模型试验的理论与方法

合集下载

结构模型试验

结构模型试验

结构模型的分类
• 间接模型试验的目的是要得到关于结构整体性 的反应如内力在各构件的分布情况、影响线等。 因此,间接模型并不要求和原型结构直接的相 似。例如框架结构的内力分布主要取决于梁、 柱等构件之间的刚度比,因此,构件的截面形 状、材料等不必要求直接与原型相似,为便于 制作,可采用圆形截面或型钢截面代替原型结 构构件的实际截面。随着计算技术的发展,许 多情况下间接模型试验完全可由计算机分析所 代替,所以目前很少使用。
• 数据准确:由于试验模型较小,一般可在试验环境条件 较好的室内进行试验,因此可以严格控制其主要参数, 避免许多外界因素的干扰,保证了试验结果的准确度。
模型试验理论基础
• 模型的相似要求和相似常数 1.几何相似
hm hp
bm bp
lm lp
Sl
SA Sl2 SW Sl3 SI Sl4
Sx
q
pl
4 p
EpIp fp
相似原理/第三相似定理
• 第三相似定理:单值条件相似、由其导出的相似 准数相等,是两个现象相似的充分必要条件。
• 根据第三相似定理,当考虑一个新现象时,只 要它的单值条件与曾经研究过的现象单值条件 相同,并且存在相等的相似准数,就可以肯定 它们的现象相似。从而可以将已研究过的现象 结果应用到新现象上去。第三相似定理终于使 相似原理构成一套完整的理论,同时也成为组 织试验和进行模拟的科学方法。
结构模型试验
王柏生
结构模型试验
• 结构模型试验与原形试验相比较,具有下述特点: • 经济性好:由于结构模型的几何尺寸一般比原型小很多,
因此模型的制作容易,装拆方便,节省材料、劳力和 时间,并且同一个模型可进行多个不同目的的试验。
• 针对性强:结构模型试验可以根据试验的目的,突出主 要因素,简略次要因素。这对于结构性能的研究,新 型结构的设计,结构理论的验证和推动新的计算理论 的发展都具有一定的意义。

模型试验

模型试验

2.2.4.时间相似
对结构的动力问题,在随时间变化的过程 中,要求结构模型和原型在对应的时刻进行比 较,要求相对应的时间成比例。虽然不直接采 用St时间相似常数,但速度,加速度等物理量 都与时间有关,按相似要求它们在模型与原型 中应成比例。
2.2.5.边界条件和初始条件
在材料力学和弹性力学中,常用微分方程 描述结构的变形和内力,边界条件和初始条件 是求微分方程的必要条件。原型与模型采用相 同组微分方程和边界条件及初始条件描述。
3、模型设计

1 1 ~ 200 50 1 1 ~ 30 10
1 25
1 1 ~ 100 50
1 1 ~ 20 4 1 1 ~ 20 4 1 1 ~ 10 4
1 25
1 400
1 1 ~ 300 50
1 75
3、模型设计
模型尺寸不准确是引起模型误差的主要原因之 一。模型尺寸的允许误差范围和原结构的允许误 差范围一样,为5%,但由于模型的几何尺寸小, 允许制作偏差的绝对值就较小,在制作模型时对 其尺寸应倍加注意。 模板对模型尺寸有重要的影响,制作模型板 的材料应体积稳定,不随温度、湿度而变化。有 机玻璃是较好的模板材料,为了降低费用,也可 用表面覆有塑料的木材做模型,型铝也是常用的 模板材料,它和有机玻璃配合使用相当方便。
(三)体力加载 在结构模型试验中,体力是一项重要的荷载 ,它是指结构、基础结构及其地基岩土的自重。
5、模型制作与加载方法
通常施加体力的方法有: ①、用分散集中载荷代替自重 ②、用面力代替体力的方法 ③、选高容重、低强度模型材料。 (四)预应力加载 对于预应力钢筋砼或其它预应力结构,预应力 产生的载荷在模型在施加的方法一般有两种。一 是采用锚头和张拉设备;另一种方法是施加外载 ,但应在弹性范围内。

加速寿命试验的理论模型与试验方法

加速寿命试验的理论模型与试验方法

产品可靠性试验6.2.1 可靠性试验的意义与分类可靠性试验是为分析、评价、提高或保证产品的可靠性水平而进行的试验。

产品的研制者通过试验获得产品设计、鉴定所需的可靠性数据(可靠性测定试验)。

通过试验暴露产品缺陷,改进设计并获得可靠性增长信息(可靠性增长试验)。

产品的制造者通过试验剔除零件批中的不合格品或暴露整机缺陷,消除早期故障(可靠性筛选或老化试验老化试验不是消除早期故障的)产品使用者通过试验验证产品批可靠性水平以保证接收的产品批达到规定要求(可靠性接收试验)。

政府或行业管理部门通过试验获得数据库所需基础可靠性数据(可靠性测定试验),认证产品可靠性等级(可靠性验证试验),进行产品的可靠性鉴定与考核(可靠性鉴定试验)。

本节主要介绍可靠性测定试验,这是为获得产品可靠性特征量的估计值而进行的试验,根据需要可由试验结果给出可靠性特征量的点估计值和给定置信度下的区间估计。

由于可靠性试验往往是旷日持久的试验,为节省时间与费用常采用加速试验的方式。

本节将介绍某些加速寿命试验的理论模型与试验方法。

6.2.2 指数分布可靠性测定试验大多数电子元器件、复杂机器及系统的寿命都服从指数分布。

其待估参数为故障率λ,其他可靠性指标可利用估计值进行计算MTBF 已经有平均的意思了1.定时截尾试验(1)点估计试验进行至事先规定的截尾时间t c停止试验,设参与试验的n个样本中有r个发生关联故障,则由极大似然估计理论得出的故障率点估计值为式中t i——第I个关联故障发生前工作时间(i=1,…,r)。

若在试验过程中及时将已故障产品修复或替换为新产品继续试验,则为有替换的定时截尾试验。

此时λ的点估计为(2)区间估计对于无替换和有替换的定时截尾试验,其给定置信度为1-α的双侧置信区间为[λL,λU],则式中——自由度为υ的分布的概率为的下侧分位点;T——总试验时间(3)零故障数据的区间估计当定时截尾试验在(0,t c)内的故障数r=0时,可由式(4)给出。

如何进行论文中的模型构建与试验验证

如何进行论文中的模型构建与试验验证

如何进行论文中的模型构建与试验验证在科学研究中,模型构建和试验验证是论文写作的重要环节。

通过构建合理的模型和进行有效的试验验证,研究者可以得出准确可靠的结论,为学术界和实践提供有价值的贡献。

本文将介绍如何进行论文中的模型构建与试验验证,并探讨其中的关键步骤和技巧。

一、模型构建模型构建是研究者根据研究目的和问题,基于已有理论和实证研究结果,构建出一个能够解释和预测现象的理论框架或数学模型。

以下是模型构建的关键步骤:1. 确定研究目的和问题:在开始模型构建之前,研究者需要明确自己的研究目的和问题。

这有助于确定研究的范围和方向,为模型构建提供明确的指导。

2. 收集和整理相关文献:在模型构建之前,研究者需要对相关领域的文献进行广泛的查阅和整理。

这有助于了解已有的理论框架和模型,避免重复研究,并为自己的模型构建提供参考和借鉴。

3. 确定模型类型和结构:根据研究目的和问题,研究者需要确定自己的模型类型和结构。

常见的模型类型包括理论模型、实证模型、数学模型等。

在确定模型结构时,研究者需要考虑模型的可解释性、预测性和适用性。

4. 建立假设和变量:在模型构建过程中,研究者需要明确模型中的假设和变量。

假设是对现象和关系的假定,变量是研究中需要观察和测量的因素。

研究者需要根据研究目的和问题,合理地建立假设和选择变量。

5. 确定参数和模型方程:在模型构建过程中,研究者需要确定模型中的参数和模型方程。

参数是模型中的未知量,模型方程是描述变量之间关系的数学表达式。

研究者需要根据理论和实证研究结果,合理地确定参数和模型方程。

二、试验验证试验验证是通过实际观察和实验数据,对模型的有效性和准确性进行检验和验证。

以下是试验验证的关键步骤:1. 设计实验方案:在进行试验验证之前,研究者需要设计合理的实验方案。

实验方案包括实验对象、实验条件、实验方法和数据采集方式等。

研究者需要根据模型的特点和要求,选择适当的实验方案。

2. 收集和处理数据:在进行试验验证时,研究者需要收集实验数据,并对数据进行处理和分析。

相似理论与模型试验

相似理论与模型试验



1 s=v0t+ 2
g t 2 [L]
但对于非完全方程如P=0.013H(重液公式)则 不成立。
2.6 量纲分析 基本量纲为: [L][M][T]
例1、现在研究一个动力学问题,即m、t、v、F间相 系,简写为:
F=f(m,t,v) F=k.ma . tb.vc
Lc
[F]=k[MaTb
T
c
]

[F]=[M.L.T-2 ] ②
两式量纲相同:a=1,
a 1
b-c=-2 c=1
mv
所以 F=kmt-1v=k(
b
1
c 1
) k Ft
——牛顿准则。
t
mv
互关
例2:均布荷载作用下简支梁的跨中挠度。
[解] y=f(q,EI,L) 基本量纲:[F] [L] 静力学问题,与时间无关。 [y]=[L] y=k qa(EI)b.Lc [L]=k[FaL-a.(FbL-2b.L4b).Lc]
L
(2)
t c t t
(1)式实际上可用于描述彼此相似的两个现象。这
时第一现象质点的运动方程为:
v dL dt
(3)
第二现象质点运动方程为:
v dL (4)
dt
将式(2)代入式(4),亦即在基本微分方程中对参 数作相似变换,
v v
1
3.1.3 运动相似
时间相似:
ct
t1 t1'
t2 t2'
t3 t3'
时间相似常数
cL
s s'
(距离相似)
则速度相似常数:
cv
cL ct
研究动力学还有质量相似:c m

第五章模型试验

第五章模型试验

第五章模型试验5.1概述结构试验模型,是仿照原型(真实结构)并按照一定比例关系复制而成,它具有原型的全部或部分特征。

通过对模型的试验,可以得到与原型相似的工作情况,从而可以对原型的结构性能进行了解和研究。

模型试验的主要问题是如何设计模型。

为了使模型试验的结果能与原型联系起来,进行模型设计时必须遵循一定的规律,即应根据相似理论来设计模型。

相似理论是研究相似现象性质和鉴别相似现象的一门科学,它提供了确定相似判据的方法,是指导模型试验、整理试验结果并把这些试验结果推广到原型上去的理论。

(1)为验证一种新的理论,这种试验有时不可能在真实结构上进行(例如破坏性试验或地震反应试验),或不宜在真实结构上进行(例如要求改变某些参数、研究不同条件下某一因素的影响),这时需要模型试验。

(2)为检验设计或提供设计依据,设计比较复杂的结构或新型结构时,往往对计算结果没有把握,必须依靠模型试验来判断所设计结构物的性能。

并把试验结果应用到该设计中去。

5.2相似定理1.相似第一定理—相似现象的性质几何学中的图形相似是指它们相应角的大小相等、相应点之间的距离成比例。

而两个物理现象的相似是指两个现象具有相同物理性质的变化过程,而且两个现象中对应的同名物理量之间有固定的比例常数。

结构模型试验就是根据物理现象的规律,用模型试验来模拟原型结构的实际工作情况,再根据模型试验的结果来反推原型结构的某些特性下面通过分析两个质点系的动力相似,说明相似第一定理的内容两个质点系的质量为:m1,m2, …,m i,…m nM1,M2…,M i,…M n称 为相似判据。

相似第一定理为:相似现象的相似指标等于1,或者相似判据相等。

相似第一定理说明相似现象的基本性质,相似判据相等是两个相似现象的必要条件。

相似判据把两个相似现象中的物理量联系起来,以判别两个现象是否相似并把某一现象研究所得的结果推广应用到另一相似现象中去、2.相似第二定理-相似判据的确定相似第一定理指出了相似现象必须满足的条件—相似判据相等,相似第二定理则指出了确定相似判据的方法1)方程式分析法研究现象中的各物理量之间的关系可以用方程式表达时,可以用表达这一物理现象的方程式导出相似判据。

第五章 相似理论与结构模型试验

第五章 相似理论与结构模型试验

2.2.6.边界条件和初始条件
在材料力学和弹性力学中,常用微分方程描
述结构的变形和内力,边界条件和初始条件是求 微分方程的必要条件。原型与模型采用相同组微 分方程和边界条件及初始条件描述。
2.2.6.1 边界条件
原型与模型在外界接触的区域内各种条件 保持相似。如支撑条件、约束情况、边界受力 等相似。
d 水泥砂浆
水泥砂浆被广泛地用来制作钢筋混凝土板壳等 薄壁
似,即模型与原模型结构对应部分的质量成比例 Sm=mm/mp或Sp=ρm/ρp 质量是密度与体积的乘积:
Sp=ρm vmvm/(ρpvpvp)=Sm/S3l
可见,在给定几何常数后,密度相似常数可以
由质量相似常数导出。
2.2.3.荷载相似
模型与原型在各对应点所受的荷载方向一
致,荷载大小成比例。集中荷载与力的量纲相
3.1 模型的类型分类
如按模型试验研究范围可分为:弹性模型试验、强
度模型试验。
如按试验模拟的程度分类:断面模型试验(平面),
半整体模型,整体模型试验。
如按试验加载方法分类:静力结构模型试验,动力
结构模型试验,等等。
3、模型设计
3.2 模型几何尺寸的确定
确定几何尺寸是关键的一步,主要应考虑: a、 模型的尺寸大小要适中,可行,对于与结构 物相互作用问题,应考虑影响范围。 b、 测量手段,应考虑传感器的大小和精确度要 求。当传感器精度不够时应加大模型尺寸。 c、 试验待求量应方便、可以实施 因此,设计时应综合考虑模型类型、制作条件及试 验等,才能确定出一个最优的几何尺寸。
1.3.模型试验特点
经济性好
特点
针对性强 数据准确
1.4.模型试验适用范围
1

结构动力模型试验相似理论及其验证

结构动力模型试验相似理论及其验证

结构动力模型试验相似理论及其验证一、本文概述《结构动力模型试验相似理论及其验证》这篇文章主要探讨结构动力模型试验中的相似理论及其应用。

结构动力模型试验是土木工程领域常用的一种研究方法,通过构建实际结构的小比例模型,在实验室环境下模拟结构在动力荷载作用下的响应,以研究结构的动力性能和抗震性能。

相似理论作为结构动力模型试验的基础,为模型设计和试验结果的解读提供了重要的理论依据。

本文首先介绍了结构动力模型试验的基本原理和方法,阐述了相似理论在模型设计中的重要性和必要性。

接着,文章详细阐述了相似理论的基本概念和原则,包括几何相似、运动相似、动力相似等方面,为后续的模型设计和试验验证提供了理论基础。

在此基础上,文章通过具体的案例分析和试验验证,探讨了相似理论在结构动力模型试验中的应用。

通过对不同比例模型的试验结果进行对比分析,验证了相似理论的正确性和有效性。

文章还探讨了相似理论在实际应用中的限制和影响因素,提出了相应的改进措施和建议。

本文旨在深入探讨结构动力模型试验中的相似理论及其应用,为土木工程领域的相关研究提供有益的参考和借鉴。

通过本文的研究,可以更好地理解和应用相似理论,提高结构动力模型试验的准确性和可靠性,为土木工程结构的动力性能分析和抗震设计提供有力的支持。

二、相似理论基础相似理论是结构动力模型试验的理论基础,其核心在于通过构建与实际结构在几何、材料、边界条件等方面相似的模型,以预测实际结构的动力行为。

该理论建立在量纲分析的基础之上,通过导出相似准则,为模型设计和试验条件的确定提供了指导。

在相似理论中,相似准则是判断模型与实际结构是否相似的关键。

这些准则包括几何相似、运动相似、动力相似等。

几何相似要求模型与实际结构在尺寸上具有相似的比例;运动相似则要求模型与实际结构在对应点的运动轨迹相似;动力相似则要求模型与实际结构在受力、变形、加速度等方面具有相似的特性。

为了实现这些相似准则,需要在模型设计和制作过程中,对材料的物理性能、加载条件、边界约束等进行控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型试验的理论与方法
模型试验的理论与方法是指在科学研究中利用模型进行实验的理论基础和实施方法。

具体来说,模型试验的理论包括模型建立的原理、模型与实际系统之间的关系以及模型的精度等方面;而方法则包括模型建立的步骤、实验数据收集与处理的方法、模型验证的方法等。

模型试验的理论基础主要是基于数学建模的原理,在研究对象的基础上,通过建立数学模型来描述对象的特性和规律。

模型的选择要考虑到数学模型与实际系统之间的准确性和可行性,以及对研究目标的适用性。

理论上,模型试验可以分为物理模型试验和数学模型试验两种形式,物理模型试验通过构建实际物理模型来观测和测量模型行为;数学模型试验则使用数学模型进行仿真和优化。

在实施模型试验时,需要考虑以下几个方面的方法:首先是模型建立的方法,包括确定模型类型、定义变量和参数、建立方程和模型结构等;其次是模型验证的方法,常用的方法包括比较模型输出与实际观测数据的差异、进行敏感性分析和误差分析等;再次是实验数据的收集与处理的方法,包括选择合适的实验设计、采集和整理数据、进行统计分析等;最后是模型应用的方法,包括使用模型进行预测、优化和控制等。

总之,模型试验的理论与方法是科学研究中利用模型进行实验的理论基础和实施方法,在进行模型试验时需要根据研究目标和实际情况选择合适的模型类型和方
法,并进行模型验证和实验数据处理,以得出科学结论和应用成果。

相关文档
最新文档