,则,①又直线过点,∴341a b-+=,② 由①②得93a b =⎧⎨=⎩或416a b =-⎧⎨=⎩. ∴直线的方程为193x y +=或1416x y+=-,即或.5.中点坐标公式的应用(1)利用中点坐标公式可求以任意已知两点为端点的线段的中点坐标.(2)从中点坐标公式可以看出线段12P P 中点的横坐标只与12,P P 的横坐标有关,中点的纵坐标只与12,P P 的纵坐标有关. 【例7】已知7(3,),(1,2),(3,1)2M A B ,则过点M 和线段AB 的中点的直线方程为 A .425x y +=B .425x y -= C .25x y +=D .25x y -= 【答案】B【解析】由题意可知线段AB 的中点坐标为1321(,)22++,即3(2,)2.故所求直线方程为732372322y x --=--,整理,得4250x y --=,故选B. 6.直线过定点问题本题考查了直线过定点的问题,实际上就是考查直线方程的点斜式,同时要利用数形结合的思想解题. 若直线存在斜率,则可以把直线方程化为点斜式00()y y k x x -=-的形式,无论直线的斜率k 取何值时,直线都过定点00(,)x y .【例8】已知直线:21l y kx k =++. (1)求证:直线l 过一个定点;(2)当33x -<<时,直线上的点都在x 轴上方,某某数k 的取值X 围.【解析】(1)由21y kx k =++,得1(2)y k x -=+.由直线方程的点斜式可知,直线过定点(2,1)-.(2)设函数()21f x kx k =++,显然其图象是一条直线(如图),若使33x -<<时,直线上的点都在x 轴上方,需满足(3)0(3)0f f -≥⎧⎨≥⎩,即32103210k k k k -++≥⎧⎨++≥⎩,解得115k -≤≤. 所以实数k 的取值X 围是115k -≤≤. 7.直线的平移规律直线y kx b =+上下(或沿y 轴)平移(0)m m >个单位长度,得y kx b m =+±(上加下减);直线y kx b =+左右(或沿x 轴)平移(0)m m >个单位长度,得()y k x m b =±+(左加右减).【例9】已知直线1:23l y x =-,将直线1l 向上平移2个单位长度,再向左平移4个单位长度得到直线2l ,则直线2l 的方程为. 【答案】27y x =+【解析】根据直线的平移规律,可得直线2l 的方程为2(4)32y x =+-+,即27y x =+. 8.点斜式和斜截式的实际应用由直线的斜截式方程与一次函数的表达式的关系,利用一次函数的图象和性质求出直线方程,可以解决实际问题.9.忽略了直线重合的情形致错【例11】已知直线12:60,:(2)320l x my l m x y m ++=-++=,当12l l ∥时,求m 的值. 【错解】∵2l 的斜率223m k -=-,12l l ∥,∴1l 的斜率1k 也一定存在, 由1l 的方程得11k m =-,由12k k =,得213m m--=-, 解得3m =或1m =-. ∴m 的值为3或1-.【错因分析】忽略了直线重合的情况,从而导致错误.【误区警示】当两直线的斜率存在时,两直线平行的等价条件是斜率相等且纵截距不相等,做题时容易忽略纵截距不相等,从而导致错解. 10.忽略直线方程的局限性致错【例12】求经过点(2,3)P ,并且在两坐标轴上截距相等的直线l 的方程. 【错解】设直线方程为1x y a a +=,将2,3x y ==代入,得231a a+=,解得5a =. 故所求的直线方程为50x y +-=.【错因分析】截距相等包含两层含义,一是截距不为0时的相等,二是截距为0时的相等,而后者常常被忽略,导致漏解.【正解】(1)当截距为0时,直线l 过点(0,0),(2,3), ∵直线l 的斜率为303202k -==-, ∴直线l 的方程为32y x =,即320x y -=. (2)当截距不为0时,可设直线l 的方程为1x ya a+=, ∵直线l 过点(2,3)P ,∴231a a+=,∴5a =, ∴直线l 的方程为50x y +-=.综上,直线l 的方程为320x y -=或50x y +-=.【误区警示】不同形式的方程均有其适用条件,在解题时应注意截距式方程的应用前提是截距均不为0且不垂直于坐标轴.1.经过点(-2,2),倾斜角是60°的直线方程是A .y +23x -2) B .y -23x +2)C .y -2=33(x +2)D .y +2=3(x -2) 2.直线的方程00()y y k x x --= A .可以表示任何直线 B .不能表示过原点的直线 C .不能表示与y 轴垂直的直线 D .不能表示与x 轴垂直的直线 3.直线1x ya b+=过一、二、三象限,则 A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <0 4.直线1y ax a=-的图象可能是5.与直线21y x =+垂直,且在y 轴上的截距为4的直线的斜截式方程是 A .142y x =+ B .y =2x +4C .y =−2x +4D .142y x =-+ 6.在y 轴上的截距是-3,且经过A (2,-1),B (6,1)中点的直线方程为 A .143x y +=B .143x y-= C .134x y +=D .136x y-= 7.已知直线l 1过点P (2,1)且与直线l 2:y =x +1垂直,则l 1的点斜式方程为. 8.直线32()y ax a a =-+∈R 必过定点.9.斜率与直线32y x =的斜率相等,且过点(4,3)-的直线的斜截式方程是. 10.已知△ABC 中,A (1,-4),B (6,6),C (-2,0),则△ABC 中平行于BC 边的中位线所在直线的两点式方程是.11.写出下列直线的点斜式方程:(1)经过点A (2,5),且与直线y =2x+7平行; (2)经过点C (-1,-1),且与x 轴平行.12.已知直线l 的斜率与直线326x y -=的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的斜截式方程. 13.已知的顶点是,,.直线平行于,且分别交边、于、,的面积是面积的14.(1)求点、的坐标; (2)求直线的方程.14.两直线1x y m n -=与1x yn m-=的图象可能是图中的A B C D15.若直线l 1:y =k (x-4)与直线l 2关于点(2,1)对称,则直线l 2过定点A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)16.若三点()()()2,2,,,0)0,0(A B a C b ab ≠共线,则11a b+=. 17.已知直线l 过定点A (−2,3),且与两坐标轴围成的三角形面积为4,求直线l 的方程.1 2 3 4 5 6 14 15 BDCBDBBB1.【答案】B【解析】k 3,则点斜式方程为y -23x +2).5.【答案】D【解析】因为所求直线与y =2x +1垂直,所以设直线方程为12y x b =-+.又因为直线在y 轴上的截距为4,所以直线的方程为142y x =-+. 6.【答案】B【解析】易知A (2,-1),B (6,1)的中点坐标为(4,0),即直线在x 轴上的截距为4,则所求直线的方程为143x y-=. 7.【答案】y -1=-(x -2)【解析】根据题意可知直线l 1的斜率为−1,所以l 1的点斜式方程为y -1=-(x -2). 8.【答案】(3,2)【解析】将直线方程变形为y −2=a (x −3),由直线方程的点斜式可知,直线过定点(3,2). 9.【答案】392y x =+ 【解析】因为所求直线的斜率与直线32y x =的斜率相等,所以所求直线的斜率32k =.又直线过点(4,3)-,所以直线方程为33(4)2y x -=+,所以直线的斜截式方程为392y x =+.11.【解析】(1)由题意知,直线的斜率为2,所以其点斜式方程为y-5=2(x-2).(2)由题意知,直线的斜率k =tan 0°=0,所以直线的点斜式方程为y-(-1)=0,即y =-1. 12.【解析】由题意知,直线l 的斜率为32,故可设直线l 的方程为32y x b =+,所以直线l 在x 轴上的截距为23b -,在y 轴上的截距为b ,所以213b b --=,35b =-,所以直线l 的方程为3325y x =-. 13.【解析】(1)因为,且的面积是面积的14,所以、分别是、的中点,由中点坐标公式可得点的坐标为502,⎛⎫ ⎪⎝⎭,点的坐标为722,⎛⎫ ⎪⎝⎭.(2)由两点式方程,可知直线的方程为502752022y x --=--,即.14.【答案】B【解析】由1x y m n -=,得y =n m x -n ;由1x y n m -=,得y =mnx -m ,即两条直线的斜率同号且互为倒数,故选B. 15.【答案】B【解析】因为直线l 1:y =k (x-4)过定点(4,0),所以原问题转化为求(4,0)关于(2,1)的对称点.设直线l 2过定点(x ,y ),则422012x y +⎧=⎪⎪⎨+⎪=⎪⎩,解得x =0,y =2.故直线l 2过定点(0,2).16.【答案】12【解析】易知直线BC 的方程为1x y a b +=,由点A 在直线BC 上,得221a b +=,故1112a b +=.。

高中数学 第三章 直线与方程 3.2 3.2.1 直线的点斜式

高中数学 第三章 直线与方程 3.2 3.2.1 直线的点斜式

课前自学
课堂互动
课堂达标
探究点二 求直线的点斜式方程的方法步骤是什么?
提示 在直线的斜率存在时,先确定所过定点,再确定直线的
斜率,然后代入公式. 解 (1)∵直线过点 P(-4,3),斜率 k=-3, 由直线方程的点斜式得直线方程为 y-3=-3(x+4), (2)与 x 轴平行的直线,其斜率 k=0,由直线方程的点斜式可得直 线方程为 y-(-4)=0×(x-3),即 y+4=0. (3)过点 P(-2,3),Q(5,-4)的直线的斜率 kPQ=5--(4- -32)=-77 =-1.又∵直线过点 P(-2,3).∴直线的点斜式方程为 y-3= -(x+2).
课前自学
课堂互动
课堂达标
提示 (1)经过点P(x0,y0)垂直于x轴的直线方程为x=x0. (2)当直线与x轴垂直时,直线不能用斜截式表示,其方程可表示 为x=0. (4)直线l在y轴上的截距b实际上是直线l与y轴交点的纵坐标,因 此b可以是正数,也可以是负数,还可以是0.
课前自学
课堂互动
课堂达标
示意图
方程
使用范 围
斜率存
y-y =k(x-x ) 在的直 ___________0__________________0___
线
课前自学
课堂互动
课堂达标
2.直线l在坐标轴上的截距 (1)直线在y轴上的截距:直线l与y轴的交点(0,b)的_纵__坐__标__b__. (2)直线在x轴上的截距:直线l与x轴的交点(a,0)的_横__坐__标__a__.
课前自学
课堂互动
课堂达标
规律方法 (1)求直线的点斜式方程的步骤:定点(x0,y0)→定 斜率k→写出方程y-y0=k(x-x0). (2)点斜式方程y-y0=k·(x-x0)可表示过点P(x0,y0)的所有直 线,但x=x0除外.

高中数学 同步教学 直线的点斜式方程

高中数学 同步教学 直线的点斜式方程
互动探究学案
数 学 必 修 ② 人 教 版
返回导航
·
第三章 直线与方程
命题方向1 ⇨直线的点斜式方程
典例 1 求满足下列条件的直线的点斜式方程: (1)过点P(-4,3),斜率k=-3; (2)过点P(3,-4),且与x轴平行; (3)过P(-2,3)、Q(5,-4)两点.
数 学 必 修 ② 人 教 版
新课标导学
数学
必修② ·人教A版
第三章
直线与方程
3.2 直线的方程
3.2.1 直线的点斜式方程
1
自主预习学案

2
互动探究学案
3
课时作业学案
·
第三章 直线与方程
自主预习学案
数 学 必 修 ② 人 教 版
返回导航
第三章 直线与方程
斜拉桥又称斜张桥,桥身简约刚毅,力感十足.若以桥面所在直线为x轴,桥塔 所在直线为y轴建立平面直角坐标系,那么斜拉索可看成过桥塔上同一点的直 线.怎样表示直线的方程呢?
返回导航
·
第三章 直线与方程
1.经过点(-3,2),斜率为 3的直线方程是
A.y+2= 3(x-3)
B.y-2= 33(x+3)
C.y-2= 3(x+3)
D.y+2= 33(x-3)

[解析] 由直线的点斜式方程的定义可知选项C正确.




人 教

( C)
返回导航
·
第三章 直线与方程
2.(2018·郑州一中检测)已知直线的方程是y+2=-x-1,则

又∵直线过点 P(-2,3),

必 修
∴直线的点斜式方程为 y-3=-(x+2).

高中数学第3章直线与方程32直线的方程322直线的两点式方程课件新人教A版必修2

3.如图,直线 l 的截距式方程是ax+by=1,则 a________0, b________0.
> < [M(a,0),N(0,b),由题图知 M 在 x 轴正半轴上,N 在 y 轴负半轴上,所以 a>0,b<0.]
14
4.过两点(-1,1)和(3,9)的直线在 x 轴上的截距为________. -32 [直线方程为1y--99=-x-1-33,化为截距式为-x32+3y=1,则在 x 轴上的截距为-32.]
34
2.本例中条件不变,试求与 AB 平行的中位线所在直线方程. [解] 由探究 1 知 kAB=-34,即中位线所在直线斜率为-34,由 例题知 BC 的中点为52,-3, 所以由点斜式方程可得,中位线所在直线方程为 y+3=-34x-52,即 6x+8y+9=0.
35
直线方程的选择技巧 (1)已知一点的坐标,求过该点的直线方程,一般选取点斜式方程, 再由其他条件确定直线的斜率. (2)若已知直线的斜率,一般选用直线的斜截式,再由其他条件确 定直线的一个点或者截距.
D.x-y-1=0
D [由直线的两点式方程,得3y--22=4x--33,化简得 x-y-1=0.]
12
2.过 P1(2,0),P2(0,3)两点的直线方程是( )
A. 3x+2y=0
B. 2x+3y=0
C. 2x+3y=1
D. 2x-3y=1
C [由截距式得,所求直线的方程为2x+3y=1.]
13
【例 3】 已知 A(-3,2),B(5,-4),C(0,-2),在△ABC 中, (1)求 BC 边的方程; (2)求 BC 边上的中线所在直线的方程. 思路探究:(1) B,C两点坐标 两――点→式 求方程 (2) 求中点坐标 两――点→式 求直线方程

2021_2022年高中数学第三章直线与方程2

数表示直线,但是有些直线的方程不一定能写成一次函数的形式.
特别提醒 应用斜截式方程时,应注意斜率是否存在,当斜率
不存在时,不能表示成斜截式方程.
跟踪练习
写出满足下列条件的直线的方程. (1)斜率为 5,在 y 轴上截距为-1,________; (2)倾斜角 30°,在 y 轴上截距为 3,________. [答案] (1)5x-y-1=0 (2)x- 3y+3=0 [解析] (1)方程为 y=5x-1,即 5x-y-1=0. (2)方程为 y=xtan30°+ 3,即 x- 3y+3=0.
B.-1
C.3
D.-3
[答案] B
2.直线y=-2x+3的斜率是________,在y轴上的截距是
________,在x轴上的截距是________.
[答案]
-2
3
3 2
[解析] 斜率是-2;在 y 轴上的截距是 3;令 y=0 得 x=32, 即在 x 轴上的截距是32.
3.写出下列直线的点斜式方程并化成斜截式:
特别提醒 若已知含参数的两条直线平行或垂直,求参数的值
时,要注意讨论斜率是否存在,若是平行关系注意考虑b1≠b2
这个条件.
跟踪练习
(1)已知直线y=ax-2和y=(a+2)x+1互相垂直,则a=______. (2)经过点(1,1),且与直线y=2x+7平行的直线的方程为_____. [答案] (1)-1 (2)2x-y-1=0 [解析] (1)由两直线垂直可得a(a+2)=-1,即a2+2a+1=0 ,所以a=-1; (2)由y=2x+7得k1=2,由两直线平行知k2=2.∴所求直线方程 为y-1=2(x-1),即2x-y-1=0.
规律总结
①使用点斜式方程,必须注意前提条件是斜率存在. ②注意方程x=1的含义:它表示一条垂直于x轴的直线,这条

3.2.1直线的点斜式方程


合作探究 课堂互动
数学 必修2
第三章 直线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
直线的点斜式方程
(1) 经 过 点 ( - 5,2) 且 平 行 于 y 轴 的 直 线 方 程 为 ________. (2)经过点(2,1)且垂直于y轴的直线方程为________. (3)直线y=x+1绕着其上一点P(3,4)逆时针旋转90°后得直 线l,求直线l的点斜式方程.
数学 必修2
第三章 直线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
直线的斜截式方程的求解策略 (1) 用斜截式求直线方程,只要确定直线的斜率和截距即 可,同时要特别注意截距和距离的区别. (2)直线的斜截式方程y=kx+b不仅形式简单,而且特点明 显,k是直线的斜率,b是直线在y轴上的截距,只要确定了k和 b的值,直线的图象就一目了然.因此,在解决直线的图象问
[ 问题 2]
如图,若直线 l 经过点 A(-1,3),斜率为-2,点
P 是在直线 l 上异于点 A 的点,则点 P 的坐标(x,y)满足怎样的 关系式?
[ 提示 2]
y-3 =-2, x--1
即 y-3=-2[ x-(-1)] .
数学 必修2
第三章 直线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
直,直线上所有点的横坐标相等都为x0,故直线方程为x=x0.
数学 必修2
第三章 直线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
1.过点(-3,2),倾斜角为 60° 的直线方程为( A.y+2= 3(x-3) C.y-2= 3(x+3) 3 B.y-2= (x+3) 3 3 D.y+2= (x+3) 3

人教版高一数学必修二第三章 直线与方程教案

教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。

(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。

定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。

②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[答案] D
)
B.y=1 D.y-1= 3(x+1)
[解析]
3 已知直线斜率k= ,∴倾斜角为30° ,故所 3
求直线倾斜角为60° ,斜率为 3,方程为y-1= 3(x+1), 故选D.
[例5]
(1)在直线y+2=k(x-3)中,k取任 意实数,可得无数条直线,这无数条直线 的共同特征是____________. (2)不论m取何值,直线mx-y+m+3=0恒 过定点__________. [答案] (1)过定点(3,-2) (2)(-1,3)
直线在x轴(y轴)上的截距是直线与x轴 4 (y轴)交点的横(纵)坐标不是距离,错解误把 [正解] 设l:y=- x+b,令x=0得y=b,令y=0得x 3 直线在两轴上截距当作距离.
3 1 3 = 4 b,根据题意得 2 · | 4 b|=6,∴b2=16,∴b=± |b|· 4,故直 4 线l的方程为y=- x± 4. 3
)
B.-9 B
二、填空题
3 . 过 点 (2,1) , 平 行 于 y 轴 的 直 线 方 程 为
________ . 平 行 于 x 的 轴 的 直 线 方 程 为 ________. [答案] x=2;y=1
4.直线y=kx+b不过第二象限,则k、b应
满足______.
[解析]
[点评]
[例6]
4 已知斜率为- 的直线l,与两坐标轴围成三角 3
形面积为6,求l的方程. [错解] 4 设l:y=- x+b,令x=0得,y=b,令y=0 3
3 1 3 得,x=4b,根据题意得2· (4b)=6, b· 4 ∵b>0,∴b=4.∴直线l的方程为y=- x+4. 3
[辨析]
[答案] (2)y=1. (3)3x-4y+13=0. (4)x+y+4=0.
[解析]
4-1 3 (3)直线的斜率k= = ,故方程为y- 1-(-3) 4
3 4= (x-1),即3x-4y+13=0. 4 (4)k=tan135° =-tan45° =-1, y+3=-1· (x+1),即x+y+4=0.
4.已知点p1(x1,y1)及k,方程

k与方程y-y1=k(x-x1)是否相同? [答案] 不相同.因为前者表示的直线上 缺少一个点P1(x1,y1),而后者才表示整条 直线. 5.直线方程的点斜式与斜截式的适用范 围各是什么? [答案] 它们的适用范围都是直线的斜率 存在.
二、解答下列各题 x+y-3=0 1.过点(1,2),斜率为-1的直线方程为
如右图直线有如下两种情况:①l 与x轴平行且位于x轴下方或x轴,此时k=0 且b≤0;②l过一、三象限且过原点或第四 象限,此时k>0且b≤0.
写出满足下列条件的直线方程填空.
,________; (2)过点(-3,1),平行于x轴,________; (3)过点(-3,1),(1,4),________; (4) 过 点 ( - 1 , - 3) , 倾 斜 角 为 135° , ________.
(1)过点(-1,2),斜率为
你能写出下列直线的点斜式方程吗? 没有点斜式方程的直线和斜率为0的直线 如何表示? (1)经过点A(2,5),斜率是4; (2)经过点B(2,3),倾斜角是45°; (3)经过点C(-1,-1),与x轴平行; (4)经过点D(1,1),与x轴垂直.
[例1]
[解析]
(1)y-5=4(x-2); (2)k=tan45°=1 ∴y-3=x-2; (3)y=-1; (4)x=1. [点评] ①使用点斜式方程,必须注意前 提条件是斜率存在. ②注意方程x=1的含义:它表示一条垂直 于x轴的直线,这条直线上任意一点的x-1). (2)由y=-2x+7得k1=-2,由两直线垂直知k1k2=- 1 1,∴k2= . 2 1 ∴所求直线方程为y-1=2(x+1).
一条直线l在y轴上截距为-2,且与直线l1 :y
= -x+2垂直,则l的方程为________. [答案] 3x-y-2=0
求倾斜角为直线y=- x+1的倾 斜角的一半,且分别满足下列条件的直线 方程: (1)经过点(-4,1); (2)在y轴上的截距为-10. [分析] 通过已知直线的斜率求出所求直 线的斜率,再分别由点斜式和斜截式求出 直线的方程.
[例4]
[解析]
∵直线l1y=- 3x+1的斜率k1=- 3,
1.通过研究直线的点斜式方程,要初步
明确求轨迹方程的基本思路: (1)设动点坐标(x,y)(求谁设谁). (2)分析动点的几何特征(直线过动点和定 点,由定点和动点求出直线的斜率为k). (3)用坐标表示动点的几何特征并化简整 理. (4)说明得到的坐标满足的关系式符合直线 方程的定义(此步骤可省略).
一、选择题 1.经过点(-3,2),倾斜角为60° 的直线方程是 ( A.y+2= 3(x-3) C.y-2= 3(x+3) 3 B.y-2= (x+3) 3 3 D.y+2= 3 (x-3) )
[答案] C
2.直线l的方程为9x-4y=36,则l在y轴上的
截距为
( A.9 C.-4 [答案]

2.若直线l的斜率是k,与y轴的交点是P(0, y=kx+b b),代入直线方程的点斜式,整理得直线l 的方程是 ,我们称b为直线l在y 截距 轴上的 ,这个方程是由直线l的 和 斜率 截距 它在y轴上的 确定的,所以叫做直线方程 斜截式 的 . 3.当直线l的倾斜角为0°且过P1(x1 ,y1) y=y1 0 点时,直线l的斜率是 ,其方程是 x=x 直 .当 不存在 1 线l的倾斜角为90°且过P1(x1 ,y1)点时, 直线l的斜率 ,其方程是 .
∴直线的倾斜角为120° ,由题意知,所求直线的倾斜 角为60° ,斜率k= 3. (1)∵过点(-4,1),∴直线方程为y-1= 3(x+4). (2)∵在y轴上截距为-10, ∴直线方程为y= 3x-10.
3 经过点(-1,1),倾斜角是直线y= x-2的倾斜角的2 3 倍的直线方程是 ( A.x=-1 2 3 C.y-1= 3 (x+1)
. 2.一直线过点A(1,0)和B(-1,2),为求得 x+y-1=0 -1 直线AB的方程,我们可先由A、B两点的 坐标求得直线AB的斜率 k= ,进而可求得直线的方程为 . 3.一直线在y轴上截距为- ,斜率为2, 则方程为
本节学习重点:直线方程的点斜式和斜截
式. 本节学习难点:①求直线方程的步骤. ②斜率为0和斜率不存在的直线方程的表 示.

________.
[例3]
(1)求经过点(1,1),且与直线y=2x +7平行的直线的方程; (2)求经过点(-1,1),且与直线y=-2x+7 垂直的直线的方程; [分析] 由已知直线的方程求出斜率,再 根据两直线平行或垂直的条件求解.
[解析]
(1)由y=2x+7得k1=2,由两直线平行知k2=
2.误区警示:①直线方程的点斜式是建
立其它形式的直线方程的基础,是本章的 基石,应熟练掌握.直线方程的点斜式和 斜截式只能表示有斜率的直线,用它求过 定点(x1,y1)的直线的方程时,应注意不要 忘记考察直线x=x1是否符合题意. ②直线l在y轴上的截距是直线l与y轴交点 的纵坐标,不是距离,它可以是负数或 零. 直线l过点(0,b)⇔直线l在y轴上的截距是b.
3.2
直线的方程
3.2.1
直线的点斜式方程
一、阅读教材P92~94回答 1.若直线经过点P1(x1,y1)及点P(x,y)(点
P不同于点P1)且斜率为k,则k与P1、P的坐 标之间的关系是
y-y1=k(x-x1)
.
点斜式
∵两点确定一条直线,∴经过点P1(x1,y1),
且斜率为k的直线的方程是
[解析]
(1)由直线点斜式方程的定义知,不 论k取何实数方程y+2=k(x-3)总表示经过点 (3,-2),斜率为k的直线,所以这些直线的 共同特征是过定点(3,-2). (2)将方程mx-y+m+3=0变形为y-3=m(x +1)可知,不论m取何实数,直线总过定点 (-1,3).
关于直线系过定点问题解决方法: (一)分离参数法,如(2)的解答. (二)赋值法:∵无论m取何实数,直线总过定 点(设为P),∴当m=0,m=1时,直线-y+3 =0与x-y+4=0也都过P.
写出下列直线的斜截式方程: (1)斜率是3,在y轴上的截距是-3; (2)倾斜角是60°,在y轴上的截距是5; (3)倾斜角是150°,在y轴上的截距是0.
[例2]

总结评述:直线在y轴上的截距是直线与y 轴交点的纵坐标,不是“距离”,可以是负 数、0、正数.
写出满足下列条件的直线的方程. (1)斜率为5,在y轴上截距为-1,________; (2) 倾 斜 角 30° , 在 y 轴 上 截 距 为
相关文档
最新文档