二维相关光谱横纵坐标

合集下载

红外光谱图中横坐标

红外光谱图中横坐标

红外光谱图中横坐标
横坐标是红外光谱图的重要组成部分,它决定了红外光谱图中的频率范围。

红外光谱图通常为二维坐标轴,其中的横坐标是频率,纵坐标是光谱强度。

横坐标的常见单位是波数,也可以采用其他单位,如折射率,热释电角,波长等。

横坐标的范围是决定红外光谱图信息的关键。

红外光谱图是一种反映某些物质化学组成特征的一种仪器测量文件。

横坐标是指能量或频率,它决定了红外光谱图的频率范围,是一种仪器测量文件,描述了物质在红外光谱频率范围内的激发性。

红外光谱图的横坐标可以采用三种方法:低到高,依赖于激发的值,以及离子振荡波波数/质量比。

当采用低到高的横坐标时,能量越低,频率越低。

激发性是指当某种物质被激发时所处的频率,因此当测量某种激发性物质时,横坐标可以以激发性为基础排布。

离子振荡波波数/质量比是在旋转形式,相对性质和张力态中准确表达离子的结构的特定频率,离子可以按照它们的质量比值排序,这样横坐标也随之变化。

综上所述,横坐标是红外光谱图的关键要素。

它定义了红外光谱图的频率范围,常见的单位是波数,但也可以是其他的单位。

有三种采用方法,分别是以低到高排序,以激发性排序和利用离子振荡波波数/质量比排序。

红外光谱图的横坐标范围是决定物质对红外光谱的反应的关键要素,因此应该给予重视。

二维NMR谱原理及解析

二维NMR谱原理及解析
H0
碳谱与氢 谱的对比
氢谱不足
不能测定不 含氢的官能 团
对于含碳较多的 有机物,烷氢的 化学环境类似, 而无法区别
碳谱补充
给出各种含碳官能团 的信息,几乎可分辨 每一个碳核,光谱简 单易辨认
2.2
2.0
1.8
1.6
1.4
1.2
ppm
1D 谱 分辨率可通过提高外磁场强 度和增加谱图的维数而提高. nD NMR (n=2,3,4)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
一维核磁共振氢谱
1D NMR--脉冲序列和原理示意图
D1
核磁共振氢谱
1H NMR是应用最为广泛的核磁共振波谱。
JBC=7 Hz
B,C是磁不等价的核
JAB JAC
Hc C B
A
A
*C
*CH
*CH2 H2
*CH3 H3 H2 H1 C
H1 C C C
H1
由于一些核的自然丰度并非100%.顾此谱图中可能出现偶合分 裂的峰和无偶合的峰.氯仿中的氢谱是一个典型的例子.
H-12C H-13C
H-13C x100
105 Hz
B0
Be
原子核实际感受到的磁场: B = (1-s) B0 S:化学位移常数
化学位移
分子中的原子并不是孤立存在,它不仅在相互间发生作用也同周围环 境发生作用,从而导致相同的原子核却有不同的核磁共振频率.
化学位移
自旋-自旋偶合
Larmor
E B0
频率
e.g. B0=11.7 T,
w(1H)=500 MHz w(13C)=125 MHz 化学位移 ~ B0 » kHz 自旋-自旋偶合» Hz-kHz

二维相关红外光谱及其应用解读

二维相关红外光谱及其应用解读

二维相关红外光谱及其应用1 引言二维相关光谱是一种实验设计与数据处理相结合的分析技术。

对于每一种样品体系,需要根据研究目的,设计合适的实验方案,通过对样品施加特定的微扰(包括机械拉伸力、温度、压力、浓度、磁场、光照等),诱导光谱信号产生动态变化,对一系列的动态谱图进行相关分析计算,便得到二维相关谱图(图1)。

二维相关谱图反映的是样本中各种组成成份或者微观结构单元相应于外界微扰的变化情况,以及这些变化之间相互的联系。

目前应用最广泛的是以温度为变量的二维相关红外光谱技术。

2 二维相关光谱的特性二维相关光谱可用三维立体图或二维等高线图进行可视化显示,便于直观地对二维信息进行解析。

在二维相关光谱的等高线图中,z坐标轴值用x-y平面中的等高线表示。

同步相关光谱代表两个动态红外信号之间的协同程度,它是关于主对角线对称的。

相关峰在对角线和非对角线区域均会出现。

在对角线上有一组峰,它是动态红外信号自身相关而得到的,所以称为自动峰。

自动峰总是正峰,它的强度代表外扰引起的变化程度。

强的自动峰对应于动态谱中强度变化较大的区域,而保持不变的区域则显示出非常小或没有自动峰,这与微观环境对官能团运动的影响是密切相关的。

在二维相关图中(见图1),以圆圈的个数代表Φ(ν1,ν2)的绝对值。

在坐标(A,A),(B,B),(C,C)和(D,D)处的自动峰分别具有2,1,4和2个圆圈,表明(C,C)处的自动峰最强,而(B,B)处的自动峰最弱。

二维同步相关光谱中位于主对角线以外的峰叫做交叉峰,它显示扰动发生过程中ν1和ν2处的强度变化的相关变化。

为了便于观察自动峰和交叉峰的强度的相关变化,可以构造一个相关正方形,把对角线上的自动峰和两侧的交叉峰连贯起来。

所以A和C,B和D是同步相关的(图1a)。

交叉峰的符号既可为正也可为负。

如果发生在ν1和ν2处的强度变化是同一方向的,那么Φ(ν1,ν2)为正;反之,如果发生在ν1和ν2处的强度变化是沿着相反方向的,那么Φ(ν1,ν2)为负。

二维相关谱图(课堂PPT)

二维相关谱图(课堂PPT)

Applied Spectroscopy, vol. 54, no. 7, July, 2000. (Special issue on generalized 2D correlation spectroscopy)
2020/4/27
Y. Ozaki and I. Noda, Eds. Two-Dimensional Correlation Spectroscopy, AIP Conference proceedings 503, AIP: Melville, 2000.
readily observable in conventional 1D spectra ▪ Sign of cross peaks to determine relative direction of intensity changes and
sequential order of events ▪ Comparison of different spectral data via hetero-correlation
2020/4/27
3
Generalized 2D Correlation Spectroscopy
Perturbation-based 2D correlation spectroscopy
I. Noda, Appl. Spectrosc., 47, 1329 (1993).
2020/4/27
4
Reference Literature
1
F(n1,n2 ) m 1
m j 1
~y j (n1) ~y j (n2 )
1
Y(n1,n2 ) m 1
m j 1
~y j (n1) ~z j (n2 )

快速二维红外

快速二维红外
乙酯中羰基伸缩振动的傅立叶变换红外光谱
实验结论 红外结果表明甚至在没有 DMSO加入的条件下酯 的羰基存在有两种不同的环境并且在约 1.3ps 的时间尺度上经历着化学交换。这一时间尺度 从数量上与所报道的水中氢键形成和断裂的时 间尺度相匹配。诸如乙酸乙酯、乙酸甲酯等小 分子酯在纯溶剂中的超快速化学交换过程也曾 被报道。加入DMSO后,我们的红外结果证实了 早先对于化学交换的预测,测得的交换时间尺 度为约6.8ps,较之纯水要慢很多。
实验流程
样品:40mM乙酸乙酯重水溶液、1:1 DMSO/water 所有的光谱数据均在室温(22度)下收集 线性红外光谱:傅立叶变换红外吸收光谱被记录 在分辨率为0.25cm-1的Varian 670-IR光谱仪中。 2D IR:在经典的二维红外实验中,三个超短的被 控制偏振且频率调在乙酸乙酯中羰基伸缩振动频 率(约1720cm-1)的红外脉冲打在样品上。
助溶剂对溶质溶剂间氢键动态的影响—— 超快速2D红外光谱研究
报告人:盛 钊 成员:李嘉琪 陈 鑫
• 背景介绍 • 实验流程 • 结果分析 • 前景展望
背景介绍
二维红外光谱( 2D IR )是 一种三阶非线性超快时间分 辨光谱。横轴与纵轴为振动 频率,彩色等高线反应相关 度。谱图的蓝色区域代表相 消干涉产生信号,对应分子 1-2 能级跃迁,红色区域代 表相长干涉信号,对应 0-1 能级跃迁。二维红外光谱不 仅能获得分子在频率域上的 吸收谱线,还能知道不同吸 收频率所对应的化学结构之 间进行超快(飞秒至皮秒时 间尺)变换的动态结构信息 。
实验结论
在助溶剂加入的情况下,氢键的形成和断裂 进程要显著慢于纯水。
利用2D IR 进行研究
前景展望 二维红外光谱能够用于研究助溶剂对于溶质溶 剂间氢键的动态我们可以基于此研究助溶剂对 蛋白质的变性机制(羰基氢键稳定蛋白质二级 结构),研究蛋白质的次级结构,以及结合分 子动力学模拟探讨化学反应机理及其对应动力 学。

10-红外光谱二维相关

10-红外光谱二维相关

1 ~ y (ν 1 )Τ ~ y (ν 2 ) Φ (ν 1 ,ν 2 ) = m −1
异步相关强度的计算(一)
• 对于异步相关强度的数值计算方法较多,其中最简单有效的方 法,是通过Hilbert变换得到 。
1 m ~ ~ Ψ (ν 1 ,ν 2 ) = y ( ν ) ⋅ z j (ν 2 ) ∑ j 1 m − 1 j =1

其中,
~ z j (v 2 ) = ∑ N jk ⋅ ~ y k (ν 2 )
k =1
m

而Njk对应于Hilbert-Noda转换矩阵中的第 j行k列元素
⎧ 0 ⎪ N jk = ⎨ 1 ⎪ ⎩π (k − j )
j=k
其他情况
异步相关强度的计算(二)
• 则异步相关强度由下式给出:
1 ~ Ψ (ν 1 ,ν 2 ) = y (ν 1 )Τ N~ y (ν 2 ) m −1


二维相关异步谱的解释
• 二维异步相关谱仍呈正方形,但无对 角线峰,仅有对角线外的峰,即交叉 峰。异步相关谱中的交叉峰表明与它 相应的两个红外吸收的偶极跃迁矩的 重定向行为是独立的,因此这种 “相关 峰”正好说明与这两个吸收相对应的官 能团没有相互连接、相互作用的 “ 相 关”。 异步相关谱也有正、负号之分,它反 映了所对应的两个偶极跃迁矩重定向 的相对快慢。一个正的交叉峰说明在 v1 处的光谱强度的变化比在 v2 处的变 化提前发生,而负的交叉峰则恰恰相 反,说明在 v2 处的光谱强度的变化比 在v1处的变化提前发生。
3600
3400 cm-1
3分子。由于被激发的分子 的驰豫过程慢于红外光谱的时标,因而可用前述的时间分 辨技术,检测动态过程,经处理得到二维红外光谱。

二维谱

二维谱

二维核磁共振二维傅立叶变换核磁共振(2D-FT-NMR)是八十年代发展起来的核磁共振新技术。

二维谱是将NMR提供的信息,如化学位移和偶合常数,氢化学位移和碳化学位移等在二维平面上展开绘制成的图谱。

二维谱可分为同核化学位移相关谱和异核化学位移相关谱前者如1H-1H COSY谱,13C-13C COSY谱,后者则为各种13C-1H COSY谱等。

一、1H-1H COSY谱氢-氢相关谱(1H-1H COSY谱)是二维谱中最常用的。

在氢-氢相关谱上的横轴和纵轴均设定成为氢的化学位移,两个坐标轴上则画有通常的一维谱。

(1)对角峰与相关峰下面是乙酸乙酯的1H-1H COSY谱•在相关谱中,位于对角线的峰叫做对角峰如图中信号3•因相邻两原子间或有远程偶合关系的原子间的偶合而引起的,出现在对角线两侧对称的位置上的峰叫做相关峰。

如图中a和a’(2)偶合关系的确定偶合关系的确定有四种方式:▪A方式:从信号2向下引一条垂线和相关峰a相遇,再从a向左划一水平线和信号1相遇,则可确定信号1和2之间存在着偶合关系。

▪B方式:先从信号2向下划一垂线和a相遇,再从a向右划一水平线至对角峰[1],再由[1]向上引一垂线至信号1,即可确定偶合关系。

▪C方式:按照与B方式相反方向进行。

▪D方式:从1H-1H COSY谱的高磁场侧解析时,除C方式外,也常常采用D 方式。

即从1向下引一条垂线,通过对角峰[1]至a’,再从a’向左划一条水平线,即和1的偶合对象(2)的对角峰[2]相遇,从[2]向上划一垂线至信号2即可确定。

应用1H-1H COSY谱解析化合物的结构就是基于分子中相互偶合的氢之间在谱中会出现相关峰,出现相关峰的质子之间可以是间隔3个键的邻偶,也可以是间隔4个键以上的远程偶合,特别是偶合常数较小的远程偶合,在一维氢谱中有时很难观察到,因而成为1H-1H COSY谱的一个优势。

N H HO O COOH12345678H8H7H5H3在该化合物的二维1H-1H COSY谱中,H-7和H-8的相关峰最强,H-5和H-7的相关峰强度次之,H-5和H-8的相关峰最弱,这也说明两个质子之间的偶合常数越大,相关峰越强,两个原子之间的偶合常数越小,相关峰越弱,这也是1H-1H COSY谱的普通规律。

核磁课件 二维谱

核磁课件 二维谱
第五章 二维核磁共振波谱
Two-dimentional NMR spectra
1
1971年J. Jeener 首次提出了二维核磁共振的概念;Ernst教 授进行了大量卓有成效的研究,推动了二维核磁共振的发展, 再加上他对脉冲-傅立叶变换核磁共振的贡献,获1991年诺 贝尔化学奖 提供相互偶合的观察核之间的相关关系信息 研究分子与分子之间相互作用 确定复杂分子(如生物分子)的结构,了解生物分子在溶液 状态时的空间结构(X-单晶衍射无法做到)
13
H-H二维谱需进行对称处理,去掉不对称的噪声峰。
H-H COSY二对称处理前后的谱图 H-H COSY, TOCSY ;HMQC, HSQC; HMBC
14
2.1、1H-1H COSY
• H-H COSY (H-H correlated spectroscopy) 同核位移相关谱
15
1H-1H COSY谱中的相关峰表示与该峰相交的两个峰之间有 自旋-自旋偶合(J-Coupling)存在。
9
10
11
二. 化学位移相关谱 (COSY)
Two-Dimesional Chemical Shift Correlation Spectroscopy
COSY作用:给出不同化学位移吸收峰之间的空间相关性。 包括同核COSY(通常为H-H耦合)和异核COSY(通常为H-C耦合)。 给出的信息:可以获得H-H之间的2J和3J耦合信息,甚至长程耦合信
通常在化学结构上,两个峰之间有自旋-自旋偶合表示产生 该峰的两个原子之间相隔的化学键数在三键以下。(当它们 之间有双键或三键存在时,四键或五键之间的原子也会有J偶 合存在)
相关峰的强弱(高低)与偶合常数J 值的大小有关,J 值越大相 关峰越强;当偶合常数(J 值)很小时,一维谱上可能表现 不出峰的偶合裂分,但二维谱上仍可能表现出相关峰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二维相关光谱横纵坐标
二维相关光谱横纵坐标是指在二维相关光谱分析中,所使用的自
变量和因变量。

二维相关光谱是一种光谱分析的方法,它通过对不同
波长的光进行反射、散射或透射观测,得到样品的光谱信息。

这种光
谱信息可以用于分析样品的成分、结构和性质等。

为了能够对样品的
光谱进行定量分析和解释,我们需要对二维相关光谱的横纵坐标有一
定的了解。

二维相关光谱的横坐标通常表示波数或波长。

波数是波长的倒数,它的单位是cm-1。

波数可以用于刻画光的频率,它与样品分子的振动
和转动有关。

波数越大,对应的波长越短,说明光的频率越高。

在二
维相关光谱中,波数通常用于表示横轴,因为它可以反应样品的振动
和转动信息,有助于对样品的结构和性质进行分析。

二维相关光谱的纵坐标通常表示吸光度、透射率或散射率等。


光度是样品吸收光能的能力,它与样品的浓度和光通过样品的路径有关。

透射率是光通过样品后剩余的光能与入射光能之比,它可以用来
刻画样品对光的透过程度。

散射率是样品对光进行散射的能力,它与
样品的粒径和形态有关。

在二维相关光谱中,纵轴的单位通常是无量
纲的,因为它是通过比值来表示吸光度、透射率或散射率等。

纵坐标
的选择取决于所检测的光谱特征和所研究的样品性质。

除了横坐标和纵坐标的物理性质,二维相关光谱的横纵坐标还可
以表示样品的其他属性。

例如,在拉曼光谱中,横坐标通常表示样品
的振动频率,纵坐标表示样品的拉曼散射强度。

拉曼光谱是一种非常
灵敏的光谱方法,可以用于分析样品的成分和结构信息。

在红外光谱中,横坐标通常是波数,纵坐标可以是吸光度、透射率或散射率等物
理量。

总之,在二维相关光谱分析中,横纵坐标的选择取决于所研究的
样品类型和所关注的光谱特征。

横坐标通常表示样品的某种物理性质,如振动、转动或散射频率等,纵坐标可以表示样品的吸光度、透射率
或散射率等物理量。

这些选取的横纵坐标能够在二维相关光谱中反映
样品的结构、成分和性质等信息,为光谱分析提供有力的支持。

通过
对二维相关光谱的横纵坐标进行适当的选择和解读,可以更深入地理
解光谱分析中的各种现象和规律,为科研和工程应用提供更全面和准
确的光谱数据。

相关文档
最新文档