人教版八年级下册数学期中试卷及答案

合集下载

八年级下学期数学期中考试试卷含答案(共5套,人教版)

八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

人教版八年级数学下册期中测试卷【带答案】

人教版八年级数学下册期中测试卷【带答案】

人教版八年级数学下册期中测试卷【带答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)13x x=,则x=__________2.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.3.若m+1m=3,则m2+21m=________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、D6、B7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、03、74、x >3.5、706、20三、解答题(本大题共6小题,共72分)1、2x =2、22mm -+ 1. 3、(1)102b -≤≤;(2)2 4、(1)略;(2)结论:四边形ACDF 是矩形.理由见解析.5、(1)略;(2)112.5°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

人教版八年级下册数学《期中测试题》附答案

人教版八年级下册数学《期中测试题》附答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(每题 3 分,共 30 分)1. 要使式子2x -有意义,则的取值范围是[ ]A. x 0>B. x 2≥-C. x 2≥D. x 2≤ 2. 平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ).A. 120︒B. 60︒C. 30D. 15︒3. 下列根式中,最简二次根式( )A. 9aB. 0.5C. 3aD. 22a b + 4. 满足下列条件的三角形中,不是直角三角形的是( )A. 三内角度数之比为1∶2∶3B. 三内角的度数之比为3∶4∶5C. 三边长之比为3∶4∶5D. 三边长的平方之比为1∶2∶35. 一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )A. 6013B. 13C. 6D. 256. 在下列条件中,不能确定四边形ABCD 为平行四边形的是( ).A. ∠A=∠C,∠B=∠DB. ∠A+∠B=180°,∠C+∠D=180°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A=∠B=∠C=90°7. 如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A. 2B. 6C 236223+-- D. 23225+-8. 如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A. 51-B. 51+C. 31-D. 31+9. 下列说法不能判断是正方形的是( )A. 对角线互相垂直且相等的平行四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分的四边形10. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB =3,AC =2,BD =4,则AE 的长为( )A. 32B. 32C. 217D. 2217二、填空题(每题 3 分,共 21 分)11. 若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为_____12. 已知 114x x y -+-=+,则 y x 的值为_____.13. 将一个矩形纸片沿BC 折叠成如图所示的图形,若27ABC ∠=︒,则ACD ∠的度数为________.14. 45a ,则最小的正整数a 的值是_________.15. 实数a ,b 在数轴上对应点的位置如图所示,化简2()a a b -的结果是_________________16. 如图,在矩形ABCD 中,2AB =,3BC =.若点是边CD 的中点,连接AE ,过点作BF AE ⊥交AE 于点,则BF 的长为______.17. 如图,在□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S □AEPH =______.三.解答题18. 计算:(1)(32)(23)-+ (2)1(83)642+⨯- 19. 如图,△ABC 中,∠ACB=Rt ∠,AB=8,BC=2,求斜边AB 上的高CD .20. 先化简,31254y x xy x xy x y y其中15x =,4y = 21. 如图,四边形 ABCD 是正方形,点 E 是 BC 边上任意一点, ∠AEF = 90°,且EF 交正方形外角的平分线 CF 于点 F .求证:AE=EF .22. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1 中,画一个三角形,使它的三边长都是有理数;(2)在图2 中,画一个直角三角形,使它们的直角边都是无理数;(3)在图3 中,画一个正方形,使它的面积是10.23. 已知a、b、c满足(a﹣3)24+-+|c﹣5|=0.b求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.24. 如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.25. 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF菱形;(3)若AC=4,AB=5,求菱形ADCF 面积.答案与解析一、单选题(每题 3 分,共 30 分)1.,则的取值范围是[ ]A. x 0>B. x 2≥-C. x 2≥D. x 2≤[答案]D[解析][分析][详解]根据二次根式被开方数必须是非负数的条件,,必须2x 0x 2-≥⇒≤. 故选D.2. 平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ).A. 120︒B. 60︒C. 30D. 15︒ [答案]B[解析][分析]根据平行四边形的性质:邻角互补,对角线相等即可解答[详解]在平行四边形ABCD 中,2180A B A A ∠+∠=∠+∠=︒∴60A ∠=︒,60C A ∠=∠=︒故选:B.[点睛]本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等. 3. 下列根式中,最简二次根式是( )A. B. C. D. [答案]D[解析][分析]检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.[详解]解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选D.[点睛]本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4. 满足下列条件的三角形中,不是直角三角形的是()A. 三内角的度数之比为1∶2∶3B. 三内角的度数之比为3∶4∶5C. 三边长之比为3∶4∶5D. 三边长平方之比为1∶2∶3[答案]B[解析]试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、因为1+2=3,所以是直角三角形.故选B.5. 一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )A. 6013B. 13C. 6D. 25[答案]A[解析]试题分析:∵直角三角形的两条直角边的长分别为5,12,=13,∵S△ABC=12×5×12=12×13h(h为斜边上的高),∴h=60 13.故选A.6. 在下列条件中,不能确定四边形ABCD为平行四边形的是( ).A. ∠A=∠C,∠B=∠DB. ∠A+∠B=180°,∠C+∠D=180°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A=∠B=∠C=90°[答案]B[解析]分析]根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.[详解]A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B 选项错误.C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD 为平行四边形,故C选项正确;D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;故选B.7. 如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A. 2B. 6C. 236223D. 23225[答案]D[解析][分析]将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.[详解]将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯-=222233-+-=23225+-故选D[点睛]本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.8. 如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )5151 31 31[答案]B[解析][分析] 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则51.[详解]解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴5BD AD ==在Rt△ADC中,由勾股定理得:22DC541AD AC=-=-=∴BC=BD+DC=51+故选B[点睛]本题考查勾股定理的应用以及等角对等边,关键抓住ADC2B∠=∠这个特殊条件.9. 下列说法不能判断是正方形的是()A. 对角线互相垂直且相等的平行四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分的四边形[答案]D[解析][分析]正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件. [详解]A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;B中对角线相互垂直的矩形,可得正方形;C中对角线相等的菱形,可得正方形;D中,对角线相互垂直平分,仅可推导出菱形,不正确故选:D[点睛]本题考查证正方形的条件,常见思路为:(1)先证四边形是平行四边形;(2)再添加一个菱形特有的条件;(3)再添加一个矩形特有的条件10. 如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=3,AC=2,BD=4,则AE 的长为( )A.32B.32C.217D.217[答案]D[解析][分析]由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.[详解]解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=12AC=1,BO=12BD=2,∵AB∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC==S△BAC=12×AB×AC=12×BC×AE,2AE,∴AE=7,故选:D.[点睛]本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.二、填空题(每题3 分,共21 分)11. 若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为_____[答案]6.[解析][分析]根据直角三角形斜边中线的性质即可得.[详解]已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为6.故答案为:6.12. 已知 114x x y -+-=+,则 y x 的值为_____.[答案]-4[解析][分析] 根据二次根式的被开方数为非负数列不等式组解得x 值,将x 代入原式解得y 值,即可求解.[详解]要使114x x y -+-=+有意义,则:1010x x -≥⎧⎨-≥⎩,解得:x=1,代入原式中, 得:y=﹣4,∴y x =(-4)1=-4,故答案为:-4.[点睛]本题考查二次根式有意义的条件、解一元一次不等式组、幂的乘方,熟练掌握二次根式的被开方数为非负数是解答的关键.13. 将一个矩形纸片沿BC 折叠成如图所示的图形,若27ABC ∠=︒,则ACD ∠的度数为________.[答案]126°[解析][分析]直接利用翻折变换的性质以及平行线的性质分析得出答案.[详解]解:如图,由题意可得:∠ABC=∠BCE=∠BCA=27°,则∠ACD=180°-27°-27°=126°.故答案为:126°.[点睛]本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.14. 若45a 是整数,则最小的正整数a 的值是_________.[答案]5.[解析][分析]由于45a=5×3×3×a ,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5. [详解]解: 45a=5×3×3×a , 若为整数,则必能被开方,所以满足条件的最小正整数a 为5.故答案为:5.[点睛]本题考查二次根式的化简.15. 实数a ,b 在数轴上对应点的位置如图所示,化简2()a a b +-的结果是_________________[答案]2a b -+[解析][分析]先根据数轴的定义得出0,0a a b <-<,再根据绝对值运算、算术平方根进行化简,然后计算整式的加减即可得.[详解]由数轴的定义得:0,0a a b <-<,则2()a a b +-,()a b a =-+-,a b a =-+-,2a b =-+,故答案为:2a b -+.[点睛]本题考查了数轴的定义、绝对值运算、算术平方根、整式的加减,根据数轴的定义判断出0,0a a b <-<是解题关键.16. 如图,在矩形ABCD 中,2AB =,3BC =.若点是边CD 的中点,连接AE ,过点作BF AE ⊥交AE 于点,则BF 的长为______.[答案]3105[解析][分析]根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. [详解]解:如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22223110AD DE +=+= ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 310[点睛]本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.17. 如图,在□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S □AEPH =______.[答案]4[解析][分析]由条件可证明四边形HPFD、BEPG为平行四边形,可证明S四边形AEPH=S四边形PFCG.,再利用面积的和差可得出四边形AEPH和四边形PFCG的面积相等,由已知条件即可得出答案.[详解]解:∵EF∥BC,GH∥AB,∴四边形HPFD、BEPG、AEPH、CFPG平行四边形,∴S△PEB=S△BGP,同理可得S△PHD=S△DFP,S△ABD=S△CDB,∴S△ABD-S△PEB-S△PHD=S△CDB-S△BGP-S△DFP,即S四边形AEPH=S四边形PFCG.∵CG=2BG,S△BPG=1,∴S四边形AEPH=S四边形PFCG=4×1=4;故答案为:4.[点睛]本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.三.解答题18. 计算:(1)32)(23)(2)1 (83)62[答案](1)1(2)432 [解析][分析](1)根据平方差公式即可求解;(2)根据二次根式的混合运算法则即可求解.[详解](1)(32)(23)-+ =3-2 =1 (2)1(83)642+⨯- =48188+- =433222+- =432+.[点睛]此题主要考查二次根式的运算,解题的关键是熟知其运算法则.19. 如图,△ABC 中,∠ACB=Rt ∠,AB=8,BC=2,求斜边AB 上的高CD .[答案]6[解析][分析] 先根据勾股定理求出AC ,再根据等面积法即可求得结果.[详解]解:由题意得226AC AB BC =-=1122ABC S AB CD AC BC =⋅=⋅, 1186222CD =解得6[点睛]本题考查的是二次根式的应用,勾股定理的应用,解答本题的关键是掌握好利用等面积法求直角三角形的斜边上的高.20. 先化简,再求值:31254y x xy x y xy x y y+--,其中15x =,4y = [答案]255 [解析][分析]先利用二次根式的性质化简,合并后再把已知条件代入求值.[详解]原式=54xy xy xy xy xy +--=当15x =,y= 4时 原式=255[点睛]本题主要考查了二次根式的化简求值,注意先化简代数式,再进一步代入求得数值.21. 如图,四边形 ABCD 是正方形,点 E 是 BC 边上任意一点, ∠AEF = 90°,且EF 交正方形外角的平分线 CF 于点 F .求证:AE=EF .[答案]见解析[解析][分析]截取BE =BM ,连接EM ,求出AM =EC ,得出∠BME =45°,求出∠AME =∠ECF =135°,求出∠MAE =∠FEC ,根据ASA 推出△AME 和△ECF 全等即可.[详解]证明:在AB 上截取BM =BE ,连接ME ,∵∠B =90°,∴∠BME =∠BEM =45°,∴∠AME =135°∵CF 是正方形ABCD 的外角的角平分线,∴∠ECF=90°+∠DCF=90°+1902⨯︒=135°=∠ECF , ∵∠AEF = 90°∴∠AEB+CEF ∠=90°又∠AEB+MAE ∠=90°,∴MAE CEF ∠=∠∵AB =BC ,BM =BE ,∴AM =EC ,在△AME 和△ECF 中MAE CEF AM ECAME ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△ECF (ASA ),∴AE =EF .[点睛]本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME ≌△ECF . 22. 如图,正方形网格中的每个小正方形边长都是 1,每个小格的顶点叫做格点, 以格点为顶点分别按下列要求画三角形.(1)在图 1 中,画一个三角形,使它的三边长都是有理数;(2)在图 2 中,画一个直角三角形,使它们的直角边都是无理数;(3)在图 3 中,画一个正方形,使它的面积是 10.[答案](1)见解析(2)见解析(3)见解析[解析][分析](1)根据题意可画出三边长分别为3,4,5的三角形即可;(2)根据题意及勾股定理即可画出边长为5、5、10的直角三角形;(3)根据题意及正方形面积的特点即可画出边长为10的正方形.[详解](1)如图1,三角形所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.[点睛]此题主要考查网格与图形,解题的关键是熟知勾股定理的运用.23. 已知a、b、c满足(a﹣3)24b-|c﹣5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.[答案](1)a=3,b=4,c=5;(2)能构成三角形,且它的周长=12.[解析][分析](1)根据平方、算术平方根及绝对值的非负性即可得到答案;(2)根据勾股定理的逆定理即可证明三角形是直角三角形,再计算周长即可.[详解](1)∵2---=,a b c(3)450又∵(a ﹣3)2≥0,40-≥b ,|c ﹣5|≥0,∴a ﹣3=0,b ﹣4=0,c ﹣5=0,∴a =3,b =4,c =5;(2)∵32+42=52,∴此△是直角三角形,∴能构成三角形,且它的周长l =3+4+5=12.[点睛]此题考查平方、算术平方根及绝对值的非负性,勾股定理的逆定理.24. 如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OAD.(1)求证:四边形ABCD 是矩形;(2)若∠AOB ∶∠ODC =4∶3,求∠ADO 的度数.[答案](1)证明见解析;(2)∠ADO==36°. [解析][分析](1)先判断四边形ABCD 是平行四边形,继而根据已知条件推导出AC=BD ,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x ,∠ODC=3x ,则∠OCD=∠ODC=3x.,在△ODC 中,利用三角形内角和定理求出x 的值,继而求得∠ODC 的度数,由此即可求得答案.[详解](1)∵AO =OC ,BO =OD ,∴四边形ABCD 是平行四边形,又∵∠AOB =2∠OAD ,∠AOB 是△AOD 的外角,∴∠AOB =∠OAD +∠ADO.∴∠OAD =∠ADO.∴AO =OD.又∵AC =AO +OC =2AO ,BD =BO +OD =2OD ,∴AC =BD.∴四边形ABCD矩形.(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,在△ODC中,∠DOC+∠OCD+∠CDO=180°∴4x+3x+3x=180°,解得x=18°,∴∠ODC=3×18°=54°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.[点睛]本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.25. 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.[答案](1)证明详见解析;(2)证明详见解析;(3)10.[解析][分析](1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.[详解](1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE =DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF =DB . ∵AD 为BC 边上的中线∴DB =DC ,∴AF =CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,E 是AD 的中点, ∴AD =DC =12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF =BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF =12×4×5=10. [点睛]本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.。

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。

初二下册数学期中试卷及答案

初二下册数学期中试卷及答案

初二下册数学期中试卷及答案初二下册数学期中试卷及答案(人教版)一、细心选一选(每小题3分,共30分)1.如图,∠1与∠2是A.同位角B.内错角C.同旁内角D.以上都不是2.已知等腰三角形的周长为29,其中一边长为7,则该等腰三角形的底边A.11B. 7C. 15D. 15或73.下列轴对称图形中,对称轴条数最多的是A.线段B.角C.等腰三角形D.等边三角形年龄 13 14 15 25 28 30 35 其他人数 30 533 17 12 20 9 2 3A.平均数B.众数C.方差D.标准差5.下列条件中,不能判定两个直角三角形全等的是A.两个锐角对应相等B.一条直角边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等6. 下列各图中能折成正方体的是7.在样本20,30,40,50,50,60,70,80中,平均数、中位数、众数的大小关系是A.平均数>中位数>众数B.中位数<众数<平均数C.众数=中位数=平均数D.平均数<中位数<众数8.如图,在Rt△ABC中,∠ACB=90O,BC=6,正方形ABDE的面积为100,则正方形ACFG的面积为A.64B.36C.82D.499.如图∠AOP=∠BOP=15o,PC‖OA,PD⊥OA,若PC=10,则PD等于A. 10B.C. 5D. 2.510.如图是一个等边三角形木框,甲虫在边框上爬行( ,端点除外),设甲虫到另外A. B.C. D.无法确定4.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是两边的距离之和为,等边三角形的高为,则与的大小关系是二、专心填一填(每小题2分,共20分)11.如图,AB‖CD,∠2=600,那么∠1等于 .12.等腰三角形的一个内角为100°,则它的底角为__ ___.13.分析下列四种调查:①了解我校同学的'视力状况; ②了解我校学生的身高情况;③登飞机前,对旅客进行安全检查; ④了解中小学生的主要娱乐方式;其中应作普查的是: (填序号).14.一个印有“创建和谐社会”字样的立方体纸盒表面展开图如图所示,则与印有“建”字面相对的表面上印有字.15.如图,Rt△ABC中,CD是斜边AB上的高,∠A=25°,则∠BCD=______.16.为了发展农业经济,致富奔小康,养鸡专业户王大伯2007年养了2000只鸡,上市前,他随机抽取了10只鸡,统计如下:质量(单位:kg) 2 2.2 2.5 2.8 3数量(单位:只) 1 2 4 2 1估计这批鸡的总质量为__________kg.17.直角三角形斜边上的中线长为5cm,则斜边长为________cm.18.如图,受强台风“罗莎”的影响,张大爷家屋前9m远处有一棵大树,从离地面6m处折断倒下,量得倒下部分的长是10m,大树倒下时会砸到张大爷的房子吗?答:(“会”和“不会”请选填一个)19. 如图,OB,OC分别是△ABC的∠ABC和∠ACB的平分线,且交于点,过点O作OE‖AB交于BC点O,OF‖AC交BC于点F,BC=2008,则△OEF的周长是______ .20.如图,长方形ABCD中,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EDB落在同一平面内),则A、E两点间的距离为______ .三、用心答一答(本小题有7题,共50分)21.(本题6分)如图,∠1=100°,∠2=100°,∠3=120°求∠4的度数.22.(本题6分)下图是由5个边长为1的小正方形拼成的.(1)将该图形分成三块,使由这三块可拼成一个正方形(在图中画出);(2)求出所拼成的正方形的面积S.23.(本题8分)如图,AD是ΔABC的高,E为AC上一点,BE交AD于F,且有DC=FD,AC=BF.(1)说明ΔBFD≌ΔACD理由;(2)若AB= ,求AD的长.24.(本题5分)如图,已知在△ABC中,∠A=120º,∠B=20º,∠C=40º,请在三角形的边上找一点P,并过点P和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)25.(本题9分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)1号 2号 3号 4号 5号总分甲班 89 100 96 118 97 500乙班 100 96 110 91 104 500统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差;(4)你认为应该定哪一个班为冠军?为什么?26.(本题6分)如图是一个几何体的三视图,求该几何体的体积(单位:cm,取3.14,结果保留3个有效数字).27.(本题10分)如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作等边三角形BPM,连结CM.(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;(2)若PA=PB=PC,则△PMC是________ 三角形;(3)若PA:PB:PC=1: : ,试判断△PMC的形状,并说明理由.四、自选题(本题5分,本题分数可记入总分,若总分超过100分,则仍记为100分)28.在Rt⊿ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设⊿ABC的面积为S,周长为 .(1)填表:三边长a、b、ca+b-c3、4、5 25、12、13 48、15、17 6(2)如果a+b-c=m,观察上表猜想: = ,(用含有m的代数式表示);(3)说出(2)中结论成立的理由.八年级数学期中试卷参考答案。

2024年人教版初二数学下册期中考试卷(附答案)

2024年人教版初二数学下册期中考试卷(附答案)

一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。

2. 请简述减法的定义。

3. 请简述乘法的定义。

4. 请简述除法的定义。

5. 请简述分数的定义。

五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。

2. 请分析分数与整数之间的关系。

七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。

2. 请用实践操作的方法验证减法的定义。

【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。

人教版数学八年级下册《期中测试卷》(含答案)

人教版数学八年级下册《期中测试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共40分)1.下列式子中为最简二次根式的是( ) A. 8 B. 0.5 C. 12D. 15 2.下列计算正确的是( ) A. 3+3=6 B. 33=23⨯ C. 3+3=23D. 2+3=233.以下各组数据为三角形的三边长,能构成直角三角形的是( )A. 2,2,4B. 2,3,4C. 2,2,1D. 4,5,3 4.如图,已知其中两个正方形面积为20和69,那么正方形的边长为( )A. 5B. 6C. 7D. 89 5.在ABCD 中,220A C ∠+∠=︒,则A ∠为( )A. 70︒B. 110︒C. 65︒D. 55︒ 6.能判定一个四边形是平行四边形的条件是( )A. 一组对角相等B. 两条对角线互相平分C. 一组对边相等D. 两条对角线互相垂直7. 下列关于矩形的说法中正确的是( )A. 对角线相等四边形是矩形B. 矩形的对角线相等且互相平分C. 对角线互相平分四边形是矩形D. 矩形的对角线互相垂直且平分8.如图所示,在数轴上点A 所表示的数为,则的值为( )A. 5-B. 15-C. 15--D. 15-+9.如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A. 51-B. 51+C. 31-D. 31+10.如图,ABCD 、AEFC 都是矩形,而且点B 在EF 上,这两个矩形的面积分别是S 1,S 2,则S 1,S 2的关系是()A. S 1>S 2B. S 1<S 2C. S 1=S 2D. 3S 1=2S 2二.填空题(共24分)11.要使二次根式3x -有意义,则的取值范围是________.12.若一个直角三角形的三边分别为x ,4,5,则x =_____.13.“矩形的对角线相等”的逆命题是_____命题(填“真”或“假”).14.实数在数轴上的对应位置如图所示,化简()()2223x x -+-=______.15.如图, 利用四边形的不稳定性改变矩形ABCD 的形状,得到A 1BCD 1,若A 1BCD 1的面积是矩形ABCD 面积的一半,则∠A 1BC 的度数是__________.16.如图,在直角坐标系中,已知点()30A -,、()0,4B ,对OAB ∆连续作旋转变换,则第100个三角形的直角顶点的坐标为______.三.解答题(共86分)17.计算:(1)127382÷+⨯ (2)()()()2535252--+- 18.先化简,再求值:22x x 11x 2x 1x 1+⎛⎫÷+ ⎪-+-⎝⎭,其中x 21=+. 19.如图,在平行四边形ABCD 中,BF=DE .求证:四边形AFCE 是平行四边形.20.已知---2142b b ac x =a ,--2242b +b ac x =a,若,,===-322a b c ,试求12x x +值. 21.已知,每个小正方形的边长为1,以格点为顶点,只用一把无刻度的直尺,按要求作图:(1)在第一张表格中,作边长为17的正方形; (2)在第二张表格中,作一个三条边长分别为5,10,13的三角形.22.如图,在两面墙之间有一个底端在点的梯子,当它靠在左侧墙上时,梯子的顶端在点;当它靠在右侧墙上时,梯子的顶端在点.已知60BAC ∠=︒,45DAE ∠=︒,点到地面的垂直距离42DE =.(1)求梯子的长度;(2)求BC 和CE 的长度.23.如图1,AD 是ABC ∆边BC 上的中线.(1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;② 若,64AB =AC =,求AD 的取值范围;(2)如图2,当90BAC ∠=︒时,求证:12AD BC =.24.如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)求证:四边形EFGH是平行四边形;(2)当AD⊥BC时,四边形EFGH是哪种特殊的平行四边形?25.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连接DE,CF.2(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=10,∠B=60°,求DE的长.答案与解析一.选择题(共40分)1.下列式子中为最简二次根式的是()A. B. C.D.[解析][分析]利用最简二次根式定义判断即可.[详解]解:A=不是最简二次根式;B=不是最简二次根式;C=不是最简二次根式;D,故选:D.[点睛]此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.2.下列计算正确的是( )D. [答案]C[解析][分析]利用二次根式的加减法对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.[详解]解:A=故不正确;B3,故不正确;C故是正确的;D选项:2和3不能直接合并,故不正确;故选C.[点睛]本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.3.以下各组数据为三角形的三边长,能构成直角三角形的是( )A. 2,2,4B. 2,3,4C. 2,2,1D. 4,5,3[答案]D[解析]分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形可得答案.详解:A、22+22≠42,不符合勾股定理的逆定理,故此选项不合题意;B、22+32≠42,不符合勾股定理的逆定理,故此选项不合题意;C、12+22≠22,不符合勾股定理的逆定理,故此选项不合题意;D、32+42=52,符合勾股定理的逆定理,故此选项符合题意.故选D.点睛:考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.如图,已知其中两个正方形的面积为20和69,那么正方形的边长为()A. 5B. 6C. 7D. 89[答案]C[解析][分析]根据勾股定理,可得20+正方形的面积=69,求出正方形的面积即可解决问题.[详解]解:根据勾股定理,可得:20+正方形的面积=69,∴正方形的面积=49,∴正方形的边长为7,故选:C .[点睛]本题考查了勾股定理,此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.5.在ABCD 中,220A C ∠+∠=︒,则A ∠为( )A. 70︒B. 110︒C. 65︒D. 55︒[答案]B[解析][分析]由平行四边形的性质得出∠A =∠C ,结合已知条件即可求出∠A .[详解]解:∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A +∠C =220°,∴∠A =110°,故选:B .[点睛]本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键. 6.能判定一个四边形是平行四边形的条件是( )A. 一组对角相等B. 两条对角线互相平分C. 一组对边相等D. 两条对角线互相垂直 [答案]B[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]A. 两组对角分别相等的四边形是平行四边形,故本选项错误;B. 两条对角线互相平分的四边形是平行四边形,故本选项正确;C. 两组对边分别相等的四边形是平行四边形,故本选项错误;D. 对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.故选B.[点睛]本题考查平行四边形的判定,定理有:①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形.7. 下列关于矩形的说法中正确的是( )A. 对角线相等的四边形是矩形B. 矩形的对角线相等且互相平分C. 对角线互相平分四边形是矩形D. 矩形的对角线互相垂直且平分[答案]B[解析]试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.8.如图所示,在数轴上点A所表示的数为,则的值为( )A. 5-B. 15-C. 15--D. 15-+[答案]C[解析] 分析:根据勾股定理求出直角三角形的斜边,即可得出答案.详解:如图:由勾股定理得:BC=221+2=5,即AC=BC=5, ∴a=-1-5, 故选C .点睛:本题考查了数轴和实数,勾股定理的应用,能求出BC 的长是解此题的关键. 9.如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )5151 31 31[答案]B[解析][分析] 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则51.[详解]解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB ∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴BC=BD+DC=51+故选B [点睛]本题考查勾股定理应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.10.如图,ABCD 、AEFC 都是矩形,而且点B 在EF 上,这两个矩形的面积分别是S 1,S 2,则S 1,S 2的关系是( )A. S 1>S 2B. S 1<S 2C. S 1=S 2D. 3S 1=2S 2[答案]C[解析][分析] 由于矩形ABCD 的面积等于2个△ABC 的面积,而△ABC 的面积又等于矩形AEFC 的一半,所以可得两个矩形的面积关系.[详解]解:矩形ABCD 的面积S=2S △ABC ,而S △ABC =12S 矩形AEFC ,即S 1=S 2. 故选:C .[点睛]本题主要考查了矩形的性质及面积的计算,能够熟练运用矩形的性质进行一些面积的计算问题. 二.填空题(共24分)11.3x -有意义,则的取值范围是________.[答案]x ≥3[解析][分析]根据二次根式被开方数为非负数进行求解.x-≥,[详解]由题意知,30解得,x≥3,故答案为:x≥3.[点睛]本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.12.若一个直角三角形的三边分别为x,4,5,则x=_____.[答案]3[解析][分析]本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.[详解]解:设第三边为x,(1)若5是直角边,则第三边x是斜边,由勾股定理得:52+42=x2,∴x(2)若5是斜边,则第三边x为直角边,由勾股定理得:32+x2=52,∴x=3;∴第三边的长为3故答案为:3[点睛]本题主要考查的是勾股定理的简单应用,需注意解答时有两种情况.13.“矩形的对角线相等”的逆命题是_____命题(填“真”或“假”).[答案]假[解析]试题分析:根据互逆命题的关系,可知其逆命题为“对角线相等的四边形为矩形”,而对角线互相平分且相等的四边形是矩形,可知是假命题.故答案为假.14.实数在数轴上的对应位置如图所示,化简()()2223x x -+-=______.[答案]1[解析][分析]根据二次根式的性质化简即可.[详解]解:由数轴可得:2<x <3,∴()()()2223231x x x x -+-=-+-=,故答案为:1.[点睛]本题考查了二次根式的性质与化简,熟知2a a =是解题关键.15.如图, 利用四边形的不稳定性改变矩形ABCD 的形状,得到A 1BCD 1,若A 1BCD 1的面积是矩形ABCD 面积的一半,则∠A 1BC 的度数是__________.[答案]30°[解析]过A 1作BC 的垂线交BC 于点E,平行四边形A 1BCD 1的面积是矩形ABCD 面积的一半,从而推出A 1E=12AB,AB=A 1B,A 1E=12A 1B,根据在直角三角形中, 30°角所对的边等于斜边的一半∴∠A 1BC 的度数是30°解:过A 1作BC 的垂线交BC 于点E,∵平行四边形A 1BCD 1的面积是矩形ABCD 面积的一半,∴A 1E=12AB, 又∵AB=A 1B∴A 1E=12A 1B, ∴∠A 1BC 的度数是30°16.如图,在直角坐标系中,已知点()30A -,、()0,4B ,对OAB ∆连续作旋转变换,则第100个三角形的直角顶点的坐标为______.[答案](396,0)[解析][分析]观察不难发现,每三次旋转为一个循环组依次循环,第100个直角三角形的直角顶点与第99个直角三角形的直角顶点重合,然后求出一个循环组旋转过的距离,即可得解.[详解]解:由图可知,每三次旋转为一个循环组依次循环,∵()30A -,、()0,4B , ∴OA=3,OB=4,∴AB 22345+=,∴一个循环组经过的长度为4+5+3=12,∵100÷3=33…1, ∴第100个直角三角形的直角顶点与第99个直角三角形的直角顶点重合,∵12×33=396, ∴第100个三角形的直角顶点的坐标为(396,0).故答案为:(396,0).[点睛]本题考查了图形旋转的变化规律和勾股定理,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键,也是本题的难点.三.解答题(共86分)17.计算:(1(2))222-[答案](1)5;(2)7-[解析][分析](1)根据二次根式的乘除法则计算,然后再合并同类二次根式;(2)利用完全平方公式和平方差公式进行计算即可.[详解]解:(1)原式325==+=;(2)原式53547=+-+=-.[点睛]本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.先化简,再求值:22x x 11x 2x 1x 1+⎛⎫÷+ ⎪-+-⎝⎭,其中x 1=.[答案]2[解析]分析]原式除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入进行二次根式化简.[详解]解:原式=()()()()()()()()()22222x x 1x 1x 1xx 1x 1x x 1x 1x 1x 1x x 1x 1x 1x 1x 1++-++-÷=÷=⋅=-+-+----. 当x 21=+时,原式11222112===+-. 19.如图,在平行四边形ABCD 中,BF=DE .求证:四边形AFCE 是平行四边形.[答案]证明见解析.[解析]试题分析:可由已知求证AF=CE,又有AF∥CE ,根据一组对边平行且相等的四边形是平行四边形,可得四边形AFCE 是平行四边形.试题解析:∵四边形ABCD 是平行四边形,∴AB∥CD ,AB=CD .∵BF=DE ,∴AF=CE .∵在四边形AFCE 中,AF∥CE ,AF=CE,∴四边形AFCE 是平行四边形.考点:平行四边形的判定与性质.20.已知---214b b ac x =,--224b +b ac x =,若,,===-322a b c ,试求12x x +的值. [答案]23-[解析][分析]首先利用12x x +,代入进行化简,在代入参数计算.[详解]解:原式 2244b b ac b b ac ----+- =b a - =23-[点睛]本题主要考查分式的化简计算.21.已知,每个小正方形的边长为1,以格点为顶点,只用一把无刻度的直尺,按要求作图:(1)在第一张表格中,作边长为17的正方形;(2)在第二张表格中,作一个三条边长分别为5,10,13的三角形.[答案](1)见解析;(2)见解析.[解析][分析](1)根据勾股定理确定出边长的画法,然后作图即可;(2)根据勾股定理确定出三角形的三边即可.[详解]解:(1)如图所示,即为所作的正方形,(2)如图所示,即为所作的三角形.[点睛]本题考查了利用勾股定理作图,熟练掌握网格特点和勾股定理是解题关键.22.如图,在两面墙之间有一个底端在点的梯子,当它靠在左侧墙上时,梯子的顶端在点;当它靠在右侧墙上时,梯子的顶端在点.已知60BAC ∠=︒,45DAE ∠=︒,点到地面的垂直距离42DE =.(1)求梯子长度;(2)求BC 和CE 的长度.[答案](1)梯子的长度为8;(2)43BC=CE=4+42 [解析][分析](1)在Rt △ADE 中,运用勾股定理可求出梯子的长度;(2)在Rt △ABC 中,根据含30度角的直角三角形的性质和勾股定理求出AC 和BC 即可解决问题.[详解]解:(1)在Rt △ADE 中,∠DAE =45°,∴AE =DE =42∴222242428AD AE DE ,即梯子的长度为8;(2)在Rt △ABC 中,∠BAC =60°,AB =AD =8,∴∠ABC =30°,∴AC =12AB =4,∴22228443BC AB AC ,∴CE=AC+AE=4+42.[点睛]本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.23.如图1,AD 是ABC ∆的边BC 上的中线.(1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;② 若,64AB =AC =,求AD 的取值范围;(2)如图2,当90BAC ∠=︒时,求证:12AD BC =.[答案](1)①详见解析;②1<AD <5;(2)详见解析[解析][分析](1)①首先利用尺规作图,使得DE=AD ,在连接CE ,②首先利用ADB ∆≌EDC ∆可得AB=CE ,在ACE ∆中,确定AE 的范围,再根据AE=2AD ,来确定AD 的范围.(2)首先延长延长AD 到点,使DE AD =,连接CE 和BE ,结合BD DC =,可证四边形ABEC 是平行四边形,再根据90BAC ∠=︒,可得四边形ABEC 是矩形,因此可证明12AD BC =. [详解](1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;②∵BD DC =,DE AD =,ADB EDC ∠=∠∴ADB ∆≌EDC ∆∴EC AB =∴6-4<AE <6+4,即2<AE <10又∵2AE AD =∴1<AD <5(2)延长AD 到点,使DE AD =,连接CE BE ,∵BD DC =∴四边形ABEC 是平行四边形∵90BAC ∠=︒∴四边形ABEC 是矩形∴AE BC = ∴1122AD AE BC ==. [点睛]本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等. 24.如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)求证:四边形EFGH 是平行四边形;(2)当AD ⊥BC 时,四边形EFGH 是哪种特殊的平行四边形?[答案](1)见详解;(2)平行四边形EFGH 是矩形,理由见详解[解析][分析](1)根据三角形中位线定理得到EF=12AD,EF∥AD,GH=12AD,GH∥AD,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明;(2)根据有一个角是直角的平行四边形是矩形解答.[详解](1)证明:∵E、F分别是AB、BD的中点, ∴EF是△BAD的中位线,∴EF=12AD,EF∥AD,同理,GH=12AD,GH∥AD,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形;(2)平行四边形EFGH是矩形,理由如下:∵EF∥AD,∴∠FEB=∠DAB,∵EH∥BC,∴∠HEA=∠ABC,∵AD⊥BC,∴∠DAB+∠ABC=90°,∴∠HEF=90°,∴平行四边形EFGH是矩形.[点睛]本题考查的是三角形中位线定理、矩形的判定,掌握平行四边形和矩形的判定定理是解题的关键.25.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=10,∠B=60°,求DE的长.[答案](1)见详解;(2)21DE[解析][分析](1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.[详解]证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=12 AD.又∵CE=12 BC,∴DF=CE,∵DF∥CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,AD∥BC,∴∠B=∠DCE,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=12CD=2,DH=3在▱CEDF中,CE=DF=12AD=5,则EH=3.∴在Rt△DHE中,根据勾股定理知23(23)321+=[点睛]本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

彩香中学2009~2010学年第二学期初二数学期中试卷一、选择题(本大题共有10小题,每小题2分,共20分)1.下列各式中最简分式是 ( ) A .812a b B .241x x + C .331++x x D .aa 5 2.下列各式中正确的是 ( ) A .m b m a b a ++=B . abba b a -=-11 C .b a b a b a +=++22 D . b a ab b a --=--22 3.解分式方程11212=-+-+x x x x ,去分母后正确的是 ( ) A . 12)1(=+--x x x B .12)1(2-=+--x x x x C .12)1(=---x x x D .12)1(2-=---x x x x 4.下列式子中,一定有意义的是 ( )A .2--xB .xC .22+xD .22-x 5.下列各式中,是最简二次根式的是 ( )A .18B .b a 2C .22b a +D .32 6.下列运算正确的是( ) A .()332-=- B .332=C .()332=-D .()332-=-7.下列四组线段中,不构成比例线段的一组是 ( )A .1cm , 3cm, 3cm , 9cmB .2cm , 3cm , 4cm ,6cmC .1cm ,2cm ,3cm ,6cmD .1cm , 2cm , 3cm , 4cm 8.下面图形中一定相似的是 ( )A .两个锐角三角形B .两个直角三角形C .两个等腰三角形D .两个等边三角形9.如图:在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则球拍击球的高度h 应为 ( )A . 2.7mB . 1.8mC . 0.9mD . 6m (第9题图) (第10题图)10.如图,P 是Rt△ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( )条.A . 1B . 2C . 3D . 4 二、填空题(本大题共有10小题,每空2分,共28分)11.化简:=+-+3932a a a ,a b a b b a+=-- . 12.计算:333552++-= ,c b b a 2283•(a >0,b >0,c >0)= .13.若分式2244x x x --+的值为0,则x 的值为 .14.若2331+-=-xmx 有增根,则增根是x = ,m= .15.如果最简二次根式33-a 与a 27-是同类二次根式,那么a 的值是 .A B D CE 16.若1<x <2,则化简 22)1()2(x x --- = . 17.当x __________时,式子31-x 有意义.18.若23a b=,则23a ba b+=- . 19.如图:已知DE ∥BC ,AD =1,DB =2,DE =3,则BC =___________,△ADE 和△ABC 的面积之比为 .(第19题图)(第20题图) 20.如图:已知矩形ABCD 中,AB =2,BC =3,F 是CD 的中点,一束光线从A 点出发,通过BC 边反射,恰好落在F 点,那么反射点E 与C 点的距离为 .三、解答题(本大题共有10小题,共82分) 21.(本题满分6分)化简分式:(1)22193a a a --- (2)112+-+x x x 22.(本题满分5分)先化简,再求值:2444222-÷⎪⎭⎫ ⎝⎛+-+-+a a a a a a ,其中2=a .23.(本题满分14分)计算: (1)315312164821-+ (2)x 27-x 35+x 12 (3) 6)313122(⨯- (4) 2)2352(--ABC D E)2352)(2352(-+24.(本题满分8分)解分式方程: (1)x x x x-=-+25121(2)21221-=---x x x 25.(本题满分6分)对于正数x ,规定f (x )=221xx +, (1)计算f (2)= ; f (3)= ;f (2)+ f (21)= .;f (3)+ f (31)= .(2)猜想+)(x f )1(xf = ;请予以证明. 26.(本题满分8分)阅读下面资料:12)12)(12()12(1211-=-+-⨯=+;25)25)(25(25251-=-+-=+.试求:(1)671+的值;(2)17231+的值;(3)nn ++11(n为正整数)的值; (4)(211++321+·(1.27.(本题满分6分)某车间加工1200个零件后,采用了新工艺,工作效率是原来的1.5倍,这样加工同样多的零件就少用了10小时.问采用新工艺前、后每小时分别加工多少个零件?28.(本题满分7分)如图,正方形AEFG 的顶点E 在正方形ABCD 的边CD 上,C AD 的延长线交EF 于H 点.(1)试说明:△AED ∽△EHD .(2)若E 为CD 的中点,正方形ABCD 的边长为4,求的DH 长.29.(本题满分7分)如图,是一块三角形土地,它的底边BC 长为100米,高AH 为80米,某单位要沿着底边BC 修一座底面是矩形DEFG 的大楼,D 、G 分别在边AB 、AC 上,若大楼的宽是4030.(本题满分7分)如图,路灯(P的小明从距离路灯的底部(O 点 )20米的A 点,沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是 变短了?变长或变短了多少米?31.(本题满分8分)如图,在矩形点P 沿AB 边从点A 开始向点B 以2cm /s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm /s 的速度移动.如果点P 、Q 同时出发,用t(s )表示移动的时间(0≤t ≤6),那么 (1)当t 为何值时,△QAP 为等腰三角形?(2)当t 为何值时,以点Q 、A 、P CBA OB N A M彩香中学2009~2010学年第二学期初二数学期中试卷参考答案及评分建议一、选择题(本大题共有10小题,每小题2分,共20分)二、填空题(本大题共有10小题,每空2分,共28分)11. a -3,1; 12. 2; 13. -2; 14. 3,-1; 15. 2;16. 3-2x ; 17. >3; 18. 87-; 19. 9,1∶9; 20. 1.三、解答题(本大题共有10小题,共82分.解答必须写出必要的文字说明、推理步骤或证明过程) 21.(1)解:原式=23(3)(3)(3)(3)a a a a a a +-+-+-=2(3)(3)(3)a a a a -++-=3(3)(3)a a a -+-=13a +(3分) (2) 解:原式=22111x x x x --++=11x +(3分) 22. 解:原式=222442(2)(2)a a a a a ⎛⎫--+⨯ ⎪--⎝⎭=2aa -(3分)当2=a 212+===--2分)23. (1)解:原式== (3分) (2) 解:原式=0= (3分)(3)解:原式==分) (4) 解:原式=20-+18―2=36-分)24.(1)解:最简公分母:x (x -1) (2)解:最简公分母:x -2去分母得:x -1+2x =5 去分母得: x -1-2x +4=1x=2 (3分)x =2 (3分)检验:x =2时,x (x -1)≠0 检验:x =2时,x -2=0∴x =2是原方程的解 (1分) ∴x =2是增根,原方程无解(1分) 25.(1)45;34;1;1.(4分) (2)1;证明:2222222111()()111111x x x f x f x x x x x+=+=+=++++(2分)(2分)(2) (2分)(2分)(4)2009(2分)27. 解:设采用新工艺前每小时加工x 个零件,根据题意得:12001200101.5x x=+ (3分) 解得x =40 (2分) 经检验x =40是原方程的解40×1.5=60答:采用新工艺前每小时加工40个零件,采用新工艺 后每小时加工60个零件.(1分)28. (1)证明:∵正方形AEFG 和正方形ABCD 中 ∠AEH =∠ADC =∠EDH =90°∴∠AED +∠DEH =90° ∠AED +∠DAE =90° ∴∠DEH =∠DAE ∴△AED ∽△EHD (4分)(2) 解:∵正方形ABCD 的边长为4∴AD =CD =4 ∵E 为CD 的中点∴DE =2∵△AED ∽△EHD ∴AD DE DE DH =∴422HD=∴DH =1.(3分) 29. 解:∵矩形DEFG 中DG //EF ∴∠ADG =∠B ,∠AGD =∠C ∴△ADG ∽△ABC ∴DG AMBC AH=(2分) 若DE 为宽,则804010080DG -=,∴DG =50,此时矩形的面积是2000平方米.若DG 为宽, 则408010080DE-=,∴DE =48,此时矩形的面积是1920平方米.(答对一个得3分,答对两个得5分)30. 解:△MPO 中,CA //PO ,得MA CA MO PO =∴ 1.6208MA MA =+∴MA =5(3分)同理可得NB BD NO PO =∴ 1.668NB NB =+∴NB =1.5(3分) ∴MA -NB =3.5∴身影的长度是变短了,变短了3.5米.(1分) 31. (1)解:由题意得t 秒时,AP =2t cm ,DQ =t cm ,∴AQ =(6-t)cm ,当AP =AQ 时,即2t =6-t ,即t =2,△QAP 为等腰三角形.(2分)(2)解:∵∠QAP =∠B =90°∴当AQ AP BC AB =时,即62612t t-=,即t =3,△PAQ ∽△ABC或者,当AQ AP AB BC =,即62126t t-=,即t =1.2,△QAP ∽△ABC .答:t =3或1.2时,以点Q 、A 、P 为顶点的三角形和△ABC 相似.(6分)新安中学2009 ~ 2010学年度第二学期期中考试八年级数学试题一、选择题(10小题,共30分)1. 以下列各组线段的长为边,能够组成直角三角形的是( )A.6 8 10B. 15 31 39C. 12 35 37D. 12 18 32 2. 下列计算正确的是( )=-2 B. 2)2(2=-=±32= 3. 下列二次根式中,是最简二次根式的是( )A. a 16B. b 3C.ab4. 如果(x 2+y 2)2+3(x 2+y 2)- 4=0,那么x 2+y 2的值为( )A. 1B. -4C. 1 或-4D. -1或3 5. 方程x x 22530--=根的情况是( )A. 方程有两个不相等的实根B. 方程有两个相等的实根C. 方程没有实根D. 无法判断6. 某型号的手机连续两次降价,每台售价由原来的1185元降到580元,设平均每次的降价的百分率x ,则列出的方程正确的是( )A. (x)258011185+=B. (x)211851580+=C. (x)258011185-=D. (x)211851580-=7. 在△ABC 中,AB ,AC 1513==,BC 上的高AD 长为12,则△ABC 的面积为( )A. 84B. 24C. 24或84D. 42或848. 如果x 0≤,则化简x 1- )A. x 12-B. x 21-C. 1-D. 19. 若方程ax bx c (a )200++=≠,满足a b c 0++=,则方程必有一根为( )、A. 0B. 1C. 1-D. 1±10. 请估计132202⨯+的运算结果应在( ). A. 6到7之间 B. 7到8之间C. 8到9之间D. 9到10之间 二、耐心填一填(6小题,共18分)11. 化简()24-=_________。

相关文档
最新文档