初中数学一元二次方程知识点汇总,基础全面考前必掌握

合集下载

(完整版)一元二次方程知识点和经典例题

(完整版)一元二次方程知识点和经典例题

一元二次方程一.基本概念定义:形如:02=++c bx ax (0≠a )的方程,叫做一元二次方程的一般式. 例题:若方程32)1(1=--+x x m m 是关于x 的一元二次方程,求m 的值.二.一元二次方程的解法(1)直接开方法: 02=+c ax , 开平方求出未知数的值:ac x -±= (2)因式分解法:0)(2=++-mn x n m x ,因式分解得:0))((=--n x m x ∴m x =1,n 2=x(3)配方法:061232=-+x x ,得:242=+x x ,∴222)2(2)2(4+=++x x 即:6)2(2=+x ∴621+-=x ,622--=x(4)公式法:解法步骤:○1先把一元二次方程化为一般式; ○2找出方程中a 、b 、c 等各项系数和常数的值;○3计算出ac b 42-的值;○4把a,b, ac b 42-的值代入公式;○5求出方程的两个根.例题:解方程: x(x+12)=8x+12解:原方程化简得:01242=-+x x ,方程中:a=1,b=4,c=-12∆=ac b 42-=(4)2-4×1×(-12)=16+48=64.∴28412644±-=⨯±-=x =42±- ∴原方程根为:21=x ,=2x -6.一元二次方程解法练习题:(1)用直接开方法解一元二次方程: ○1 (2x-1)2=7 ○222)43()43(x x -=- ○30144)3(2=--x(2)用因式分解法解一元二次方程:○11)1(3-=-x x x ○25x(x-3)=6-2x ○32(x +2)(x -1)=(x +2)(x +4)○4025)2(10)2(2=++-+x x ○542)2)(1(+=++x x x ○60)4()52(22=+--x x(3)用配方法解一元二次方程:○1x(x+4)=8x+12 ○226120x x --= ○30223)12(22=-+-+x x(4)用公式法解一元二次方程:○123520x x -+= ○5(3)(1)2x x +-=- ○112x 2-33x+130=0(5)选择适当的方法解下列方程:○122(2)9x x -= ○22299990x x +-= ○32(101)10(101)90x x +-++=○42690x x -+= ○5x(37)2x x -= ○6}113111[1()]222323x x x x ⎧--+-+=⎨⎩三.一元二次方程根的判别式1.一元二次方程根的判别式:把ac b 42-=∆叫做一元二次方程:02=++c bx ax (0≠a )的根的判别式.利用根的判别式可以不解方程判别一元二次方程跟的情况:20(1)00(2)400.b ac ∆>⇔⎧∆≥⇔⎨∆=⇔⎩∆=-∆<⇔当时方程有两个不相等的实根;当时方程有两个实数根;当时方程有两个相等的实数根;当的值小于时,即:时方程无实数根例1.不解方程判断下列方程跟的情况:(1)08822=+-x x (2)24120x x +-= (3)20232=+-x x解:(1)方程中:a=2,b=-8,c=8,∆=ac b 42-=(-8)2-4×2×8=64-64=0∵∆=0 ∴原方程有两个相等的实数根.(2)方程中:a=1,b=4,c=-12,∆=ac b 42-=(4)2-4×1×(-12)=16+48=64 ∵∆>0 ∴原方程有两个不相等的实数根.(3)方程中:a=2,b=-3,c=2,∆=ac b 42-=(-3)2-4×2×2=9-16=-7∵∆<0 ∴原方程无实数根.例2.关于x 的一元二次方程(m -1)x 2-2(m -3)x +m +2=0有实数根,求m 的取值范围.解:当m -1≠0时, 即:m 1≠时,该方程是关于x 一元二次方程.∵原方程有实数根∴0≥∆,即:Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥ 解得:711≤m ∴m 的取值范围是711≤m 且m 1≠. 例3. 求证:关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根. 证明:∵224=[2(1)]4(2)(1)4(3)b ac k k k k ∆=-----+=-且k 3≤,∴总有0≥∆ ∴关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根.四.一元二次方程根与系数的关系1.定理:设一元二次方程02=++c bx ax (0≠a 且042≥-ac b )的两个根分别为1x 和2x ,则:ab 2x 1x -=+; a 2x 1xc =• 特别地:对于一元二次方程20x px q ++=,根与系数的关系为:12x x p +=-; 12x x q =注:○1此定理成立的前提是0∆≥.也就是说必须在方程有实..数根..时才可使用. ○2此定理在其他一些数学书籍中也叫做韦达定理。

(完整)一元二次方程(分知识点,详细,适合基础差的学生),推荐文档

(完整)一元二次方程(分知识点,详细,适合基础差的学生),推荐文档

一元二次方程知识网络详解:考点 1.一元二次方程的定义:形如ax bx c 0(a 0)的关于x 的方程为一元二次方程.考点 2.一元二次方程的解法:先尝试“因式分解法” ;不能分解时可选择“配方法”或者“求根公式法”b b24acx1,2求根公式:2a考点 3.一元二次方程的判别式:b2 4ac有两个不相等的实数根:0有两个相等的实数根:0 无实数根:0有实数根:0 考点 4.一元二次方程根与系数的关系(韦达定理):2若0 时,设x1、x2为一元二次方程ax bx c 0(a 0)的两个实数根,那么:bcx1 x2 x1 x2a ,a考点 5.一元二次方程应用题(数字问题,互赠问题,面积问题,增长率问题,利润问题)【课前回顾】形的斜边是()A. 3B.3C.6D. 62、关于x 的方程m 1 x22mx m0有实数根,则 m 的取值范围是()A. m 0且 1B. m0C. m 1D. m 13、关于 x 的一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根 , 则 k 的取值范围是4、某工厂计划在两年内把产量提高44%,如果每年的增长率都和上一年相同,则平均每年的增长率是。

5、解方程(1)x 2 225 0 (2)2x2 10x 31、已知一个直角三角形的两直角边长恰是方程2x2 8x 7 0 的两根,则这个直角三角经典例题讲解:例 1、下列方程中是关于 x 的一元二次方程的是( )211A3x 1 22 x1B220xxC ax 2 bx c 02D x 22xx2 1变式:当k时,关于 x 的方程 kx 2 2x x 2 3是一元二次方程。

例 2、方程 m 2 x m3mx 1 0 是关于 x 的一元二次方程, 则 m 的值为 变式练习:1、方程 8x 27 的一次项系数是 ,常数项是 。

2、若方程 m 2 x m 10是关于 x 的一元一次方程,⑴求 m 的值;⑵写出关于 x 的一元一次方程。

(完整版)一元二次方程归纳总结

(完整版)一元二次方程归纳总结

一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。

2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。

注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。

备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。

③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。

2) 未知数的最高次数是2.3) 是方程。

4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。

2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。

3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。

4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。

5) 二次函数图像法,当时,方程有没有实数根。

3、应用1) 一元二次方程可用于解某些求值题。

2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。

知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。

要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。

解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。

解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。

选择哪种方法要根据具体情况而定。

直接开平方法是解形如x²=a的方程的方法,解为x=±√a。

配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。

九年级一元二次方程知识点总结

九年级一元二次方程知识点总结

九年级一元二次方程知识点总结一元二次方程是九年级数学中的重要内容,它是由一个未知数的二次方程式所表示的方程。

在学习一元二次方程时,我们需要了解一些基本概念和解题方法。

下面将对一元二次方程的知识点进行总结。

一、基本概念1. 一元二次方程:一元二次方程式是形如ax^2+bx+c=0的方程,其中a、b、c是已知数,且a≠0。

2. 二次项、一次项和常数项:在一元二次方程中,ax^2、bx和c 分别被称为二次项、一次项和常数项。

3. 标准形式:对于一元二次方程,我们通常将其化为标准形式,即将方程中的一次项系数化为正数,例如x^2-3x+2=0。

4. 解:解是使方程成立的未知数的值。

一元二次方程一般有两个解,可以是实数解或复数解。

二、解题方法1. 因式分解法:当一元二次方程可以被因式分解时,我们可以通过因式分解法求解。

首先将方程化为(ax+b)(cx+d)=0的形式,然后令括号内的两个因式分别为零,解得方程的解。

2. 公式法:当一元二次方程无法进行因式分解时,我们可以使用求根公式来求解。

求根公式是x=-b±√(b^2-4ac)/2a,其中a、b、c 是方程的系数。

3. 完全平方式:当一元二次方程可以表示为完全平方式时,我们可以通过完全平方式求解。

首先将方程写成(a±√b)^2=c的形式,然后开方并解得方程的解。

三、注意事项1. 判别式:判别式是求解一元二次方程时的重要指标,它是b^2-4ac。

当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程有两个共轭复数解。

2. 因式分解时要注意提取公因式和使用二次三项分解公式。

3. 在使用求根公式时,要注意判别式的符号和平方根的正负号。

4. 在使用完全平方式时,要注意将方程化为完全平方式的形式,并注意正负号。

通过对一元二次方程的学习,我们可以解决一些实际问题,例如求解抛物线的顶点、焦点、方程的图像等。

初中数学一元二次方程全章复习与巩固(基础)

初中数学一元二次方程全章复习与巩固(基础)

《一元二次方程》全章复习与巩固(基础)【学习目标】1.了解一元二次方程及有关概念2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程3.掌握依据实际问题建立一元二次方程的数学模型的方法【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想一元二次方程⎯⎯⎯→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法. 要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42−叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42−=∆(1)当△>0时,一元二次方程有2个不相等的实数根. (2)当△=0时,一元二次方程有2个相等的实数根. (3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x −=+21,a cx x =21.注意它的使用条件为a ≠0, Δ≥0. 要点诠释:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况. (2)根据参系数的性质确定根的范围. (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数.(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数. (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节:一是整体地、系统地审题. 二是把握问题中的等量关系. 三是正确求解方程并检验解的合理性. 2.利用方程解决实际问题的关键是寻找等量关系. 3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等). 设 (设未知数,有时会用未知数表示相关的量). 列 (根据题目中的等量关系,列出方程).解 (解方程,注意分式方程需检验,将所求量表示清晰). 验 (检验方程的解能否保证实际问题有意义). 答 (写出答案,切忌答非所问). 4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等. 要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.下列方程中是关于x 的一元二次方程的是( )A .2210x x+=B .20ax bx c ++= C .(1)(2)1x x −+=D .223250x xy y −−=【答案】C【解析】A :不是整式方程,故本选项错误.B :当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程,故本选项错误.C :由原方程,得x 2+x-3=0,符号一元二次方程的要求;故本选项正确.D :方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误.故选C .【总结升华】一元二次方程必须满足四个条件:(1)未知数的最高次数是2 (2)二次项系数不为0 (3)是整式方程(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.举一反三:【变式】关于x 的方程22(28)(2)10a a x a x −−++−=,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程 (1) 0.5x 2-=0 (2) (x+a)2=(3) 2x 2-4x-1=0 (4) (1-)x 2=(1+)x【答案与解析】 (1)原方程可化为0.5x 2=∴x 2=用直接开平方法,得方程的根为 ∴x 1=,x 2=-(2)原方程可化为x 2+2ax+a 2=4x 2+2ax+∴x 2=a 2用直接开平方法,得原方程的根为 ∴ x 1=a ,x 2=-a .(3) a=2,b=-4,c=-1b 2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0 (2)2(t-1)2+t=1【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0∴ 3x-2=0或3x-3=0,∴12 3x=,21x= (2)原方程可化为:2(t-1)2+(t-1)=0∴ (t-1)[2(t-1)+1]=0∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0∴11t=,21 2t=类型三、一元二次方程根的判别式的应用3.(2020•荆门)若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【答案】A【解析】∵关于x的一元二次方程x2﹣4x+5﹣a=0有实数根∴△=(﹣4)2﹣4(5﹣a )≥0 ∴a ≥1 故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t −++=的两个不相等的实数根,(1)求t 的取值范围;(2)设2212s x x =+,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1. (2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+−222(2)2t t =−+=−,即2(1)s t t =−<−.【总结升华】利用根与系数关系求函数解析式综合题. 举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =−−的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +−+=. ∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =−−=−+≥△,∴ 12m ≤. (2) 1222y x x m =+=−+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm,由题意得4x2=10×8×(1-80%).解得x1=2,x2=-2.经检验,x1=2符合题意,x2=-2不符合题意舍去.∴ x=2.答:截去的小正方形的边长为2cm.【总结升华】设小正方形的边长为x cm,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2020春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?【答案】解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300解得:x1=10,x2=15当x=10,BC=50﹣10﹣10=30>25故x1=10(不合题意舍去)50﹣2x=50﹣30=20答:BC的长为20m.6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x2-5x+6=0解得,x1=2,x2=3∴当x=2时,2x=4当x=3时,2x=6答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.【巩固练习】 一、选择题1.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( )A.1B.﹣1C.0D.无法确定2.若一元二次方程式ax (x +1)+(x +1)(x +2)+bx (x +2)=2的两根为0.2,则|3a +4b |之值为何( )A .2B .5C .7D .83.(2020•濠江区一模)某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为( ) A .2%B . 5%C . 10%D . 20%4.将代数式x 2+4x-1化成(x+p )2+q 的形式( )A.(x-2)2+3 B.(x+2)2-4 C.(x+2)2-5 D.(x+2)2+45.若关于x 的一元二次方程2210kx x ++=有实数根,则k 的取值范围是( ). A .k <0 B .k ≤0 C .k ≠1且k ≠0 D .k ≤1且k ≠06.从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( )A.64 cm 2B.100 cm 2C.121 cm 2D.144 cm 27.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定 8.如果关于x 的方程ax 2+x-1=0有实数根,则a 的取值范围是( ) A . B . C .且 D .且二、填空题9.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 .10.(2020秋•青海校级期末)有一间长20m ,宽15m 的矩形会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则地毯的长、宽分别为 和 . 11.关于x 的一元二次方程22(1)10a x x a −++−=有一个根为0,则a = .12.阅读材料:设一元二次方程似20ax bx c ++=(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:12bx x a+=−,12c x x a=,根据该材料填空:已知x 1,x 2是方程2630x x ++=的两实数根,则2112x x x x +的值为________. 13.已知两个连续奇数的积是15,则这两个数是___________________.14.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则2211223x x x x ++的值为________. 15.问题1:设a 、b 是方程x 2+x -2012=0的两个实数根,则a 2+2a +b 的值为 ;问题2:方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1―1)(x 2―1)= ; 问题3:已知一元二次方程x 2-mx +m -2=0的两个实数根为x 1、x 2且x 1x 2(x 1+x 2)=3,则m 的值是 ;问题4:已知一元二次方程x 2-2x+m=0,若方程的两个实数根为X 1,X 2,且X 1+3X 2=3,则m 的值是 . 16.某校2010年捐款1万元给希望工程,以后每年都捐款,计划到2012年共捐款4.75万元,则该校捐款的平均年增长率是 .三、解答题17.某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.18. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.19.(2020•十堰)已知关于x 的一元二次方程x 2﹣(2m+3)x+m 2+2=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足x 12+x 22=31+|x 1x 2|,求实数m 的值.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件. (1)求商场经营该商品原来一天可获利润多少元? (2)设后来该商品每件降价x 元,商场一天可获利润y 元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y 与x 之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?【答案与解析】一、选择题1.【答案】B;【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.2.【答案】B;【解析】先根据一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的根确定a.b的关系式.然后根据a.b的关系式得出3a+4b=-5.用求绝对值的方法求出所需绝对值.3.【答案】D;【解析】设平均每月增长的百分率为x,根据题意,得50(1+x)2=72,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)故选D.4.【答案】C;【解析】根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.x2+4x-1=x2+4x+4-4-1=(x+2)2-5,故选C.5.【答案】D;【解析】因为方程是一元二次方程,所以k≠0,又因为一元二次方程有实数根,所以△≥0,即△=4-4k≥0,于是有k≤1,从而k的取值范围是k≤1且k≠0.6.【答案】A;【解析】本题用间接设元法较简便,设原铁片的边长为xcm.由题意,得x(x-2)=48,解得x1=-6(舍去),x2=8.∴x2=64,即正方形面积为64 cm2.7.【答案】A;【解析】由t是方程的根得at2+bt+c=0,M=4a2t2+4abt+b2=4a(at2+bt)+b2= b2-4ac=△.8.【答案】B;【解析】注意原方程可能是一元二次方程,也可能是一元一次方程.二、填空题9.【答案】1;﹣3.【解析】根据一元二次方程的解定义,将x =2代入关于x 的方程x 2+mx ﹣6=0,然后解关于m 的一元一次方程;再根据根与系数的关系x 1+x 2=﹣b a解出方程的另一个根. 10.【答案】 15m ,10m ;【解析】设留空宽度为xm ,则(20﹣2x )(15﹣2x )=20×15×,整理得:2x 2﹣35x+75=0,即(2x ﹣5)(x ﹣15)=0,解得x 1=15,x 2=2.5,∵20﹣2x >0,∴x<10,∴x=2.5, ∴20﹣2x=15,15﹣2x=10.∴地毯的长、宽分别为15m 和10m .11.【答案】-1;【解析】把x=0代入方程得1a =±,因为10a −≠,所以1a =−.12.【答案】10;【解析】此例首先根据阅读部分,明确一元二次方程根与系数的关系, 然后由待求式2112x x x x +变形为2221212121212()2x x x x x x x x x x ++−=,再整体代换. 具体过程如下:由阅读材料知 x 1+x 2=-6,x 1x 2=3.而222221121212121212()2(6)23103x x x x x x x x x x x x x x ++−−−⨯+====. 13.【答案】3和5或-3和-5;【解析】注意不要丢解.14.【答案】7;【解析】∵ x 1,x 2是一元二次方程2320x x −−=的两实数根,∴ x 1+x 2=3,x 1x 2=-2∴ 222222112211221212123(2)()3(2)7x x x x x x x x x x x x x x ++=+++=++=+−=15.【答案】2011;-2;m=-1或3;m=34.【解析】由于a,b是方程x2+x-2012=0的两个实数根,根据根与系数的关系可以得到a+b=-1,并且a2+a-2012=0,然后把a2+2a+b可以变为a2+a+a+b,把前面的值代入即可求出结果.16.【答案】50%;【解析】设该校捐款的平均年增长率是x,则,整理,得,解得,答:该校捐款的平均年增长率是50%.三、解答题17.【答案与解析】设原两位数的十位数字为x,则个位数字为(5-x),由题意,得[10x+(5-x)][10(5-x)+x]=736.整理,得x2-5x+6=0,解得x1=2,x2=3.当x=2时5-x=3,符合题意,原两位数是23.当x=3时5-x=2符合题意,原两位数是32.18.【答案与解析】设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.19.【答案与解析】解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣;(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.20.【答案与解析】⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)⑵①依题意得:(100-80-x)(100+10x)=2160即x2-10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x)(100+10x)∴y=-10x2+100x+2000=-10(x-5)2+2250画草图(略)观察图像可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.。

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为ax²+bx+c=0(a≠0)。

2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。

其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。

二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。

2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。

这需要学生具备一定的化简和运算能力。

针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。

2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。

可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。

思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。

例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。

此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。

相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。

这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。

例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。

因此,学生在学习的过程中需要注意知识点的联系与运用。

2024九年级数学上册“第二十一章一元二次方程“必背知识点

2024九年级数学上册“第二十一章一元二次方程“必背知识点

2024九年级数学上册“第二十一章一元二次方程”必背知识点一、一元二次方程的定义定义:等号两边都是整式,只含有一个未知数 (一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

一般形式:ax² + bx + c = 0(a ≠ 0)。

其中,ax²是二次项,a是二次项系数;bx是一次项,b是一次项系数;c 是常数项。

方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。

二、一元二次方程的解法1. 配方法步骤:一移 (把常数项移到等号的右边)、二除 (方程两边都除以二次项系数)、三配 (方程两边都加上一次项系数一半的平方,把左边配成完全平方式)、四开 (若等号右边为非负数,直接开平方求出方程的解)。

2. 公式法求根公式:对于一元二次方程ax² + bx + c = 0(a ≠。

0),如果b²-4ac ≥ 0,则方程的两个根为x1,2=−b±√b2−4ac2a 根的判别式:Δ = b² - 4ac。

当Δ > 0时,方程有两个不相等的实数根。

当Δ = 0时,方程有两个相等的实数根。

当Δ < 0时,方程无实数根。

3. 直接开平方法适用条件:如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

步骤:移项、使二次项系数或含有未知数的式子的平方项的系数为1、两边直接开平方。

4. 因式分解法方法:把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个一元一次方程的解。

三、一元二次方程的根与系数的关系对于一元二次方程ax² + bx + c = 0(a ≠ 0),若其两个根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁x₂ = c/a四、一元二次方程的实际应用列一元二次方程解应用题的一般步骤:审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一元二次方程知识点汇总,基础全面考前必掌握
一、一元二次方程的定义及一般形式:
只含有一个未知数x,未知数的最高次数是2,且系数不为
0,这样的方程叫一元二次方程。

一元二次方程的一般形式:ax^{2}+bx+c =0 (a≠0),其中a 为二次项系数,b为一次项系数,c为常数项。

因此,一元二次方程必须满足以下3个条件:
① 方程两边都是关于未知数的等式
② 只含有一个未知数
③ 未知数的最高次数为2
如: 2x^{2}-4x+3=0 , 3x^{2}=5 为一元二次方程,而像就不是一元二次方程。

二、一元二次方程的特殊形式
(1)当b=0,c=0时,有: ax^{2} =0,∴ x^{2} =0,∴x=0
(2)当b=0,0≠0时,有: ax^{2}+c=0 ,∵a≠0,此方程可转化为:
①当a与c异号时, -\frac{c}{a}>0 ,根据平方根的定义可知,x=±\sqrt{-\frac{c}{a}} ,即当b=0,c≠0,且a与c 异号时,一元二次方程有两个不相等的实数根,这两个实数根互为相反数。

②当a与c同号时, -\frac{c}{a}<0 ,∵负数没有平方根,∴方程没有实数根。

(3)当b≠0,c=0时,有 ax^{2}+bx=0 ,此方程左边可以因式分解,使方程转化为x(ax+b)=0,即x=0或ax+b=0,所以x1=0,x2=-b/a。

由此可见,当b≠0,c=0时,一元二次方程 ax^{2}+bx=0 有两个不相等的实数根,且两实数根中必有一个为0。

三、一元二次方程解法:
1.第一步:解一元二次方程时,如果没有给出一元二次方程的通式,先将其化为一元二次方程的通式,再确定求解的方法。

2. 解一元二次方程的常用方法:
(1)直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。

解法步骤:①把常数项移到等号右边, ax^{2}=-c ;
②方程中每项都除以二次项系数, x^{2}=-\frac{c}{a} ;
③开平方求出未知数的值:x=±\sqrt{-\frac{c}{a}}
(2)因式分解法:将一元二次方程化为通式后,如果方程左边的多项式可以因式分解,就可以用这种方法求解。

解法步骤:①把方程的左边因式分解,转化为两个因式乘积的形式;
②令每个因式分别等于0,进而求出方程的两个根;
例:解关于x的方程: x^{2}-(m+n)x+mn=0
解:把方程左边因式分解成:(x-m)(x+n)=0
∴x1=m,x2=n
(3)匹配法:当一元二次方程转化为通式,不能用直接求根和因式分解求解时,可以使用这种方法。

解法步骤:①若方程的二次项系数不是1,方程中各项同除以二次项系数,使二次项系数为1;
②把常数项移到等号右边;
③方程两边同时加上一次项系数一半的平方;
④方程左边变成一个完全平方式,右边合并同类项,变为一个实数;
⑤方程两边同时开平方,从而求出方程的两个根;
例:解方程: 3x^{2}+12x-6=0
解:方程两边同除以3得:
x^{2}+4x-2=0
移项,得: x^{2}+4x=2
∴ x^{2}+4x+2^{2}=2+2^{2}
即: (x+2)^{2}=6
∴ x+2=±√6
∴ x_{1}=-2+\sqrt{6},x_{2}=-2-\sqrt{6}
(4)公式法:用一元二次方程的根公式解一元二次方程,适用于所有一元二次方程。

求根公式:,其中a≠0。

解法步骤:①先把一元二次方程化为一般式;’
②找出方程中a、b、c等各项系数和常数值;
③计算出b2-4ac的值;
④把a、b、b2-4ac的值代入公式;
⑤求出方程的两个根;
例:解方程: x^{2}-4x+4=0
解:(1)方程中:a=1,b=-4,c=4
△=b^{2}-4ac=(-4)^{2}-4×1×4=0
∴x={-(-4)±√0}/2×1=2,∴原方程根为 x_{1}=x_{2}=2
四、一元二次方程根的判别式
1.把△=b2-4ac叫做一元二次方程ax2+bx+c =0(a≠0)的根的判别式。

利用根的判别式可以判断根的情况:
(1)当△≥0时方程有两个实数根:
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根;
(2)当△<0时,方程无实数根。

例:关于x的一元二次方程(m-1)^{2}-2(m-3)x+m+2=0 有实数根,求m的取值范围。

解:当m-1≠0时,即:m≠1时,该方程是关于x的一元二次方程。

∵ △≥0,即△=[-2(m-3)]^{2}-4(m-1)(m+2) =-
28m+44≥0,解得:m≤11/7
∴ m的取值范围是m≤11/7且m≠1。

五、一元二次方程根与系数的关系:
1.定理:设一元二次方程 ax^{2}+bx+c=0 (a≠0且 b^{2}-4ac≥0)的两个根分别为x1和x2,则:x1+x2=-b/a,
x1·x2=c/a
特别地:对于一元二次方程 x^{2}+px+q=0 ,根与系数的关系为:
x1+x2=-p,x1·x2=q
注:①此定理成立的前提是△≥0,也就是说方程必须有实根时才可以使用。

②此定理又叫韦达定理。

2.根与系数关系的应用举例:
练习1 解一元二次方程
1.用直接开方法解一元二次方程
①x^{2}+1=2 ② (2x-1)^{2}=7 ③ x^{2}-36=0
④(3x-4)^{2}=(3-4x)^{2} ⑤ 25x^{2}-36=0
⑥ (x-3)^{2}-144=0
2.用因式分解法解一元二次方程
①x^{2}-5x+6=0 ② x^{2}+4x-5=0
③ 5x(x-3)=6-2x ④ (x-5)(x-6)=x-5
⑤(2x-5)^{2}-(x+4)^{2}=0 ⑥ 4(x-1)^{2}-9(x+2)^{2}=0
3.用配方法解一元二次方程
①x^{2}-3x+1=0 ② x^{2}+x-1=0 ③ 4x^{2}-12x+3=0
④x(x+4)=8x+12 ⑤ x^{2}-4x+2=0
⑥ 6x^{2}-x-12=0
4.用公式法解一元二次方程
①3x^{2}-5x+2=0 ② 2x^{2}-10x=3
③ 3x^{2}+5(2x+1)=0
④ 3x^{2}-4x-1=0 ⑤ 2x^{2}-7x-4=0
⑥ 4x^{2}-12x+3=0
5.选择适当的方法解一元二次方程
①3x^{2}+1=4x ② (x-2)^{2}=9x^{2} ③ 2x^{2}=x+6
④ x(3x-7)=2x ⑤ t^{2}-4t=5
⑥ 4(x+1)^{2}=4(2x-5)^{2}
练习2 根与系数关系
一、填空题
二、选择题
三、解答题
微课视频
仅此而已。

如果你有什么要说的,就写在这里,我来读。

大家一起探讨学习,一起成长。

搜索关注课堂无忧(ID:kt5u21),听老师讲课,获取更多学习资料、方法。

还可以加入课堂无忧同学汇(Q群:),在这里可以结交新的朋友,一起探讨学习,交流学习心得,还有老师帮助学习答疑。

相关文档
最新文档